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Abstract 
 
In this paper, we introduce a new privacy protection 
property called p-sensitive k-anonymity. The existing k-
anonymity property protects against identity disclosure, 
but it fails to protect against attribute disclosure. The 
new introduced privacy model avoids this shortcoming. 
Two necessary conditions to achieve p-sensitive k-
anonymity property are presented, and used in 
developing algorithms to create masked microdata with 
p-sensitive k-anonymity property using generalization 
and suppression. 
 
 
1. Introduction 
 
 The privacy of individuals is a challenging task in a 
digitized world. The amount of individual information 
collected by various data holders is continually 
increasing. To protect this large amount of personal data 
against intruders (individuals who want to use 
confidential information for malicious purposes) has 
become an increasingly difficult task.  
 The benefits that are drawn from the collected 
individual data are far too important for the society, and 
the trend of collecting individual data will never slow 
down. Many times the data collectors are trusted parties, 
and an individual will share his/her confidential 
information without any hesitation. The best example is 
in a healthcare organization. A physician must have 
complete access to a patient’s medical history for the 
patient’s benefit. The healthcare organization can use 
statistical analysis or data mining techniques to extract 
valuable information about its patients for research 
purposes. Many times the research is done by different 
organizations, and the control over the individual data is 
hard to enforce. It is possible that the individual 
information will be used in a wrong way. For instance, 
imagine that a pharmaceutical company links a group of 
individuals with their diagnostics. A targeted marketing 
program can be used on the individuals, and their privacy 
will be violated.  

 Legislators from many countries have tried to regulate 
the use and the disclosure of confidential information. 
Usually, privacy regulations forbid the release of 
attributes that clearly identify individuals, such as Name 
and Social Security Number. Even after their removal, 
these data sources may be matched with other public 
databases on attributes such as Zip Code, Sex, Race and 
Birth Date, to re-identify individuals who were supposed 
to remain anonymous [22]. Joining attacks are made 
easier by the availability of other, complementary, 
databases over the Internet.  
 In the U.S., for example, privacy regulations 
promulgated by the Department of Health and Human 
Services as part of the Health Insurance Portability and 
Accountability Act (HIPAA) protect the confidentiality of 
electronic healthcare information [8]. Similar privacy 
regulation exists in other domains. For instance, Gramm-
Leach-Bliley Financial Modernization Act, enacted in 
1999, requires financial institutions to disclose their 
privacy policies and allows consumers to choose the level 
of sharing of their personal information with third parties 
[7]. Other countries have promulgated similar privacy 
regulations. For example, the Canadian Standard 
Association’s Model Code for the Protection of Personal 
Information [18] and the Australian Privacy Amendment 
Act [3] contain similar privacy regulations. Various 
privacy regulations analyzed from a database perspective 
are presented in [2]. 

Several techniques to avoid the disclosure of 
confidential information are presented in the literature [1, 
25]. In this paper we focus on k-anonymity approach 
presented by Sweeney and Samarati [22, 19]. First, we 
describe k-anonymity privacy protection model. We show 
that k-anonymity protects against identity disclosure [11], 
but it fails to protect against attribute disclosure [11]. 
Second, we introduce a new privacy protection model 
called p-sensitive k-anonymity that extends the existing 
model and protects against both identity and attribute 
disclosure. We analyze several necessary conditions to 
achieve p-sensitive k-anonymity property, and we 
propose a method to create datasets with this property 
using generalization and suppression [22, 19]. In the end 
of the paper we illustrate on a publicly available dataset 



[16] that k-anonymity property fails to protect all 
confidential information, and, therefore, p-sensitive k-
anonymity is useful in real datasets. 

 
2. Motivation for a new anonymity property 
 
 While the attributes that directly identify individuals 
such as Name and SSN are removed from the published 
microdata, other attributes, such as ZipCode or Age, 
which could lead to the possible identification of 
individuals, are usually released to the researchers. 
Unfortunately, an intruder may use record linkage 
techniques [26] between these attributes and external 
available information to glean the identity of individuals 
from the released microdata. To avoid this possibility of 
disclosure, the data owner must release a modified 
version of the microdata that protects the identity of 
individuals and, simultaneously, is useful to researchers. 
We will refer to the released microdata as masked 
microdata and to the initial dataset as initial microdata. 
There are several methods (also called disclosure control 
or masking methods) presented in research papers 
(sampling [20], global and local recoding [14, 19, 23], 
suppression and local suppression [19, 13], 
microaggregation [5], simulation [1], adding noise [9], 
randomization or perturbation methods [15, 10, 6], data 
swapping [4, 17], substitution [21] etc.) to modify the 
initial microdata in order to achieve individual privacy 
and preserve data usefulness. While applying these 
methods, the data owner should decide where to draw the 
line between modifying the initial microdata too much 
(the useful information may be lost) or too little (some 
individuals may be still at high risk of disclosure). One 
solution proposed in the literature for the highly sensitive 
microdata to protect the identity of individuals, is to 
enforce a property that must hold for the masked 
microdata called k-anonymity [22, 19].  
 First, the data owner determines the set of attributes 
that do not directly identify an individual, but used in 
conjunction with other data sources may lead to 
disclosure of an individual. These attributes are called 
quasi-identifiers [22] or key attributes [24]. To simplify 
our discussion we use the following classification that 
includes all possible attributes from any microdata: 
 I1, I2,..., Im are identifier attributes such as Name and 

SSN that can be used to identify a record. These 
attributes are present only in the initial microdata 
because they express information which can lead to a 
specific entity. 

 K1, K2,.…, Kp are key attributes such as Zip Code and 
Age that may be known by an intruder. Key 
attributes are present in the masked microdata as 
well as in the initial microdata.  

 S1, S2,.…, Sq are confidential attributes such as 
Principal Diagnosis and Annual Income that are 
assumed to be unknown to an intruder. Confidential 
attributes are present in the masked microdata as 
well as in the initial microdata.  

 To protect the data, the identifiers attributes are 
completely removed, and the key attributes are “masked”, 
using disclosure control methods, in order to avoid the 
possibility of disclosure. We assume that the values for 
the confidential attributes are not available from any 
external source. This assumption guarantees that an 
intruder can not use the confidential attributes values to 
increase his/her chances of disclosure, and, therefore, 
their “masking” is unnecessary. 
 Definition 1 (k-anonymity property): The k-anonymity 
property for a masked microdata (MM) is satisfied if 
every combination of key attribute values in MM occurs k 
or more times.  
 Based on this definition, in a masked microdata that 
satisfy k-anonymity property, the probability to identify 
correctly an individual is at most 1/k. By increasing k the 
level of protection increases, along with the changes to 
the initial microdata. In Table 1, we show an example of 
masked microdata where 2-anonymity is satisfied. 
 
Table 1. Patient masked microdata satisfying 2-

anonymity 
Age ZipCode Sex Illness 
50 43102 M Colon Cancer 
30 43102 F Breast Cancer 
30 43102 F HIV 
20 43102 M Diabetes 
20 43102 M Diabetes 
50 43102 M Heart Disease 

  
 In this example, the set of key attributes is composed 
of Age, ZipCode, and Sex. A simple SQL statement helps 
us check whether a relation adheres to k-anonymity: 
 SELECT COUNT(*) FROM Patient GROUP BY 
Sex, ZipCode, Age.  
 If the results include groups with count less than k, the 
relation Patient does not have k-anonymity property with 
respect to KA = {Age, ZipCode, Sex}. 
 Using this example, we illustrate why k-anonymity 
does not provide the amount of confidentiality required 
for every individual. To justify this affirmation, we 
distinguish between two possible types of disclosure, 
namely, identity disclosure and attribute disclosure. 
Identity disclosure refers to identification of an entity 
(person, institution) and attribute disclosure occurs when 
the intruder finds out something new about the target 
entity [11]. Identity disclosure does not automatically 
imply attribute disclosure. It may happen that the intruder 
does not find anything new when he identifies an entity.  



Also we can have attribute disclosure without identity 
disclosure. We illustrate these two concepts by using the 
Patient masked microdata from Table 1. There is no 
identity disclosure in this microdata, its construction 
guarantees that for every existing combination of values 
for Age, ZipCode, and Sex, there are at least two tuples 
that share the same combination of key attribute values, 
therefore, the masked microdata is protected against 
identity disclosure. We assume that the external 
information from Table 2 is available to a presumptive 
intruder, and the intruder also knows that in the masked 
microdata (see Table 1) the Age attribute was generalized 
to multiples of 10. 
 
Table 2. External information for Patient example 

Name Age Sex ZipCode 
Sam 29 M 43102 
Gloria 38 F 43102 
Adam 51 M 43102 
Eric 29 M 43102 
Tanisha 34 F 43102 
Don 51 M 43102 

 
 The intruder does not know if Sam or Erich maps to 
the first or the second tuple from the Patient masked 
microdata with Age, ZipCode, and Sex combination of 
(20, 43102, M), but he does know that both of the tuples 
have Diabetes as the illness, and therefore both Sam and 
Erich have Diabetes. This example shows that k-
anonymity privacy protection does not consider the 
attribute disclosure, and fails to protect individuals’ 
privacy in certain situations. To avoid this problem, we 
generalize k-anonymity to a new privacy protection 
model called p-sensitive k-anonymity. 
 Definition 2 (p-sensitive k-anonymity property): The 
masked microdata (MM) satisfies p-sensitive k-anonymity 
property if it satisfies k-anonymity, and for each group of 
tuples with the identical combination of key attribute 
values that exists in MM, the number of distinct values 
for each confidential attribute occurs at least p times 
within the same group. 
 To illustrate this property, we consider the masked 
microdata from Table 3 that satisfies 3-anonymity 
property with respect to Age, ZipCode and Sex. To find 
the value of p, we analyze each group with identical 
values for all key attributes. The first group (the first 
three tuples) has two different illnesses, and only one 
income, therefore the value of p is 1. This masked 
microdata satisfies 1-sensitive 3-anonymity property. It is 
easy to notice that when p = 1 we will always have the 
attribute disclosure problem. If the first tuple would have 
a different value for income (such as 40,000) then both 
groups would have two different illnesses and two 
different incomes, and the value of p would be 2. 

Table 3. Masked microdata example for p-
sensitive k-anonymity property 

 

Age ZipCode Sex Illness Income 
20 43102 F AIDS 50,000 
20 43102 F AIDS 50,000 
20 43102 F Diabetes 50,000 
30 43102 M Diabetes 30,000 
30 43102 M Diabetes 40,000 
30 43102 M Heart Disease 30,000 
30 43102 M Heart Disease 40,000 

  
 From the definition of p-sensitive k-anonymity 
property we notice that p is always less than or equal to k. 
From the above examples, we draw the following two 
conclusions:  
 To avoid the possibility of identity disclosure, a 

given masked microdata must have k-anonymity 
property with k greater than or equal to 2. 

 To avoid the possibility of attribute disclosure, a 
given masked microdata must have p-sensitive k-
anonymity property with p greater than or equal to 2. 

From these two properties, we can draw the wrong 
conclusion that 2-sensitivity 2-anonymity property will 
suffice to protect any masked microdata against 
disclosure. Unfortunately, in this case, an intruder may 
“guess” the identity or attribute value of some individuals 
with a probability of ½. For many masked microdata such 
a high probability is unacceptable, and the values of k 
and/or p must be increased. 

 
3. P-sensitive k-anonymity property 
 
 Several algorithms that automatically modify a given 
initial microdata into masked microdata that satisfies the 
k-anonymity property are presented in the literature [12, 
19]. The disclosure control methods used most frequently 
in this process are generalization [19] (also known as 
global recoding [14]) and suppression [19, 13].  
 Generalization is used with categorical attributes such 
as ZipCode and Sex. The domain for an attribute that is 
generalized is extended to a domain generalization 
hierarchy, which includes all possible groups for that 
specific attribute. For the attribute ZipCode, the domain 
contains all existing zip codes, while the domain 
generalization hierarchy contains all prefixes (without 
repetition) for the existing values [19]. A domain 
generalization hierarchy is a total ordered relation 
between different domains that can be associated with an 
attribute. The values from different domains can be 
represented in a tree called value generalization 
hierarchy. We illustrate domain and value generalization 
hierarchy in Figure 1. 



 

 
Figure 1. Examples of domain and value generalization hierarchies 

 
 To apply generalization, the data owner defines the 
domain and value generalization hierarchies for the 
attributes he wants to generalize. Usually, the data owner 
has several choices based on the properties of each 
attribute. For instance, the ZipCode attribute can have a 
different generalization hierarchy with six domains in 
which only one digit is removed at a time. The choice of 
the domain generalization hierarchy (the value 
generalization hierarchy is generated based on the chosen 
domain generalization hierarchy) is an important factor in 
the success of the masking process.  

   
 

Figure 2. Generalization lattice for ZipCode and 
Sex attribute 

 
 When two or more attributes are generalized the data 
owner can create a generalization lattice to visualize all 
possible combinations of generalized domains (see Figure 
2). Generalization lattices are introduced by Samarati 
[19]. The minimum path from the minimal element in the 
generalization lattice GL to a node X is labeled height(X,  
GL). For instance in figure 2, height(<S0, Z0>, GL) = 0, 
height(<S1, Z0>, GL) = 1, height(<S0, Z1>, GL) = 1, 
height(<S1, Z1>, GL) = 2, height(<S0, Z2>, GL) = 2, 
height(<S1, Z2>, GL) = 3. The maximum height, 

represents the height of the entire lattice, and we label it 
height(GL). 
 This generalization method (also called full domain 
generalization [12] or global recoding [McGulkin et al. 
1990]) maps the entire domain of a key attribute in initial 
microdata to a more general domain from its domain 
generalization hierarchy.  
 Using only generalization, any initial microdata can be 
transformed to a masked microdata that satisfies k-
anonymity. Practical experiments have shown that the 
generalization required to achieve k-anonymity 
considerably reduces the usefulness of the data, and the 
resulting masked microdata frequently will be useless. To 
avoid this shortcoming, one more disclosure control 
method called suppression is used. 
 After generalization is performed, we can identify the 
number of tuples that have a frequency of key attribute 
values less than k. If this number is below a defined 
threshold we apply suppression, and these tuples will be 
removed from the resulting masked microdata. 
 Using generalization and suppression we can obtain 
several distinct masked microdata sets that satisfy k-
anonymity property. It is easy to prove that if k-
anonymity is achieved for a node X in the generalization 
lattice, k-anonymity is satisfied for every node Y that is a 
generalization of the note X (Y is on the path from X to 
the upper level of the lattice) [19]. From the construction 
of the lattice we know that on every path we lose 
information when we move up in the lattice. Therefore, 
the data owner is interested in finding the node or nodes 
that are closer to the bottom of the lattice. A node X that 
satisfies k-anonymity when no other node Y satisfies k-
anonymity such that X is on the path from Y to upper level 
of the lattice (X different of Y) represents a k-minimal 
generalization [19]. The data owner wants to find one or 
all k-minimal generalization.  
 For an initial microdata we have different k-minimal 
generalization based on the threshold selected for 

<S1, Z2> 

<S1, Z1> <S0, Z2> 

<S1, Z0> <S0, Z1> 

<S0, Z0> 

Z1 = {482**, 410**} 

Z2 = {*****} 

Z0 = {48201, 41075, 41076, 41088, 41099} 

***** 

482** 410** 

41075 41076 41088 41099 48201 

S0 = {male, female} 

S1 = {*} * 

male female 



suppression. In Figure 3, we illustrate the Sex and 
ZipCode values from an initial microdata, and we 
compute (value in parentheses) in the associated 
generalization lattice, how many tuples do not satisfy 3-
anonymity for every node. For every initial microdata and 
every generalization lattice, the number of tuples not 
satisfying k-anonymity decreases when the amount of 
generalization increases. Therefore, on every path this 
number increases as we traverse from the upper level 
node to the bottom. 
 

Sex ZipCode 
M 41076 
F 41099 
M 41099 
M 41076 
F 43102 
M 43102 
M 43102 
F 43103 
M 48202 
M 48201               
Figure 3. Example for minimal generalization 

with suppression threshold (TS) 
 

The Table 4 shows which node corresponds to 3-minimal 
generalization for different values for the threshold (TS). 
We notice that the 3-minimal generalization is not unique 
for all threshold values. 
 

Table 4. 3-minimal generalizations and TS values 
for suppression 

TS 0, 1 2, 3, 4, 5, 6 7, 8, 9 10 
Node <S0, Z2> <S0, Z2> and 

<S1, Z1> 
<S1, Z0> and 

<S0, Z1> 
<S0, Z0> 

 

 There are several algorithms available to determine a 
k-minimal generalization with a suppression threshold 
[19, 12, 22]. We improve these algorithms to find a 
minimal generalization (labeled p-k-minimal 
generalization) that satisfies p-sensitive k-anonymity 
property. 
 Definition 3 (P-k-minimal generalization): A node X 
that satisfies p-sensitive k-anonymity when no other node 
Y satisfies p-sensitive k-anonymity such that X is on the 
path from Y to upper level of the lattice (X different of Y) 
represents a p-k-minimal generalization 
 The p-sensitive k-anonymity property can not always 
be satisfied. We consider the number of distinct values 
for each confidential attribute Sj (j = 1, …, q) as sj. In this 
case p must always be less than or equal to )(min

,1 jqj
s

= . For 

instance, if we consider Sex as a confidential attribute, 
that the number of distinct values for Sex is only 2, and 
therefore the maximum possible value for p is 2. The 
following condition must hold in order to have p-sensitive 
k-anonymity property for a masked microdata. 

 Condition 1 (First necessary condition for a MM to 
have p-sensitive k-anonymity property): The minimum 
number of distinct values for confidential attributes must 
be greater than or equal to p. 
 It is easy to check if p-sensitive k-anonymity property 
can be obtained for a given p. For each confidential 
attribute the following SQL statement is executed for the 
initial microdata IM to find the number of distinct values 
(sj): SELECT COUNT (distinct Sj) FROM IM.  
 Next, the minimum value is determined and compared 
with p. If p is strictly greater than the selected value, the 
p-sensitive k-anonymity property cannot be satisfied.  
 We derive a second necessary condition for a MM to 
have the p-sensitive k-anonymity property. This condition 
establishes the maximum allowed number of 
combinations of key attribute values in the masked 
microdata that satisfy p-sensitive k-anonymity. To 
illustrate this condition, we consider a masked microdata 
MM with 1,000 tuples that has only one confidential 
attribute S. The attribute S has 5 distinct values which 
occur with the following frequencies: 900, 90, 5, 3, and 2. 
Also, MM has k-anonymity property for a fixed k greater 
than 3. Now, we would like to check whether MM has 3-
sensitive k-anonymity property. To have this property 
each group determined by the combination of key 
attribute values must have three distinct values for the 
attribute S. We notice that if the number of such groups is 
11 or more this property will never be true. We use the 
following definition for the frequency set.  
 Definition 4 (Frequency set): Given a microdata M 
(initial or masked), and a set of attributes SA of M, the 
frequency set of M with respect to SA is a mapping from 
each unique combination of values of SA to the total 
number of tuples in M with these values of SA [12]. 
 We use the following notations for a microdata M: 
 n – the number of tuples in M; 
 q – the number of confidential attributes in M; 
 sj – the number of distinct values for the attribute Sj; ( 

1 ≤ j ≤ q)  
 j

if  – the descending ordered frequency set for the 
confidential attribute Sj; ( 1 ≤ j ≤ q and  1 ≤ i ≤ sj )  

 j
icf – the cumulative descending ordered frequency 

set for the confidential attribute Sj; ( 1 ≤ j ≤ q and  1 
≤ i ≤ sj )  

 )(max
,1

j
iqji cfcf

=
=  (1 ≤ i ≤ )(min

,1 jqj
s

=  ) 

 To illustrate these notations we consider the following 
example.  
 Example 1: Consider a microdata M with two key 
attributes (K1 and K2) and three confidential attributes (S1, 
S2, and S3). We assume the size of the microdata is 1,000. 
The Tables 5 and 6 summarize the frequency sets values 
introduced before. 



 We know from the first necessary condition that p 
must be less or equal to 5. We analyze for all possible 
values of p how many groups of distinct combinations of 
key attribute values are allowed for this masked 
microdata. 
 For p = 2 there are at most 300 groups allowed. The 
attribute S3 has a value that repeats 700 times (cf1), and 
one tuple with a different value must be included in every 
group. 
 When p = 3, the maximum allowed number of groups 
is 100, and when p = 4 the number of groups is at most 
50. The justification is similar to the previous case. 
 A more interesting situation occurs for p = 5. The four 
most common values for S3 occur 960 times, and to create 
groups of 5 distinct values we must include one of the 
remaining tuple in every group. The maximum number of 
groups seems to be 40 (1000 – cf4). The problem is that 
we don’t know if we already have 4 distinct values in 
every group. The most frequent three distinct values for 
S3 represent 950 tuples, and we must include at least 2 of 
the remaining 50 tuples in every group. Therefore the 
maximum number of groups is only 25. We must repeat 
this reasoning for the most frequent 2 values, and for the 
most frequent value. Using the above justification, we 
have computed the minimum between the following 
values: 1−− pcfn , 

⎥
⎦

⎥
⎢
⎣

⎢ − −

2
2pcfn , .., 

⎥
⎦

⎥
⎢
⎣

⎢
−
−

1
1

p
cfn ; each of these 

representing an upper threshold for the maximum number 
of allowed groups. Based on this example we derive the 
following necessary condition. 
 Condition 2 (Second necessary condition for a MM to 
have p-sensitive k-anonymity property): The maximum 
allowed number of combinations of key attribute values 
in the masked microdata is ⎥

⎦

⎥
⎢
⎣

⎢ − −

−= i
cfn ip

pi 1,1
min . 

 Without using the two necessary conditions we can 
test for p-sensitive k-anonymity property using the 
following basic algorithm (see Algorithm 1). We can use 
the SQL statement: SELECT COUNT (*) FROM MM 
GROUP BY KA to determine if k-anonymity is satisfied 
for the masked microdata MM. 

 The Algorithm 1 is used in the process of searching for 
a masked microdata that satisfies p-sensitivity k-
anonymity. Until such a masked microdata is found, there 
are many unsuccessful tries. We can improve this basic 
algorithm using the two necessary conditions (see 
Algorithm 2).    
 In multiple runs from different masked microdata sets 
created for the same initial microdata we can reuse the 
values maxP and maxGroups if the only disclosure 
control method applied was generalization of key 
attributes. Moreover, these two values can be computed 
from the initial microdata since all involved attributes are 
confidential, and the generalization method does not 
change these attributes. In case of generalization followed 
by suppression, it seems that the computation of maxP 
and maxGroups must be repeated for every masked 
microdata.  
 We prove the following two theorems that allow us to 
reuse the values of maxP and maxGroups for masked 
microdata where suppression was applied after the 
generalization method. 
 Theorem 1: Let maxP be the minimum number of 
distinct values for confidential attributes computed for the 
initial microdata IM, and maxPM the same value 
computed for the masked microdata MM derived trough 
generalization followed by suppression from IM. The 
inequality maxP ≥ maxPM is always true. 
 Proof: Let sj be the number of distinct values for the 
attribute Sj ( 1 ≤ j ≤ q) in IM, and s’j be the number of 
distinct values for the attribute Sj ( 1 ≤ j ≤ q) in MM.  
 During the generalization, the values for confidential 
attributes do not change, and the existing changes are due 
only to suppression. The number of distinct values for 
any Sj cannot increase by eliminating tuples. Therefore, 
we have the following property:  
 sj ≥ s’j, for all j, 1 ≤ j ≤ q. 
Let Sk be the confidential attribute with the smallest 
number of distinct values for IM. We have (using the 
above inequality):  
 maxP =  )(min

,1 jqj
s

= = sk ≥ s’k ≥ )'(min
,1 jqj

s
= = maxPM                              

 q.e.d. 
 

Table 5. Frequency set values 
 sj jf1  jf 2  jf3  jf 4  jf5  jf6  jf7  jf8  jf9  jf10  

j = 1 5 300 300 200 100 100 - - - - - 
j = 2 6 500 300 100 40 35 25 - - - - 
j = 3 10 700 200 50 10 10 10 10 5 3 2 

 
Table 6. Cumulative frequency set values 

 sj jcf1  jcf 2  jcf3
 jcf 4  jcf5

 jcf 6
 jcf 7

 jcf8
 jcf9

 jcf10
 

j = 1 5 300 600 800 900 1000 - - - - - 
j = 2 6 500 800 900 940 975 1000 - - - - 
j = 3 10 700 900 950 960 970 980 990 995 998 1000 
cfi - 700 900 950 960 1000 - - - - - 



Algorithm 1 (Basic Algorithm to test the p-sensitive k-anonymity property for MM): 
 
Input: MM – a masked microdata 
   p, k (p ≤ k) natural numbers greater than or equal to 2.  
 
Output:  Condition is true (p-sensitive k-anonymity is satisfied) 
    Condition is false (p-sensitive k-anonymity is not satisfied) 
 
if MM has k-anonymity property then 
{ 
      Condition = true;  
      for each combination of key attribute values and each confidential attribute do       
      { 
            Let d be the number of distinct values for that confidential attribute. 
            If d < p then  
            { 

        Condition = false; 
        Break loop; 
     } 

       } 
} 
else Condition = false;  
 
 
Algorithm 2 (Improved Algorithm to test the p-sensitive k-anonymity property for MM): 
 
Input: MM – a masked microdata 
   p, k (p ≤ k) natural numbers greater than or equal to 2.  
 
Output:  Condition is true (p-sensitive k-anonymity is satisfied) 
    Condition is false (p-sensitive k-anonymity is not satisfied) 
 
Condition = true; 
 
// first necessary condition 
if Condition then 
{ 
      Compute sj for all confidential attributes Sj (j = 1, ..., q) 
      maxP = )(min

,1 jqj
s

=
 

      if ( p > maxP ) Condition = false; 
} 
 
// second necessary condition 
if Condition then 
{ 

      Compute j
if , j

icf  for all confidential attributes Sj (j = 1, ..., q) 

      Compute )(max
,1

j
iqji cfcf

=
=  for all i, 1 ≤ i ≤ )(min

,1 jqj
s

=
  

      maxGroups = ⎥
⎦

⎥
⎢
⎣

⎢ − −

−= i
cfn ip

pi 1,1
min  

      Compute the number of combinations of key attribute values in MM.  
          Let noGroups be this value. 
      if (noGroups > maxGroups ) Condition = false; 
} 
 
 
if (Condition and MM does not have k-anonymity property) then Condition = false 
 
// only the MM that pass the two conditions are checked in details. 
for each combination of key attribute values and each confidential attribute do       
{ 
       Let d be the number of distinct values for that confidential attribute. 
       If d < p then  
       { 

  Condition = false; 
  Break loop; 

       } 
} 



 Theorem 2: Let maxGroups be the maximum allowed 
number of combinations of key attribute values computed 
for the initial microdata IM, and maxGroupsM the same 
value computed for a masked microdata MM derived 
trough generalization followed by suppression from IM. 
Then maxGroups ≥ maxGroupsM 
 Proof: We use the notations n’, s’j, j

if ' , j
icf '  and 

icf ' for MM to distinguish them from n, sj j
if , j

icf  and 

icf used for IM in this proof. We also define ts = n – n’ 
as the suppression threshold. When suppression is applied 
to a microdata, the data owner usually determine the 
maximum allowed number of tuples to be removed. 
Therefore, without the loss of generality, we assume that 
ts is known from the start of the masking process. 
 From the definition of j

icf and by removing at most ts 
tuples we have: 
 0 ≤ j

icf − j
icf ' ≤ ts for all j, 1 ≤ j ≤ q and for all i, 1 ≤ i 

≤ )(min
,1 jqj

s
=  (since j

icf ' ≤ )(min
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s
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 Next, we use the second part of the above inequality: 

 j
icf ≤ j

icf '  + ts for all j, 1 ≤ j ≤ q and for all i, 1 ≤ i ≤ 
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,1 jqj

s
=

. 

 For a fixed i, let Sk be the confidential attribute such 
that: )(max
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j
iqj

k
i cfcf

=
= . Then: 

 icf = )(max
,1

j
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cf
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 = k
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j
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cf
=  + ts = 

icf ' + ts.  

 From icf ≤ icf ' + ts we get: 

 − icf ≥ − icf ' − ts ,       n − icf ≥ n − ts − icf '  , 
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⎦
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⎣
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 maxGroups ≥ maxGroupsM 
 q.e.d. 
  

 
Algorithm 3 (Algorithm for computing a p-k-minimal generalization): 
 
Input: IM – an initial microdata 
        GL – the generalization lattice 
   p, k (p ≤ k) natural numbers greater or equal to 2.  
 
Output: Condition is true (p-sensitive k-anonymity can be achieved) 
   Condition is false (p-sensitive k-anonymity can not be achieved) 
   X – the node in the lattice that represents the masked microdata with  
          p-k-minimal generalization (only when Condition is true) 
 
// first necessary condition can be checked from the beginning 
Compute maxP using IM; 
if ( p > maxP ) Condition = false; 
else 
{   Compute maxGroups for IM;  // second necessary condition preparation 
    low = 0; 
    high = height(GL); 
    while (low < high) 
    { 
        try = (low + high) /2; 
        Nodes = {Y | height(Y, GL) = try}; 
        reach_k = false; 
        while (Nodes ≠ ∅) and (reach_k ≠ true) 
        { 
           Select and remove a node Z from Nodes. 
           Compute the number of combinations of key attribute values for the MM that 
             corresponds to Z using only generalizations. Let noGroupsZ be this value. 
           if (noGroupsZ > maxGroups ) break; // second necessary condition 
 
           if (p-sensitive k-anonimity property is satisfied  
             for MM (including suppression) using Basic Algorithm) 
           {   
               reach_k = true; X = Z; 
           } 
         } 
         if (reach_k==true) high = try;  
         else low = try + 1; 
     } 
} 



 Based on the above theorems we can generalize any 
algorithm that finds a k-minimal generalization to an 
algorithm that finds a p-k-minimal generalization. 
 To illustrate our affirmation we consider the algorithm 
introduced by Samarati that uses binary search executed 
on the generalization lattice. For each node in the 
generalization lattice, we know the generalization that is 
applied to each key attribute, and we can apply our 
improved algorithm to test p-sensitive k-anonymity 
property. In the Algorithm 3, we underline our additions 
to the existing algorithm [19]. 
 By introducing these two necessary conditions, we 
eliminate many masked microdata sets that do not satisfy 
p-sensitive k-anonymity property early. Also, these two 
necessary conditions can be used in correlation with other 
algorithms that computes masked microdata sets with k-
anonymity property only [12].  
 
4. Experimental results 
 
 In our experiments we used the Adult database from 
the UC Irvine Machine Learning Repository [16]. We 
considered Age, MaritalStatus, Race, and Sex as the set of 
key attributes, and Pay, CapitalGain, CapitalLoss, and 
TaxPeriod as the set of confidential attributes. We applied 
generalization for the key attributes using the 
generalization domains as described in the Table 7.  
 We use the following notations:  
 Ai (i = 0, 1, 2, 3) for the domain generalization of 

Age;  
 Mj (j =0, 1, 2) for MaritalStatus;  
 Rk (k = 0, 1, 2, 3) for Race;  
 Sp (p = 0, 1) for Sex.  

 We label a node in the generalization lattice (labeled 
GLA) as <Ai, Mj, Rk, Sp> where i = 0, 1, 2, 3; j =0, 1, 2; k = 
0, 1, 2, 3; and p = 0, 1. The total number of nodes in the 
lattice is 4 x 3 x 4 x 2 = 96, and height(GLA) = 9. 

We used two sample sets from the Adult database as our 
initial microdata sets, the first with size 400 and the 
second with size 4000. We applied Samarati binary 
search algorithm [19], and we found the node in the 
lattice that corresponds to the minimal k-generalization 
(the corresponding masked microdata has k-anonymity 
property). We choose k as either 2 or 3. Next, we analyze 
the values for confidential attributes within each group 
with the same key attribute values.  In three out of four 
experiments we found several groups of attributes with 
the same value for a confidential attribute (which means 
that the masked microdata does not have 2-sensitive k-
anonymity property), and therefore the attribute 
disclosure could take place. The results of our 
experiments are summarized in the Table 8.  
 This experiment shows the possibility of attribute 
disclosure when k-anonymity model is enforced, and the 
need for an enhanced model to avoid such a shortcoming. 
The proposed p-sensitive k-anonymity property guards 
against attribute disclosure. From this experiment, we 
found that when the value of k increases, the number of 
attributes disclosure decreases, which means, p-sensitivity 
k-anonymity property is satisfied for larger values of p. 
Although, this is true for many datasets, by choosing a 
larger k the attribute disclosure problem is not avoided. 
 
5. Conclusions and future work 
 
 Our main contribution in this paper is the introduction 
of the p-sensitive k-anonymity property. This property is 
the first method that a data owner can use to protect the 
initial microdata against the attribute disclosure. 
Moreover, this property also includes the identity 
disclosure protection (k-anonymity. 
 Our experiments shows how k-anonymity fails to 
protect against attribute disclosure, and this motivated us 
to extend the k-anonymity model to include this enhanced 
level of protection. 

 
 

Table 7. Adult database key attribute generalizations 
Attribute Distinct Values First Generalization Second Generalization Third Generalization 

Age 74 10-years ranges <50 and >50 groups One group 
MaritalStatus 7 Single or Married One group - 

Race 5 White, Black, or Other White or Other One group 
Sex 2 One group - - 

 
Table 8. Attribute disclosures for two masked microdata sets with k-anonymity property 

Size and k-anonymity Lattice Node No of attribute disclosures 
400 and 2-anonymity <A1, M1, R1, S1> 6 
400 and 3-anonymity <A1, M1, R2, S1> 2 
4000 and 2-anonymity <A2, M1, R1, S1> 4 
4000 and 3-anonymity <A2, M1, R2, S1> 0 



  We found two important necessary conditions a 
masked microdata must satisfy in order to have p-
sensitive k-anonymity property.  Also, we proved two 
theorems which create the framework to use the necessary 
conditions efficiently in any algorithm that searches 
automatically for a masked microdata. We illustrated the 
inclusion of the two necessary conditions in the algorithm 
for computing a p-k-minimal generalization (see 
Algorithm 3). 
 In future work, we will create masked microdata that 
satisfy p-sensitive k-anonymity using the existing 
algorithms for k-anonymity with the addition of the two 
necessary conditions, and we will compare the running 
time of these modified algorithms against the existing 
algorithms that searches for k-anonymity only. 
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