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Abstract
We present a new approach to semi-supervised anomaly detection. Given a set of training
examples believed to come from the same distribution or class, the task is to learn a model that
will be able to distinguish examples in the future that do not belong to the same class. Traditional
approaches typically compare the position of a new data point to the set of “normal” training data
points in a chosen representation of the feature space. For some data sets, the normal data may not
have discernible positions in feature space, but do have consistent relationships among some
features that fail to appear in the anomalous examples. Our approach learns to predict the values of
training set features from the values of other features. After we have formed an ensemble of
predictors, we apply this ensemble to new data points. To combine the contribution of each
predictor in our ensemble, we have developed a novel, information-theoretic anomaly measure
that our experimental results show selects against noisy and irrelevant features. Our results on 47
data sets show that for most data sets, this approach significantly improves performance over
current state-of-the-art feature space distance and density-based approaches.

1 Introduction
We present a new approach to semi-supervised anomaly detection, which involves learning
a classifier from only one class of training example. That is, we are given a sample from one
distribution (i.e., “normal” examples1), and our goal is to differentiate in the future between
these normal examples and those that do not appear to come from the same distribution
(“anomalies”). This task is distinct from unsupervised anomaly detection, where we are
given one sample that is a mixture of examples from two distributions, and the task is to
differentiate them, and from supervised anomaly detection, where we are given a sample of
labeled examples from both distributions. For a survey of anomaly detection problems and
current approaches, see [3].

Most current approaches make judgments based on the distance among examples. For
example, one-class support vector machines (SVMs) [12] attempt to separate the training
examples from the rest of feature space and rank anomalies according to their distance from
this region The local outlier factor method (LOF) [2] compares the distance between a point
and its nearest neighbors to the distances between other nearby points and their nearest
neighbors. It identifies anomalies as points relatively far from local clusters. That is, LOF is
a density-based approach that has the advantage of distinguishing between a point near the
boundary of a sparse cluster and a point that does not appear to be part of any cluster or
distribution.

Availability
All code, documentation and complete experimental results are available at http://bcb.cs.tufts.edu/frac.
1Note that our use of the term “normal” to describe the non-anomalous data points is in keeping with terminology in the anomaly
detection literature. It does not mean that the data are from the normal distribution in the statistical sense.
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We hypothesize that features have more complex relationships to one another than preserved
locations in feature space, and that these relationships can be learned using standard
supervised learning techniques. As a concrete example from anomaly detection in computer
security [6], consider the normal behavior for the TCP protocol. A connection is initialized
by a three-way handshake—the sender sends a TCP packet, the receiver sends a SYN
packet, and the sender replies with an ACK packet. Thus we can anticipate a fairly stable
relationship between the frequency of these packet types during normal protocol behavior.
In contrast, consider the Neptune attack, which is an example of TCP SYN Flooding [5].
During a Neptune attack, the sender sends the TCP packet, but does not send the ACK
packet to complete the three-way handshake. Sending the initial TCP packet initiates a TCP
connection, and the server allocates resources to handle it. The objective of the Neptune
attack is to cause a denial-of-service by creating many “half-open” connections and, in turn,
exhausting server resources. During the attack, the number of TCP, SYN and ACK packets
are all issued in typical frequencies when examined individually, and the distance in feature
space between attacks and the normal examples is comparable to the distance between pairs
of normal examples (especially considering that in a network anomaly detection method
there are typically several additional features derived from packet header data that affect the
distance). Thus, it is difficult to identify Neptune attacks from points in feature space.
However, if we use normal traffic to train a model that can predict the number of ACK
packets based on the number of TCP and SYN packets, then we will identify the Neptune
attack as anomalous because it issues many connections that do not complete the TCP three-
way handshake, and therefore has fewer ACK packets than would be expected, given the
number of TCP and SYN packets.

In this paper we explore the idea that the distribution of normal examples is marked by a
preserved relationship among a few key features. Based on this insight we present an
approach to the anomaly detection problem that discovers these relationships. Specifically,
we attempt to learn accurate models that can predict feature values from other feature
values. That is, we hold aside one feature (e.g., the number of ACK packets in the example
above) as the “target” feature, then use supervised learning methods to learn to predict the
value of this target from some of the other features (e.g., the number of TCP and SYN
packets). After holding aside and learning predictors (i.e., classifiers or regression models,
depending on whether a feature is discrete or continuous) for each of a set of features in
turn, we estimate the evidence of an anomaly conferred by each feature’s predictor and
combine the evidence into a final judgment.

This framework, using supervised learning to infer models for each of a set of features, has
been used in previous approaches for noise-reduction [15], feature construction [11], and has
even been applied in a specific anomaly detection application with discrete features [9].
However, the key to making the approach work for general anomaly detection problems is
the way that the ensemble of feature predictors are combined together to make a decision.
Our experiments suggest that this must be done in such a way as to eliminate unreliable
predictors and irrelevant or noisy features. We present a novel approach for the analysis and
contribution of each feature predictor and show with thorough experimentation that (i) our
approach is generally applicable to a variety of data sets, and (ii) that our approach is more
robust to noisy or irrelevant features than existing state-of-the-art anomaly detection
methods.

In the sections that follow, we explain how we train and evaluate the predictors, demonstrate
how we interpret their output, and show that their accuracy is generally better than either
one-class SVMs and LOF over 47 anomaly detection tasks of various size and difficulty.
Because our approach involves feature regression and classification, we refer to it as FRaC.
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2 Approach: Feature Regression and Classification
Formally, we are given a training set of N examples χ = {x⃗1, x⃗2, …, x⃗N}, all assumed to be
of the same class (i.e., “normal”). Each example x⃗j is a fixed-length vector of D features x⃗j =
〈xj1, xj2, …, xjD〉 of types t⃗ = 〈t1, t2, …, tD〉. In this paper, we assume that these types are
either nominal, in which case we know the set of possible feature values, or continuous, in
which case we know the feasible range of real values. However, our approach extends to
online learning by simply updating these domains and retraining, and it can be used with
complex feature types, provided the appropriate comparison operators are defined.

Our goal is to learn a function f : x⃗ → ℝ that maps a query vector x⃗q to a real-valued score.
We can use these scores to rank examples by how likely each is to come from a different
distribution than the training set. Our approach involves three key design choices. The first
is which features we will attempt to predict, and which other features to use as the predictor
features. In our experiments, we learn a predictor for each feature, using all remaining
features as the predictor features. Note that it may be possible to optimize these sets for
specific tasks, particularly if we have prior knowledge about the relationships among
features. When we learn a predictor for a target feature, our set of selected predictor features
are only potential predictors—whether or not they are used to predict the target value
depends on our choice of predictor model, learning algorithm and training set (for example,
a decision tree will only use those features necessary to correctly predict the target feature).

The second choice is which supervised learning algorithm to use to predict feature values.
Of course, we want choose a hypothesis space and learning algorithm appropriate for our
feature set and problem domain, but any choice may be appropriate for our approach,
provided the algorithm learns a regression model if the target feature has continuous feature
values and a classifier if it has nominal values. We may also choose to learn multiple
predictors for each feature. In general, we use P independent underlying prediction models
and learning algorithms to learn P prediction models for each feature. Formally, let ρi refer
to the set of (potential) predictor features used to predict target i, and let ρi(x ⃗j) refer to just
these values in a vector x⃗j, i.e., if we use all features apart from i itself, then

(1)

We learn a regression or classification predictor of type Cp,i : ρi(t⃗) → ti, where t⃗ are the
feature types, and p ∈ {1, 2, …, P} indicates the underlying supervised model.

The third design choice is how we will combine the ensemble of feature predictors into f : x⃗
→ ℝ to produce the real-valued anomaly score for a previously unseen example. The
intuition behind our approach is that predictors that are accurate on the training set will
continue to be accurate when predicting the feature values of examples that come from the
same distribution as the training set, and they will make more mistakes when predicting the
feature values of examples that come from a different distribution.

Thus, we expect the total error of a test set example x⃗q

(2)

(assuming the distance function is defined for each feature type) to be higher if x⃗q is an
anomaly than if x⃗q is normal. Equation (2) does not account for the accuracy of each
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predictor Cp,i. For example, if Cp,i is no better than random guessing, even on the training
examples, and makes an incorrect prediction half the time, then (2) will randomly penalize
half the test set examples that come from the same distribution as the training set. Therefore,
we use an information-theoretic metric to evaluate each prediction. Specifically, for a test
example x⃗q, and a feature i, we estimate the likelihood of observing the feature value xqi,
given the prediction Cp,i(ρi(x ⃗q)) (implicitly assuming x⃗q comes from the “normal” training
set distribution). We then take the amount of self-information [13], or surprisal, in this
likelihood to be the amount of evidence we have that x⃗q comes from a different distribution
than the training set:

(3)

To calculate p(xqi|Cp,i(ρi(x ⃗q))), we first evaluate Cp,i using cross-validation over the training
set. This gives us Ap,i, a sample of (observed value, predicted value) pairs,

(4)

For nominal features, we use Ap,i to construct a confusion matrix which gives us an estimate
of the likelihood of each feature value for each predicted value.2 For example, suppose that
feature i has two values, v1 and v2, and that Cp,i is very accurate on the training set: when it
predicts v1, it is correct 99% of the time. When it predicts v1 on a test set example, but the
value is v2, the surprisal is −log(0:01) = 6:64 (bits, if we use log base 2). Note that if Cp,i is a
poor predictor, say 50% accurate on a binary feature, then the surprisal is only −log(0:5) = 1
(bit, in log base 2) when the predictor is incorrect, but we are equally surprised when it is
correct, thus the correctness of such a classifier has no effect on surprisal.

If feature i is continuous, we use Ap,i to construct a sample of error values,

(5)

and we use the sample to estimate the error density distribution. In our experiments, we
discretize the values in Ep,i into  bins, where each bin contains a sample of values from
Ep,i that are all approximately the same. We then smooth the resulting histogram of error
values with a Gaussian-shaped kernel with a standard deviation of one bin [10]. Given a test
example x⃗q, we estimate p(xqi|Cp,i(ρi(x ⃗q))) as the probability mass in the bin corresponding
to the error xqi − Cp,i(ρi(x ⃗q)).

Finally, we add the evidence provided by all features to produce the surprisal anomaly score,

(6)

The surprisal anomaly score tends to be higher for features with high-entropy value
distributions (e.g., features with many possible values) even if all classifiers are relatively
accurate. We account for this by subtracting the entropy (i.e., the expected surprisal) of the
training set feature value distribution.

2In our experiments, we add a pseudocount of 1 to frequency counts that determine multinomial distributions. This smoothes the
resulting probability distributions and eliminates the possibility of likelihood estimates that equal zero.
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If feature i is a nominal feature with V values = {v1, v2, …, vV}, then we estimate the
likelihood of each possible feature value from its frequency in the training set i.e., if feature

value vk occurs nk times in N training set examples, then we estimate that . We then
estimate the entropy of the feature value distribution as

(7)

If feature i is a continuous feature, then we model the probability density with a smoothed
histogram of discretized feature values (just as we do for calculating the prediction error
distributions above), and calculate entropy with Equation (7).

Our last issue is how to handle missing values in the calculation of surprisal. Note that the
contribution of a feature i is zero if the surprisal of a prediction is exactly the expected
surprisal without regard to any classifier. This makes zero a natural value to use when the
feature value xqi is missing i.e., when we have no evidence for or against its value being
anomalous.

This gives us an alternative anomaly score which handles missing data that we call
normalized surprisal,

(8)

Normalized surprisal has the advantage of treating all features equally by taking their
(potentially imbalanced) feature value distributions into account. Note that normalized
surprisal is negative if a predictor makes an observed value likely enough to be less
surprising than the entropy of the feature. This effect is more pronounced for high-entropy
features, which means that normalized surprisal has properties that are intuitive for anomaly
detection: the score is high for incorrect predictions, especially when the predictors are
accurate, and the score is low (or negative) for correct predictions, especially when the
prediction is nontrivial.

3 Experiments on UCI Data Sets
We hypothesize that learning feature predictors is a superior general approach to the semi-
supervised anomaly detection task than current state-of-the-art approaches based on
measuring distance between examples in feature space.

We test this hypothesis using 47 classification datasets from the UCI Repository [1].3 For
each data set, we consider the most-represented class to be “normal.” We take 75% of the
normal examples for training. The remaining 25% of the normal examples and all
“anomalous” examples are held aside for testing.

We compare our approach to local outlier factor (LOF) [2], which we believe to be the
current state-of-the-art general-purpose approach to anomaly detection. Density-based
approaches such as LOF model the distance between examples (computed from all features),

3We select all data sets with at least 100 examples that are (i) listed as being classification tasks in feature-vector format at
http://archive.ics.uci.edu/ml, and have a .data file in the corresponding machine-learning-databases public directory at ftp.ics.uci.edu.
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and can fail to detect anomalies when they appear in entirely distinct regions of feature
space, provided their distances are comparable to training examples. Thus, we also compare
against a one-class SVM [12], another popular approach to anomaly detection, which is less
susceptible to this weakness. One-class SVMs learn from numerically-valued features, thus
when using SVMs, we replace k-valued nominal features with k binary features, each set to
0, except for the one corresponding to the feature’s value, which is set to 1. We use the
LIBSVM implementation [4] of one-class SVMs with a radial basis kernel (RBF).

LOF is a density-based approach, fundamentally based on a feature distance metric. For our
experiments, we use the Euclidean distance between feature vectors, where the distance for a
single continuous feature is the difference in value divided by the range of that feature’s
value (i.e., the maximum distance is 1.0), and the distance for a nominal feature is the
Hamming distance (i.e., 1 if the feature values are different, 0 if they are identical). We
compute the LOF separately for each test set example, such that a test set example cannot
receive a low LOF score due to other test set examples in the same neighborhood. LOF has
one parameter, MinPts, which is the size of the neighborhood. Following a suggestion in
Breunig et al. [2], we calculate the anomaly score by taking the maximum LOF over a range
of values.

For our approach using feature regression and classification (FRaC), we combine multiple
underlying feature prediction methods: (i) support vector machines (SVMs) using a linear
kernel, (ii) SVMs using a radial basis function kernel, and (iii) decision trees. We choose
these methods because they represent a variety of hypothesis spaces. We use the LIBSVM
implementation for multi-class SVMs and support vector regression [4,7]. When learning
SVM models, we replace the nominal predictor features with multiple binary features as
described above. We use the WEKA implementation for C4.5 classification decision trees
and decision/regression trees [8]. We use normalized surprisal as our anomaly detection
score, and we calculate this as the sum of the normalized surprisal for each of the three
underlying prediction models.

A key decision in learning support vector machines is the setting of parameters C (the cost
of misclassifying a training example), γ (a parameter of the radial basis function), and for
regression models, ε, which is part of the loss function. We use a log-scale grid search to
select these parameters for accuracy (classification of nominal features) or mean squared
error (continuous features) over 10-fold cross-validation on the training data. We do not use
a grid search for one-class SVMs, because, with no labeled anomalies in the training data,
we do not have a similar objective to optimize.

Some feature values in some of the UCI datasets are missing. We try to handle missing data
as simply as possible. When learning SVMs, we replace the missing values of continuous
features with a mid-range value, and we set all binary features corresponding to a missing
nominal feature value to zero. For FRaC, we discard examples from the training set when
they are missing a target feature value (and the contribution to normalized surprisal of a test
set example with a missing the target feature value is zero by definition).

The output of each method (LOF, one-class SVM, FRaC) is a real number, which we use to
rank each test set example. We then evaluate the resulting rank order by constructing an
ROC curve [14] and reporting the area under the curve (AUC).4 The results on 47 datasets
are reported in Table 1. The results include a estimated upper-bound, which is a classifier
(SVM) trained on labeled examples (75% of the anomalous examples are moved from the

4The area under the ROC curve is equal to the probability that a randomly selected anomaly will have a higher score than a randomly
selected normal example. An AUC of 1.0 is perfect, and an AUC of 0.5 is no better than random guessing.
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test set to the training set and labeled “anomalous”). This is meant to judge the difficulty of
the learning task—we expect the AUC of the supervised classifier to be a rough estimate of
the upper-bound for any anomaly detection approach. The training and test sets for each row
in Table 1 are identical across the three anomaly detection methods.

On average, the AUC scores for FRaC are better than those of LOF and one-class SVMs.
Indeed, the AUC scores for FRaC are better than the maximum of AUC scores for LOF and
one-class SVMs on a majority of the data sets. We run one experiment per data set (training
on 75% of one class, testing on the remaining 25% and the other classes), and there is
doubtless some variance that we are not measuring in the the AUC scores reported in Table
1. However, each column in Table 1 represents 47 independent samples, and according to a
two-tailed, paired Student’s t-test, the superiority of the AUC scores in Table 1 for FRaC
over those of LOF and one-class SVMs is statistically significant (Table 2).

4 Why does FRaC work?
Based on the comparison in Table 1, we believe that FRaC is the superior general approach
to semi-supervised anomaly detection. In this section, we test a hypothesis to explain, in
part, why it is so successful.

In any learning task, there are many potentially irrelevant features that distort the feature
space, affecting the shapes of clusters and the relative distance between examples. LOF and
one-class SVMs treat all features equally, but by using normalized surprisal to combine the
output of feature predictors, FRaC implicitly selects features, because normalized surprisal
is only very high (or very low) for accurate predictors.

To show that FRaC is robust to irrelevant features, we perform the following experiment.
We first select a data set from Table 1, and then add stochastically-generated irrelevant
features to the data set and track the predictive accuracy of the anomaly detection methods.
We choose the data set ecoli because it has a relatively small number of features and all
three anomaly detection methods have high AUC scores. We start with the existing set of
seven features in the ecoli data set, and generate additional irrelevant features as follows.
For each additional feature i, we first choose the parameter of a Bernoulli distribution pi
from a uniform distribution. Next, for each of N examples j, we set xj,i to 1 with probability
pi or to 0 with probability 1 − pi. Because the AUC scores vary with the skewness of the
Bernoulli distributions, we replicate the experiment 40 times to determine the distribution of
AUC scores for each number of additional irrelevant features. Figure 1 shows the average
AUC scores of FRaC, one-class SVMs, and LOF after adding between zero to 100 irrelevant
features to the ecoli data set and repeating the anomaly detection experiments. The AUC
scores of one-class SVMs and LOF quickly degrade with the dimensionality of the feature
space, eventually approaching performance that is no better than random guessing. The
AUC score for FRaC, on the other hand, never drops below 0.9, even when (at least) 93% of
the features are completely irrelevant. We believe that running this test on other data sets
would yield similar results.

5 Conclusion
FRaC is a new, general purpose approach to the semi-supervised anomaly detection
problem. It works because it implicitly reduces feature space to those features that, through
conserved learned relationships among features, characterize the distribution of “normal”
examples. It can then recognize anomalies as examples whose features do not conform to
those patterns. It is therefore robust to high-dimensional learning tasks, which are difficult to
characterize using the current state-of-the-art feature space distance and density-based
approaches.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The effect of additional irrelevant features on three anomaly detection methods for the data
set ecoli.
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Table 1

Test set area under the ROC curve (AUC) on UCI classification datasets that have been modified to be
anomaly detection tasks. The highest AUC score among the three anomaly detection methods is shown in
bold. The estimated upper-bound reports the AUC score for the corresponding supervised classification task,
i.e., when training on both “normal” and “anomalous” examples.

Data Set Estimated
Upper-Bound

One-Class
SVMs

LOF FRaC

abalone 0.60 0.56 0.49 0.42

acute 1.00 0.96 0.87 1.00

adult 0.63 0.62 0.47 0.59

annealing 0.95 0.64 0.83 0.83

arrhythmia 0.82 0.61 0.73 0.76

audiology 0.96 0.78 0.77 0.83

balance-scale 1.00 0.95 0.94 0.97

blood-transfusion 0.70 0.56 0.55 0.51

breast-cancer-wisconsin 0.95 0.52 0.92 0.95

car 1.00 0.97 0.76 0.98

chess 1.00 0.71 0.89 0.94

cmc 0.74 0.42 0.45 0.41

connect-4 0.97 0.52 0.86 0.75

credit-screening 0.83 0.72 0.72 0.86

cylinder-bands 0.50 0.91 0.71 0.81

dermatology 1.00 0.94 1.00 1.00

echocardiogram 0.71 0.68 0.73 0.70

ecoli 0.99 0.99 0.99 0.95

glass 0.86 0.58 0.71 0.66

haberman 0.69 0.65 0.60 0.65

hayes-roth 0.69 0.51 0.63 0.78

hepatitis 0.67 0.51 0.58 0.87

horse-colic 0.77 0.72 0.74 0.84

image 1.00 0.85 0.98 1.00

internet ads 0.97 0.79 0.79 0.95

ionosphere 0.98 0.86 0.93 0.97

iris 1.00 1.00 1.00 1.00

letter-recognition 1.00 0.99 0.99 1.00

libras 1.00 0.68 0.68 0.94

magic 0.87 0.78 0.81 0.86

mammographic-masses 0.90 0.78 0.59 0.77

mushroom 1.00 0.95 1.00 1.00

nursery 1.00 1.00 1.00 1.00

ozone 0.52 0.39 0.46 0.33
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Data Set Estimated
Upper-Bound

One-Class
SVMs

LOF FRaC

page-blocks 0.96 0.57 0.96 0.94

parkinsons 0.94 0.72 0.65 0.64

pima-indians-diabetes 0.81 0.64 0.73 0.70

poker 0.71 0.52 0.52 0.54

secom 0.50 0.50 0.54 0.59

spambase 0.96 0.77 0.59 0.86

statlog (german) 0.55 0.55 0.61 0.66

tae 0.74 0.45 0.40 0.66

tic-tac-toe 1.00 0.84 0.99 0.99

voting-records 0.98 0.97 0.87 0.93

wine 0.96 0.80 0.84 0.94

yeast 0.77 0.72 0.74 0.74

zoo 1.00 1.00 1.00 1.00

Number of data sets with the maximum AUC score 8 7 23
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Table 2

The average improvement and the probabilities associated with a two-tailed, paired Student’s t-test comparing
the AUC scores shown in Table 1 of FRaC with (i) LOF, (ii) one-class SVMs, and (iii) the better of LOF and
one-class SVMs for each data set.

Approach Average improvement in AUC score using FRaC p-value

One-class SVM 0.082 0.000038

LOF 0.051 0.00062

max(LOF,One-class SVM) 0.022 0.088
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