Computer Science > Data Structures and Algorithms
[Submitted on 27 Sep 2006]
Title:Mining Generalized Graph Patterns based on User Examples
View PDFAbstract: There has been a lot of recent interest in mining patterns from graphs. Often, the exact structure of the patterns of interest is not known. This happens, for example, when molecular structures are mined to discover fragments useful as features in chemical compound classification task, or when web sites are mined to discover sets of web pages representing logical documents. Such patterns are often generated from a few small subgraphs (cores), according to certain generalization rules (GRs). We call such patterns "generalized patterns"(GPs). While being structurally different, GPs often perform the same function in the network. Previously proposed approaches to mining GPs either assumed that the cores and the GRs are given, or that all interesting GPs are frequent. These are strong assumptions, which often do not hold in practical applications. In this paper, we propose an approach to mining GPs that is free from the above assumptions. Given a small number of GPs selected by the user, our algorithm discovers all GPs similar to the user examples. First, a machine learning-style approach is used to find the cores. Second, generalizations of the cores in the graph are computed to identify GPs. Evaluation on synthetic data, generated using real cores and GRs from biological and web domains, demonstrates effectiveness of our approach.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.