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Abstract—Rapid detection and mitigation of issues that impact
performance and reliability is paramount for large-scale online
services. For real-time detection of such issues, datacenter oper-
ators use a stream processor and analyze streams of monitoring
data collected from servers (referred to as data source nodes) and
their hosted services. The timely processing of incoming streams
requires the network to transfer massive amounts of data, and
significant compute resources to process it. These factors often
create bottlenecks for stream analytics.

To help overcome these bottlenecks, current monitoring sys-
tems employ near-data processing by either computing an op-
timal query partition based on a cost model or using model-
agnostic heuristics. Optimal partitioning is computationally ex-
pensive, while model-agnostic heuristics are iterative and search
over a large solution space. We combine these approaches
by using model-agnostic heuristics to improve the partitioning
solution from a model-based heuristic. Moreover, current systems
use operator-level partitioning: if a data source does not have
sufficient resources to execute an operator on all records, the
operator is executed only on the stream processor. Instead, we
perform data-level partitioning—i.e., we allow an operator to be
executed both on a stream processor and data sources.

We implement our algorithm in a system called Jarvis, which
enables quick adaptation to dynamic resource conditions. Our
evaluation on a diverse set of monitoring workloads suggests
that Jarvis converges to a stable query partition within seconds
of a change in node resource conditions. Compared to current
partitioning strategies, Jarvis handles up to 75% more data
sources while improving throughput in resource-constrained
scenarios by 1.2-4.4×.

Index Terms—analytics, stream processing, server monitoring,
near-data, edge analytics, query partitioning, query refinement

I. INTRODUCTION

Today’s datacenters use thousands of servers to host large-
scale services, such as web search, database systems, and
machine learning (ML) pipelines, for millions of users. Op-
erating these services with high availability requires that in
order to restore normal service operation, datacenter operators
quickly detect performance and reliability issues [1]–[3] such
as high network latency, disk failures, and service outages from
software bugs [4]–[10].

Datacenter operators deploy a dedicated monitoring system
that analyzes real-time events as they are streamed from
datacenter servers to a stream processor (Figure 1). As the
collected data is analyzed, the stream processor visualizes
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Fig. 1: Overview of a datacenter monitoring system.

the behavior of the monitored system via dashboards. This
allows the operators to generate alerts when issues impacting
service availability are observed. Note that the data streamed
includes both service-level application logs and host-level
metrics representing the health of various system resources.
Large-scale monitoring pipelines can generate up to 10s of
PBs per day from hundreds of thousands of servers [3],
[11], making the network transfer cost to the remote stream
processor a significant bottleneck. Furthermore, processing the
data in a timely manner requires large amounts of compute
resources, which is increasingly becoming a burden to the
stream processors.

Challenges. Various monitoring pipelines leverage available
compute resources on data sources (i.e., server nodes) to
process data locally, effectively reducing the amount of data
delivered to the stream processor. As available resources on the
data source typically result from over-provisioning compute
resources to handle peak resource demands [2], [12]–[15],
a monitoring query may be restricted to run a subset of
operations (e.g., filtering) within a given compute budget
to minimize interference with the hosted services. However,
such compute budget varies widely across data sources and
different time slots in practice (Section II-B). Consequently,
prior partitioning approaches, which statically decide which
operations to run on the data source [16]–[18] are either too
conservative or, alternatively, run out of the assigned compute
budget, affecting overall query performance.

To overcome the limitations of static partitioning, Sonata [1]
proposes a dynamic approach based on a query cost opti-
mization model. Query operators can be distributed across
programmable switches and the stream processor for a wide
range of network monitoring applications. However, the pro-
posed query partitioning occurs at the operator level [16]–[18],
and is modified at runtime by a central query planner running
on the stream processor. Thus, the query planner deploys to
the programmable switch an operator only if its available
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compute resources are sufficient to process all of the operator’s
ingress data. Unfortunately, such coarse-grained operator-
level query partitioning is not effective in scenarios where
available compute resources are highly constrained, as is the
case with data sources in monitoring systems. Furthermore,
solving an expensive optimization using an accurate query
cost profile and a centralized planner is unsuitable for making
frequent decisions needed when data sources exhibit fast
changing resource conditions.
Our proposal. We propose Jarvis, a new monitoring engine
that targets large-scale systems generating high-volume data
streams. For the query workload on each data source, Jarvis
identifies a fine-grained data-level partitioning strategy by
controlling the amount of data processed by each query oper-
ator, namely load factor. This partitioning strategy leverages a
model-based technique using query operator costs to estimate
the initial load factors and then iteratively adapts the estimates
by monitoring the query’s execution. Jarvis can significantly
reduce network data transfers while utilizing the limited and
dynamic compute resources over data sources. As Jarvis is
implemented in a fully decentralized manner, it can scale to a
large number of data sources.

Jarvis introduces novel extensions to the conventional query
execution pipeline: Control proxy and Jarvis runtime. The
control proxy is a light-weight routing logic—associated with
a query operator—that decides “how many” incoming records
should be forwarded to the associated query operator. At each
data source, the local Jarvis runtime interacts with all control
proxies within a query in order to identify their state (i.e.,
idle, congested, or stable). After observing state changes for
the control proxies of the query, the Jarvis runtime refines
its plan for data-level partitioning in order to keep the query
execution in each data source stable.
Results. We have implemented Jarvis and evaluated it with
monitoring queries on host-level network latency metrics and
application logs. The results show that Jarvis enables a stream
processor node to handle up to 75% more data sources while
improving query throughput by up to 4.4× over the state-of-
the-art partitioning strategies. Moreover, Jarvis converges to a
stable query configuration within seven seconds of a resource
change occurring on data source.

II. BACKGROUND & MOTIVATION

A. Monitoring Systems Overview

Our work has been motivated by existing large-scale server
monitoring systems [2], [4], [5], [7]. We describe two specific
scenarios that guide the design of Jarvis:
• Scenario 1: Network engineers deploy Pingmesh [5] agents
on datacenter nodes to collect network latency between node
pairs. A web search team uses Pingmesh to monitor network
health of their latency-sensitive service and generate an alert if
more than a predefined proportion of hosting nodes (e.g., 1%)
have probe latencies exceeding a threshold such as 5 ms [5].

• Scenario 2: A log processing system, Helios [2], enables live
debugging of storage analytics services such as Cosmos [19].
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Fig. 2: DAG of stream operations for the query in Listing 1.

A bug in a cluster resource manager may lead to service
resources being under-provisioned. To temporarily mitigate
performance degradation, several TBs of log streams [2] are
processed quickly to identify impacted tenants. Their latency
and CPU/memory utilization data are queried to predict re-
source needs and make scaling decisions.

These scenarios rely on a diverse set of computations. Sce-
nario 1 requires processing of periodically generated metrics
composed of structured numerical data; queries consist of
computations specific to numerical data, such as filtering and
aggregation. On the contrary, Scenario 2 requires processing
aperiodically generated logs composed of unstructured strings;
queries accompany computations for string processing such as
parsing, splitting, and search.

This diverse set of computations rely on various streaming
primitives, which are computationally different and whose
costs are highly dynamic depending on the input data. For
example, filter (F) drops uninteresting records by applying
predicates on each record and typically requires little compute
resources. Grouping (G) organizes records by key fields,
requiring key lookups in a hash table. Join (J) joins an input
stream with a static table, requiring key lookups on the table
while joining two inputs into an output stream [20]. Unlike
filter, both grouping and join operators are expensive due
to the irregular access patterns of hash table lookups. Their
cost depends on the hash table size, which corresponds to
the group count and the static table size, respectively. Map
(M) performs user-defined transformations on the input (e.g.,
parsing and splitting text logs) and its cost depends on the
transformation logic. We present resource usage characteristics
of these primitives in detail in [21].
/* 1. create a pipeline of operators */
query = Stream
.Window(10_SECS)
.Filter(e => e.errCode == 0)
.GroupApply((e.srcIp, e.dstIp))
.Aggregate(c => c.avg(rtt), c.max(rtt), c.min(rtt))
/* 2. Execute the pipeline */
Runner r( /* config info */ );
r.run(query);

Listing 1: A temporal query for server-to-server latency
probing in every 10-second fixed-size window.

Programming model. We adopt a declarative programming
model [22], [23] to define a monitoring query. In this pro-
gramming model, a query can be generally expressed as a
directed acyclic graph (DAG). In a DAG, the vertices denote
stream operations which transform their input records and
emit output records to downstream operations, and the edges
denote dataflow dependencies—i.e., how data flows between
the operations. Listing 1 shows a real query on the Pingmesh
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data described declaratively. Figure 2 illustrates the DAG for
this Pingmesh query.

B. Adaptive Query Partitioning in Query Engines

1) Query Partitioning: Consider the volume of data trans-
ferred over the network observed in Microsoft’s Pingmesh
trace. Each record in the trace corresponds to a single probe
message for a server pair. A record is 86B in size, including
timestamp (8B), source IP address (4B), source cluster ID
(4B), destination IP address (4B), destination cluster ID (4B),
round trip time in microseconds (us) (4B), and error code (4B).
Now, assuming that a datacenter consists of 200K servers and
each server probes 20K other servers with a probing interval
of 5 seconds [5], the data generation rate is estimated to be
∼512.6 Gbps. Transferring such a high volume of data would
strain network capacity and delay the query execution. Our
observations are corroborated by many existing monitoring
scenarios which exhibit high traffic volume [10], [11], [24] due
to a large number of data sources and diverse data streams.

Data synopsis techniques (e.g., sampling, histograms, and
sketches) [25] reduce the data sent to the stream processors
at the cost of query output accuracy loss [26], [27]. Despite
their effectiveness, any loss in the query output accuracy may
be undesirable for monitoring tasks (e.g., anomaly detection)
wherein anomalies are hard to detect before their samples
are fully processed [28]. Data corresponding to anomalies are
typically infrequent, and hence the lossy query output could
lead to undetected anomalies that affect server reliability and
additional costs for anomaly detection [29].

An alternative way to alleviate the network bottleneck
is data processing near the data source. This approach is
motivated by the observation that a monitoring query typically
consist of a pipeline of operators that incrementally reduce the
data volume. For instance, the query illustrated in Figure 2 first
filters records and then aggregates them into a few statistical
numbers. For brevity, we refer to the technique of offloading
a part of query execution near the data source as query
partitioning. Our analysis in Section VI-D demonstrates that
query partitioning can achieve network transfer reduction rates
similar to state-of-the-art data synopsis techniques without
impacting the query accuracy.

2) Adaptive Query Partitioning: In order to maximize
network transfer reduction rates, query partitioning schemes
should adapt to changes in resource availability and compute
resource demands.
Resource availability. Resource demands of foreground
services change dynamically over time. Therefore, unused
compute resources on data source nodes available for mon-
itoring queries exhibit temporal variability. This is a common
characteristic of data source nodes as they usually host services
whose workloads change over time. As a consequence, several
large-scale web services (e.g., Alibaba and Wikipedia) and ML
inference services experience bursty request loads in the order
of minutes [30]–[33]. These services require variable amount
of compute resource to meet their SLAs despite changing
request loads. Subsequently, query partitioning decisions need

to be made promptly at runtime on each data source, to
be compatible with dynamic resource conditions available to
exploit on each data source.
Resource demands. Resource demands for each data source
node can vary over time. The root cause is anomalous behav-
ior, which may cause monitoring data distributions to change.
Service failures in the datacenter can generate traffic bursts
in error log volumes on each data source, until the failure is
mitigated. Similarly, several real-world log analytics systems
report high temporal variability in the record count of log
streams, even across one-minute time windows [2], [11], [34].
In our Pingmesh example, network issues can cause spikes in
server probe latencies, whose duration may range between 40
and 60 seconds.

Changes in the data distribution impacts query resource
usage characteristics. The output data rate of an operator is
a function of the operator’s input data distribution and subse-
quently determines resource usage of downstream operators.
To illustrate, in Figure 2, the F operator performs filtering
and leads to the first data volume reduction from the input
stream. Since erroneous (or high-latency) records are usually
not dominant, the operator happens to drop only a small
fraction of records. A majority of records are then to be
processed by G+R operator, increasing compute cost for the
query. However, if we were to have network issues for inbound
or outbound traffic for some servers, there would be a high
degree of data reduction in F operator, thus lowering resource
usage of the G+R operator.

Resource demands are also diverse across data source nodes
due to variable data generation. For instance, in our Pingmesh
example, a subset of servers are configured to probe a larger
set of peers to cover a larger network range on behalf of other
servers in the same ToR switch. This phenomenon causes
highly variable data rates across data sources. Our analysis
shows that 58% of the data source nodes generate 50% or
lower of the highest rate—details can be found in [21].
Summary. The ability to quickly adjust query partitioning
plans (i.e., query refinement) would reduce the time duration
for which queries either over-subscribe or under-subscribe
available compute resources. Over-subscription can lead to
interference with foreground services on the data source,
while under-subscription loses an opportunity to further reduce
outbound network traffic. We seek to develop an approach
which not only reduces the network traffic effectively, given
compute budget on each data source, but also performs fast
query refinement (in the order of seconds) upon a change in
the resource availability or resource demands.

III. QUERY PARTITIONING: DEFINITION AND INSIGHTS

In this section, we define the query partitioning problem
and then shed light on efficient query partitioning strategies.

A. Definition and Complexity

Among prior approaches on query partitioning, operator-
level partitioning [16]–[18] is one of the most widely used
approaches. Given a query DAG, an operator-level partitioning
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Query Partitioning Problem
M Number of operators in the query.
Nd Number of data source nodes.
~b Vector with an entry bi indicating the boundary operator of

ith data source.
xij Indicates if the boundary operator of ith data source is j.
rcj Processing cost on stream processor for boundary operator j.
Tl(i, bi) Local compute cost for operators 1 to bi on ith data source.
Tr(i, bi) Network transfer cost for output of boundary operator bi

along with compute cost of executing operators bi + 1 till
M on stream processor.

TABLE I: Variables in the query partitioning problem.

plan splits operators into those that can be executed on the data
source and those that require remote execution on the stream
processor. The DAG is modified to capture the split using a
boundary operator such that the data source executes only the
operators prior to the boundary operator (including itself) in
the topological order of the DAG.

Problem. Table I summarizes the variables used to define
our problem. Let us consider the vector of boundary operators
~b for a given query. Our goal is to find ~b which minimizes
the number of operators sent to stream processor for remote
execution, without sacrificing query processing time as a result
of the operators executing locally on data source, as follows:

min
~b

Nd∑
i=1

M∑
j=1

rcjxij (1)

subject to Tl(i, bi) <= Tr(i, bi) ∀bi > 0, iε[1, Nd].
We incentivize executing operators on data sources, so the

partitioning costs are ordered as rc1 > rc2 >, ... > rcM .
Unfortunately, solving this partitioning problem is challenging.

Theorem 1. Query partitioning problem in Eq. 1 is NP-hard.

Proof. The key idea of the proof is that the generalized
assignment problem (GAP) [35] can be reduced to a special
case of our query partitioning problem in polynomial time.
Therefore, if we have an algorithm that can minimize the
number of operators sent to the stream processor without
sacrificing query processing time, then we can obtain an
optimal solution to GAP. Since GAP is NP-hard, our problem
is also NP-hard. Refer to [21] for the details of the proof.

Query partitioning involves determining the boundary oper-
ator for the query instance running on each data source. Due to
stream processor resources being shared across data sources,
we need to jointly identify boundary operators across data
source nodes which is exponential in the number of nodes.
Given that resource conditions can change in the order of
minutes (Section II-B), quickly computing a new partitioning
plan is critical. Our setup consists of a stream processor
monitoring up to 250 data sources, making it prohibitively
expensive to compute a new plan for all the data sources.

B. Insights

Combining model-based and model-agnostic techniques for
query refinement. To refine query plans with high efficiency,
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Fig. 3: Coarse-grained operator-level vs. fine-grained data-
level partitioning on data source with 80% CPU budget. G+R
requires 80% CPU to process all output data from F operator.

we exploit a greedy and embarrassingly parallel heuristic,
which reduces the outbound network traffic. We utilize a
combination of model-based and model-agnostic techniques to
allow each data source node to make fast and effective query
refinement decisions independently.

This model-based technique quickly finds a new partition-
ing plan based on online and fine-grained profiling of each
operator’s compute cost. However, such profiling might be
inaccurate if the compute resources available for executing
operators are insufficient for accurate profiling. Thus, we apply
a model-agnostic process to iteratively fine-tune the output
plan produced by the model-based approach. The proposed
heuristic is simple, computationally tractable, and suggests a
reasonable first attempt.
Data-level query partitioning. The operator-level query
partitioning could be undesirable when attempting to run
a computationally expensive operator like grouping within
limited compute resources provided by data source. Instead,
Jarvis adopts data-level partitioning to allow an operator to
process a fraction of its input records on data source and drain
the rest for remote processing. This data-level partitioning is
fine-grained and can improve the overall utilization of limited
compute resources on each data source node.

We highlight the effectiveness of data-level partitioning by
performing an empirical study using the query in Figure 2 on
a real-world Pingmesh trace. Our experiment runs the query
on a data source node with compute budget set to 80% of
a single 2.4 GHz CPU. Figure 3(a) shows that operator-level
partitioning cannot execute the costly G+R operator entirely
within compute budget, because the F operator drops only a
small portion of input records. This leads to network traffic
as high as 22.5 Mbps, which is close to the input rate,
while not fully utilizing the compute budget. On the contrary,
Figure 3(b) shows that the operator G+R can utilize the
compute budget fully and process 83% of its input under the
data-level partitioning, resulting in total network traffic of 9.4
Mbps—i.e., 2.4× lower over the operator-level partitioning.

IV. JARVIS

We discuss the design of Jarvis and our proposed data-level
partitioning heuristic which works in a decentralized manner.

A. Design Overview

Figure 4(a) shows the key system components involved in
the query manager when a user submits a query to Jarvis.
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Query = Stream
.Window(10_SECONDS)
.Filter(e => e.errorCode == 0)
.GroupApply(e.srcIp, e.dstIp))
.Aggregate(c => c.avg(rtt) && 

c.max(rtt) && c.min(rtt))

Query Manager

Query Optimizer

Query Deployer

Resource

Directory

Resource 

Manager

Declarative 

query User

(a)

: Root SP : Intermediate SP

… …

…

…

…
…

Building block

Query 

Manager

: Data source

(b)

Fig. 4: (a) Jarvis query manager, and (b) Monitoring pipeline
architecture. SP refers to stream processor. L0 to LH refer to
the hierarchy levels in a tree topology of height H .

The query manager includes the resource manager, which
maintains in the resource directory the list of data source
and stream processor nodes along with their network topology.
The query optimizer uses the query topology information to
generate an optimized physical plan from the logical plan for
the query, as is done in most streaming engines [22]. The query
deployer compiles the query plan into an executable code and
deploys it on Jarvis running on each node. Figure 4(b) shows
the query manager maintaining the resource node topology and
deploying the query. Our work focuses on changing the query
optimizer to generate a Jarvis-friendly query plan and runtime
optimizations after the query is deployed on the nodes.

As shown in Figure 4(b), physical resources involved in
query execution are viewed as a tree structure, where leaf
nodes represent the data source and the rest of the nodes
represent the stream processor. Each data source node executes
the query within its available compute budget and sends the
results, along with any pending data that needs to be processed,
to its parent stream processor node. The parent node leverages
its compute resources to further aggregate the query results
for its data source nodes. The combination of data source
nodes and the common parent node constitutes a core building
block. As multiple core building blocks are present in a large-
scale monitoring scenario, we should maintain a collection of
intermediate stream processor nodes. The root node aggregates
the results from these nodes to compute the final query output.
As there is no communication between building blocks, the
system can scale better to handle more data sources if each
core building block is more scalable. Hence, for the remainder
of this work, we focus on optimizing query execution on a
single core building block.

Jarvis “replicates” query operators across data source and
stream processor nodes. It realizes data-level partitioning and
runtime query refinement, by adding two novel primitives to
the query execution pipeline: (1) Control proxy, a unified
abstraction for stream operator and (2) Jarvis runtime, a
system runtime that coordinates executions of all control
proxies. Control proxy is a light-weight operator bridging two
adjacent stream operators, which decides “how many” records
shall be forwarded to the downstream operator vs. to the
“replicated” operator on the remote stream processor node.

Op
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Op

(W)

Op

(G)
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Op

(R)

Op

(W)

Op

(G)

Data

source

Stream

processor
Merge

: Control proxy : Queue : Data path : Control path

Jarvis Runtime

Fig. 5: An overview of control proxies and Jarvis runtime. Data
path: routing path for incoming data. Control path: interaction
between control proxies and Jarvis runtime.

The query optimizer in Jarvis adds control proxies to the query
plan at compile time.

Figure 5 illustrates the query plan deployed on data source
and stream processor for the example query from Figure 2.
Jarvis runtime deployed at each data source configures control
proxies to execute a data-level partitioning plan for the query.
Jarvis runtime continually probes the states of control proxies
to observe the query state. If the query is in either idle
or congestion state due to changes on resource conditions,
Jarvis runtime computes a new data-level partitioning plan by
reconfiguring the control proxies.

Jarvis runtime is fully decentralized—i.e., each instance of
the query on a data source has a dedicated runtime instance
which functions independent of other query instances and
data sources. Its interactions with control proxies are also
local to the node, requiring no coordination with an external
planner or the stream processor. In essence, our design avoids
having a central service performing a joint optimization across
queries and data sources [1], which might be computationally
expensive with a large number of data sources.

The data-level partitioning design in Jarvis is distinct from
conventional backpressure mechanisms. Rate throttling and
data dropping [36], [37] mitigate over-subscription of compute
resources at data sources, but at the cost of losing accuracy in
the query output similar to data synopses. Lossless backpres-
sure mechanisms, such as resizing of operator queues [37],
[38] and operator scaling [39] have limited effectiveness due
to resource constraints on data source node.

B. Query Plan Generation

Jarvis’ query plan generation is built upon the conventional
workflow of existing streaming engines [40]. First, the input
query is parsed to confirm its syntax correctness. Then, a
logical plan is constructed along with logical optimizations,
such as constant folding, predicate pushdown. Jarvis inserts a
control proxy between each of the adjacent stream operators
in the logical plan. Finally, the optimized logical plan is
translated to a physical plan for deployment and execution.
Note that all the above steps are transparent to users.

Jarvis does not currently support all operators on data
source. Such operators are identified using the following
rules: (R-1) Aggregation operators that are not incrementally
updatable, such as exact quantiles. However, their approximate
versions, such as approximate quantiles [41], [42], can benefit
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𝑅𝑒𝑠𝑒𝑡 𝑙𝑜𝑎𝑑
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&& 𝑝𝑟𝑜𝑏𝑒𝐶𝑃()
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u𝑝𝑑𝑎𝑡𝑒𝐿𝑜𝑎𝑑𝐹𝑎𝑐𝑡𝑜𝑟𝑠()
&& 𝑝𝑟𝑜𝑏𝑒𝐶𝑃()

Fig. 6: Jarvis runtime state machine.

from Jarvis; (R-2) Downstream operators succeeding state-
ful operations that require aggregation across multiple data
sources; (R-3) Stateful joins across streams. Similar to prior
work [1], we note that such operations are expensive, may not
reduce outbound data, and require processing streams across
data sources; and (R-4) Multiple physical operators per logical
operator, useful for parallelizing operator execution (e.g. [43]).
Data sources have constrained compute budget, so the benefits
of exploiting intra-level operator parallelism would be limited.

The rules are described in a configuration file and can be
extended. All rules except R-4 apply also to intermediate
stream processors. This is because R-1 to R-3 consider op-
erations which cannot be incrementally executed or may not
result in data reduction from incremental processing. For R-
4, however, intermediate stream processors are dedicated to
run monitoring queries, enabling hardware-level parallelism to
be exploited to accelerate operator execution. It may appear
that R-1 limits queries that can leverage Jarvis. However, a
significant number of real-world queries use operators that
support incremental updates. For example, Drizzle [44] has
reported that 95% of aggregation queries on a popular cloud-
based data analytics platform consist of aggregation operators
supporting incremental updates, such as sum and count.

Once the rules above are applied, queries deployed on data
sources typically consist of a chain of operators. Hereafter, our
scope is restricted to such operator pipelines. Nevertheless,
our approach can be extended to handle graphs with split
patterns that may execute on data sources—i.e., the output
of an operator is an input to multiple downstream operators.

C. Dynamic Query Refinement

Once a query is deployed, Jarvis runtime steers each control
proxy to select a portion p (i.e., 0 ≤ p ≤ 1) of incoming data to
be forwarded to the downstream operator via the downstream
queue. Remaining data is drained over the network to be
processed by the control proxy associated with the same
downstream operator in the stream processor. Hereafter, we
refer to the p value of a control proxy as its load factor.

Jarvis can continuously refine load factors of control proxies
in the data source node to adjust a query partitioning plan. This
query refinement occurs at an epoch boundary defined by a
time interval. During epoch processing, each control proxy
monitors its downstream operator to identify the state of the
operator to be one of the following: (Congested) Operator
contains more than a predefined number of pending records,
experiencing backpressure; (Idle) Operator stays empty for
longer than a predefined time duration; and (Stable) Operator
is neither congested nor idle. Jarvis runtime collects state

Data-level Partitioning Problem
Nr Total number of records injected into the query in an epoch.
Opj jth operator in the query.
rj Relay ratio of Opj , i.e., ratio of its output to input data size.
cj Compute cost of Opj for a single record.
dj Number of records drained in an epoch at the jth control proxy.
C Compute budget available to the query.
pj jth control proxy’s load factor, i.e., fraction of incoming records

to be processed by downstream operator.
ej Effective load factor for jth control proxy, i.e., product of load

factors of upstream query operators until Opj .

TABLE II: Variables in the data-level partitioning problem.

information from all control proxies at the end of an epoch and
classifies the current data-level partitioning plan as non-stable
if all operators are idle or at least one operator is congested.
Upon identified as non-stable, Jarvis runtime triggers adapta-
tion to bring the query back to the stable state.

Figure 6 illustrates an overall workflow of operational
phases in Jarvis to keep stable query executions:
• Startup: initialization. All load factor values are initialized
to zero, so all records are processed by stream processor.

• Probe: normal operation. At the end of every epoch, Jarvis
runtime executes ProbeCP() function to query all control
proxies and determine their congestion states. It continues to
do so until it identifies the computation pipeline as congested
or idle. At this point, the runtime enters Profile phase.

• Profile: query plan diagnosis. Jarvis obtains new estimates
for the following during an epoch: (1) compute cost of each
operator by executing an operator at a time, (2) reduction in
the size of input stream by executing each operator, and (3)
available compute budget for the query. These estimates are
used to adapt load factors in the next Adapt phase.

• Adapt: load factor adaptation. Jarvis runtime computes
a new data-level partitioning plan. Initial load factors are
first calculated using the profiling estimates and set for each
control proxy. Jarvis runtime executes ProbeCP() to probe
the query state and perform iterative fine-tuning if necessary,
until the computation pipeline is back to stable state. At this
point, it returns to Probe phase.

Small workload variation in congested state or idle state can
trigger a series of Profile-Adapt phases that put the con-
trol system in an oscillating behavior with small implications
on the optimal load factors. To avoid this undesired behavior,
each control proxy is configured with a threshold fraction
of pending records in an epoch (DrainedThres) that can
be drained by control proxies and tolerated by ProbeCP()
without signaling congested state. Similarly, each control
proxy is configured with a threshold fraction of epoch duration
(IdleThres) that allows control proxies to stay idle and can
be tolerated by ProbeCP() without signaling idle state.

D. Computing Data-level Partitioning Plan

Computing a new data-level partitioning plan, required for
stabilizing the query execution, is achieved by solving an
optimization problem to compute initial load factors followed
by an iterative process for fine-tuning load factors.
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Problem definition. Table II summarizes the variables used
to define our problem. Let us consider a computation pipeline
which contains M operators {Opi : 1 ≤ i ≤ M}. Here, we
choose load factors that minimize the total number of drained
records (i.e.

∑M
i=1 di) from data source given the compute

budget C available to the query:

min
p1,p2,...pM

M∑
i=1

[

i−1∏
j=0

pjrj ](1− pi) (2)

subject to
∑M

i=1[
∏i−1

j=0 pjrj ]pici ≤ C/Nr,

0 ≤ pi ≤ 1, 0 ≤ ri ≤ 1, ci ≥ 0 ∀ i ε [1,M ], p0 = 1, r0 = 1

Note that Nr, M , and C are fixed for a problem instance.
Unfortunately, solving the optimization problem is challeng-

ing. First, the formulation is non-convex and hence computa-
tionally hard (proof can be found in [21].) While it is feasible
to enumerate all possible combinations of load factor values
across operators, doing so is expensive for online optimization.
Second, the formulation assumes certain conditions, which
may not always be satisfied in practice. For instance, to
estimate ci accurately, each operator needs to be evaluated
on a sufficient number of input records. Finally, relay ratio ri
can vary non-linearly for certain operations, such as grouping
where ri is affected by input’s grouping key distribution.
StepWise-Adapt algorithm. StepWise-Adapt, a novel hybrid
algorithm, lies in the heart of Jarvis’ data-level partitioning
approach. The algorithm combines two techniques: (1) a
model-based technique which searches for near-optimal load
factors based on the modeling assumptions of the data-level
partitioning problem defined in Equation 2, and (2) a model-
agnostic technique that monitors query execution using load
factors obtained from step (1) and fine-tunes them if the query
behavior deviates considerably from stable state—i.e., the
available resources are over/under-subscribed by the query. For
fast fine-tuning, step (2) uses a heuristic inspired by the first
fit decreasing (FFD) heuristic for bin packing problem [45],
to prioritize load factor updates of operators that contribute to
higher network traffic reduction.

The first step entails solving the optimization in Equation 2
quickly and efficiently. In doing so, we considered whether a
transformation (i.e., change in optimization variables) exists to
make the objective and constraint functions convex. Based on
the performance analysis of optimization solvers on problem
formulations resulting from different transformations (details
in [21]), we settled on a transformation, which yields a linear
program (LP). The transformation is done by introducing a
new optimization variable ei for the ith control proxy where
ei =

∏i
j=0 pj . Then, the optimization problem in Equation 2

can be rewritten as:

min
e1,e2,...eM

M∑
i=1

[(

i−1∏
j=0

rj).(ei−1 − ei)] (3)

subject to
∑M

i=1[(
∏i−1

j=0 rj).ei.ci] ≤ C/Nr,

0 ≤ ei ≤ ei−1 ∀ i ε [1,M ], e0 = 1

The rest of conditions on Nr,M,C, ci, ri remain the same as
in the original formulation.

A feasible solution provided by LP solver assumes that
operator relay ratios/costs of operators (i.e., ri and ci) are
fixed and independent of load factors. However, in case these
parameters are unsteady, the solver provides load factors which
would either over-subscribe or under-subscribe the compute
budget, making the query execution unstable. StepWise-Adapt
takes the second step to address the issue.

In the second step, StepWise-Adapt observes the query state
after it executes an epoch with current load factors of control
proxies and fine-tunes them based on the priorities of their
downstream operators. Operators are assigned higher priority
based on if they exhibit lower data relay ratio. If the query
is in the idle state, StepWise-Adapt then aims to increase the
load factor of the operator with highest priority first (until
its p = 1). On the contrary, if the query is in congested
state, StepWise-Adapt then aims to decrease the load factor
for the operator with lowest priority first (until its p = 0).
This approach enables the algorithm to give more resources
to operators that potentially result in higher data reduction.
When fine-tuning a load factor, the algorithm executes a
binary search over discretized load factor values to further
improve convergence time. Note that it is possible to use other
definitions for operator priority (e.g., priority which considers
operator compute cost along with relay ratio), and we leave
its investigation for future work.

E. Discussion

Adaptation. The effectiveness of Jarvis’ adaptation is main-
tained as long as, (1) the epoch duration is large enough to
avoid invoking query partitioning decisions too frequently, and
(2) query workload characteristics do not change dramatically
during Profile and Adapt phases. When setting epoch
duration to one second, Jarvis requires up to seven seconds (for
the evaluated workloads) to stabilize a query. The convergence
time is acceptable for scenarios where resource conditions
change in the order of minutes (Section II-B).

Multiple queries. Multiple queries can run on a data source
node, with each query having a dedicated Jarvis runtime
instance. We adopt a fair resource allocation policy [46]
to allocate the compute budget among competing queries.
Running multiple queries is evaluated in Section VI-F. We
leave opportunities for better resource allocation strategy and
operator sharing across queries [47], [48] for future work.

Fault tolerance. The system may exhibit a data source
or stream processor node failure. Checkpointing intermediate
state (e.g., intermediate aggregation results of a stateful G+R
operation) accumulated by the data source for the current
window (via the drain path from proxies) can enable the stream
processor to process remaining data for the current window.
Checkpointing can impact network traffic; hence depending
on query requirements, we could determine when it should
occur based on observed events (e.g., anomalous data in
the stream) or a configurable frequency parameter. Likewise,
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checkpointing the intermediate state of stream processor node
can enable the data source to replay records produced after
the last successful checkpoint. More details on our ongoing
efforts to handle failures in Jarvis can be found in [21].

V. IMPLEMENTATION

We implemented Jarvis using Apache MiNiFi [49], a
lightweight query execution runtime, on the data source side
and Apache NiFi [50] on the stream processor side. RxJava
is used to implement query computation pipelines within
NiFi/MiNiFi custom processors. Kryo serialization frame-
work [51] is used for transferring data over the network
between data source and stream processor nodes. Below, we
highlight major implementation issues that Jarvis addresses,
with a comprehensive discussion provided in [21].

Integration with existing streaming engines. Jarvis can be
integrated with existing query engines on stream processor
side. On the data source with limited compute resources,
unlike stream processors which require dedicated server re-
sources (e.g., Flink [22]), it is preferable to run a lightweight
dataflow runtime such as MiNiFi. MiNiFi allows us to design
and deploy custom dataflows, so it is easy to incorporate
Jarvis runtime and control proxy during query compilation
(Section IV-B). MiNiFi agents send data to NiFi on stream
processor and we leverage NiFi’s integration already available
with existing query engines; for example, Flink provides
NiFiSource and NiFiSink connectors to exchange data with
NiFi [52]. Query instances on stream processor only require
adding control proxy to the dataflow (Figure 5), which can be
implemented using output tags [53] for splitting the incoming
stream to multiple downstream operators.

Accurate query processing. Streams from multiple data
sources are processed on the stream processor side. Accurate
stream processing introduces two requirements.

First, multiple streams need to be consumed via correct
merging of watermarks from each stream to indicate time
progress. We implement this requirement by leveraging the
methodology used by Flink [54]. Each operator advances its
time based on the minimum of all its incoming input streams’
event times. Since each control proxy on the data source
generates an additional stream for drained records, incoming
watermarks need to be replicated by control proxy for the
drained path to reflect time progress.

Second, records emitted by data sources need to be routed to
the right operator on stream processor for further processing.
In doing so, control proxy attaches an identifier for the opera-
tor on stream processor that should receive records for further
processing. While stateless operators on the data source can
relay their output to the downstream query operator on stream
processor, stateful operators relay output to the corresponding
operator on stream processor, for merging the accumulated
state on data source with the state on stream processor.

VI. EVALUATION

A. Methodology

Testbed setup. We deploy our data source on Amazon EC2
t2.micro nodes, each with one 2.4 GHz Intel Xeon E5-2676
core and 1 GB RAM. We use a larger Amazon EC2 t2.medium
node with two 2.4 GHz Intel Xeon E5-2686 cores and 4 GB
RAM as data source for the experiment of multiple queries.
A stream processor instance is deployed on an Amazon EC2
m5a.16xlarge node with 64 2.5 GHz AMD EPYC 7000 cores
and 256 GB RAM. All nodes run Ubuntu 16.04.

We conduct our experiments on two types of setups: (1) a
single data source node connected to a single stream processor
node to evaluate the performance of query partitioning and
refinement strategies in Jarvis, and (2) multiple data source
nodes (up to 250) connected to a single stream processor node
to evaluate Jarvis as we increase the monitoring scale.
Performance metrics. We measure query processing through-
put in Mbps (megabit per second) with a latency bound of 5
seconds, epoch processing latency in seconds, and convergence
duration in number of epochs after resource conditions change.
Performance results are obtained after running three minutes
for the system warm-up.
Stream
.Window(10_SECS).Filter(e => e.errCode == 0)
.Join(m, e => e.srcIp, m => m.ipAddr,

(e,m) => (e, srcTor=m.torId))
.Join(m, e => e.dstIp, m => m.ipAddr,

(e,m) => (e, dstTor=m.torId))
.GroupApply((e.srcToR, e.dstToR))
.Aggregate(c => c.avg(rtt), c.max(rtt), c.min(rtt))

Listing 2: A temporal query for ToR-to-ToR latency probing.
m is a table to map server IP address to its ToR switch ID.

patterns={"*tenant name*", "*job running time*","*
cpu util*","*memory util*"}

Stream
.Window(10_SECS)
.Map(l -> l.trim().toLowerCase())
.Filter(l -> patterns.stream().anyMatch(s->l.

contains(s)))
.Map(j -> new JobStats(j.split(’=’)))
.Map(j -> j.stat = width_bucket(j.stat,0,100,10))
.GroupApply(j.tenant_name,j.stat_name,j.stat)
.Aggregate(c -> c.count())

Listing 3: A text query for computing histogram data for per-
tenant analytics job latency and resource utilization. JobStats
is an object to store job-related information.

Workloads. We use two datasets: Pingmesh dataset as
described in Section II-B and LogAnalytics, a text-based log
which includes tenant name, job running time in milliseconds
along with CPU and memory utilization for handling tenant-
wise performance issues for jobs running in an analytics
cluster. We run the following queries:
• S2SProbe (Listing 1) on Pingmesh dataset. The filter pred-
icate delivers 14% filter-out rate.

• T2TProbe (Listing 2) on Pingmesh dataset. It measures
network latency aggregates for ToR-to-ToR pairs by joining
the input stream with a table that maps server IP address to
its ToR switch ID.
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Fig. 7: Query throughput over varying CPU budgets in % of
a single core. Stream joined with a table of size 500 in (b).

• LogAnalytics (Listing 3) on LogAnalytics dataset. It parses
unstructured logs and bucketizes per-tenant latency and re-
source utilization to create histograms.

For Pingmesh, guided by [5], we set each server to probe
20K other servers at a time interval of 5 seconds. As a probe
record is 86B, each server generates data approximately at
2.62 Mbps. For LogAnalytics, guided by [11] which reports
text log data generated at 10s PB per day across 200K data
source nodes in a production system, we set each server
to generate 0.62 MBps (or 4.96 Mbps) of log data. For
experimentation purpose, we scale up the data generation rate
by 10×, i.e., 26.2 Mbps for Pingmesh and 49.6 Mbps for
LogAnalytics per data source node.
Network configuration. We assume that a stream processor
node would have a network link of 10 Gbps [16]. For ease
of experiment, we assume this bandwidth is fairly utilized
across 250 nodes (guided by conversations with a large-scale
datacenter operator) and 20 queries (guided by [1]) per node,
allowing 2.048 Mbps effective bandwidth per query per data
source node. We again scale up the obtained bandwidth by
10x to match with data rate scaling.
Baseline systems. We compare Jarvis with the following
systems: (1) All-SP that runs a query entirely on stream
processor (i.e., Gigascope [17]), (2) All-Src that runs a query
entirely on data source, (3) Filter-Src that applies static
operator-level partitioning and runs only filter operations on
data source (i.e., Everflow [16]), (4) Best-OP that applies a
solver to dynamically allow the best operator-level partitioning
(i.e., Sonata [1]), and (5) LB-DP (or LoadBalance-DP) that
applies coarse-grained data partitioning at query level to split
the input stream between data source and stream processor
proportional to available compute on the nodes (i.e., M3 [55]).

B. Query Throughput Analysis

We use a single data source setup and evaluate query
throughput for different partitioning strategies while varying
available compute resource on data source. Jarvis incurs little
overhead, consuming less than 1% of a single core during
Profile and Adapt phases.
S2SProbe query. Figure 7(a) shows the query throughput on
S2SProbe. The query requires nearly 85% CPU to execute
entirely on data source. Thus, the throughput in All-Src
declines drastically when CPU budgets are lower than 80%.

Network bandwidth becomes a bottleneck for Filter-Src as F
operator is not effective in filtering out data. Best-OP executes
F and G+R on data source only at 100%. For lower CPU
budgets, it hits compute bottleneck and runs only F at the
source as its compute cost is just 13%. All-SP is restricted by
available network bandwidth, and thus its throughput does not
change with available CPU. LB-DP generates higher amounts
of network traffic compared to Jarvis since its goal is to
balance the compute load between data source and stream
processor nodes. On the contrary, Jarvis partially processes the
input of the G+R operator within available compute resource
to reduce network traffic. Jarvis outperforms other techniques
in the 40-80% CPU budget range, with throughput gains of
2.6× and 1.16× over All-Src and LB-DP, respectively at 60%
CPU, and 1.25× over Best-OP at 80% CPU.

T2TProbe query. Figure 7(b) shows the query throughput
on T2TProbe. This query’s compute resource requirements
exceed one core due to an expensive join (J) operator. Thus,
All-Src cannot handle the input rate even at 100% CPU,
resulting in significant throughput reduction for lower compute
budgets. Both Filter-Src and Best-OP execute only F at the
source while Best-OP cannot accommodate J operator even
at 100% CPU. LB-DP relieves compute load on data source
but the reduction is not sufficient for significant throughput
gains. Jarvis performs data-level partitioning to process the
input partially on the J operator, thereby reducing network
traffic, outperforming other techniques in the 40-100% CPU
range. Note that the J operator is followed by a projection
on the fields, srcToR, destToR and rtt; hence, the output size
of the projection is less than the input size of the J operator,
leading to data reduction. Jarvis outperforms All-Src by 4.4×
at 40% CPU and Best-OP by 1.2× between 60-100% CPU
range.

LogAnalytics query. LogAnalytics is relatively cheaper and
uses 31% CPU to process the input at 49.6 Mbps. All-Src
achieves lower throughput than Jarvis at 20% CPU as it
is resource constrained. Filter-Src executes filtering on data
source, but is bound by network cost due to low filter-out
rate. Best-OP can perform the filter and map operators at the
source, thus outperforming Filter-Src. All-SP is always bound
by the network, and hence Jarvis outperforms it by 2.3× in
the 40-100% CPU range. For 20-40% CPU range, LB-DP
transfers up to 45% of the input over the network, resulting in
significant network bottlenecks. Jarvis’ data-level partitioning
reduces compute cost even at 20% CPU budget, as shown in
Figure 7(c), outperforming Best-OP and LB-DP by 1.5×.

C. Convergence Analysis

Next, we evaluate how fast Jarvis adapts to changes in
resource conditions on data source by measuring the con-
vergence time in number of epochs. We compare Jarvis
against LP only which runs StepWise-Adapt without fine-
tuning (i.e., model-based approach in [56]) and w/o LP-init
which runs StepWise-Adapt by initializing load factors to zero
(i.e., model-agnostic approach in [56]). We do not compare
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Fig. 8: Convergence analysis of Jarvis compared with model-
based approach and model-agnostic approach.

against other methods that take minutes to compute a new
query plan (e.g., Sonata [1]).

S2SProbe query. Figure 8(a) shows the results as we vary the
available compute resource on the data source. Note that three
epochs are required to detect that compute budget has changed,
while avoiding triggering adaptation due to scheduling noise
in the system. When the compute budget changes at the
3rd epoch (10%→90% CPU), Jarvis reduces the convergence
time from six epochs in w/o LP-init, down to one epoch
when employing initialization using LP solver. LP only also
stabilizes the query using the output of LP solver. When the
compute budget drops at the 18th (90%→60% CPU), the
query reaches a stable state within two and four epochs for
Jarvis and w/o LP-init, respectively. The additional epoch for
Jarvis is required because profiling within a one-second epoch
is not sufficient for G+R to process all records, resulting in
less accurate estimates for the cost of G+R. The inaccurate
profiling also prevents LP only from stabilizing the query.

T2TProbe query. Performance of a join-bound query is
affected by the size of the static table. As shown in Figure 8(b),
we vary the available compute and the size of the static table
by starting with 10% CPU and a static table of size 50,
then switching to 100% CPU in the 3rd epoch, and finally
increasing the static table size by 10x to cause congestion.

Convergence duration is reduced from 11 epochs (in w/o
LP-init) to seven epochs in Jarvis, when the budget is increased
to 100%. The number of epochs for Jarvis incurred after
profiling is attributed to the fact that the expensive J operator
cannot be executed on all records to get accurate profiling
estimates. As a result, the downstream G+R operator is not
profiled accurately. Thereafter, fine-tuning plays a critical
role in stabilizing the query in Jarvis. When the table size
increases, the compute cost of J operator increases leaving
no resources for G+R to execute. It takes five and three
epochs to converge in w/o LP-init and Jarvis, respectively. The
inaccurate profiling prevents LP only from converging for both
changes in resource conditions. Note that we manually reset
load factors to stabilize query for the next run, at 18th epoch.

Figure 8(c) shows the results of LogAnalytics. We see
similar trends as observed in S2SProbe and T2TProbe queries.

Impact of number of operators. As we increase the number
of query operators, we expect w/o LP-init to require longer
time to converge. We analyze algorithm convergence via a
simulator that performs an exhaustive search of different
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Fig. 9: (a) Cumulative distribution function (CDF) of estima-
tion error for server probe latency using sampling. (b) Network
transfer costs with 100% and 20% CPU budget.

execution configurations with possible query resource needs
and compute budgets, while measuring associated convergence
cost for each configuration. The simulator does not consider
the 3 additional epochs to detect a resource change before
triggering adaptation. We find that convergence time can
increase to as high as 21 epochs in the worst case, with
four operators; detailed analysis can be found in [21]. LP
solver can thus be a valuable part of design in improving
convergence cost in such cases. We do not compare against LP
only and Jarvis, as the simulator does not consider the profiling
estimation errors which occur in real environments, and hence
the query refinement would converge within an epoch.

D. Comparison against Data Synopsis

Data synopses have been proposed to reduce network trans-
fer costs. We quantify the potential of the window-based
sampling protocol (WSP) [26], which constructs continuous
samples from distributed streams in multiple data sources. We
apply WSP to Scenario 1 in Section II-A using the query in
Listing 1. In this scenario, violating the search service latency
SLA degrades user satisfaction and reduces revenues [57].
Developers need to quickly correlate SLA violations with the
alerts in Scenario 1 to determine if the violation is due to
a network issue [5]. This necessitates accurate alerts to be
generated. To understand the impact of data synopsis in this
scenario, Figure 9 plots the error in estimating the range of
probe latencies for each server pair and the required network
bandwidth to transmit the results to the stream processor while
varying the WSP’s sampling rate.

We observe that with 0.6 and 0.8 sampling rates, we have
85-90% of the estimation errors within 1 ms, an acceptable
error given the alert threshold of 5 ms used in Scenario
1. However, network transfer savings are not significant for
these high sampling rates. Lower sampling rates (i.e., 0.2 and
0.4) result in significant network bandwidth reduction (10-
32% of input rate), but at the cost of high estimation errors.
Specifically, 20-40% of the estimation errors exceed 1 ms
for sampling rates of 0.2 and 0.4, and 20% even exceeds
5 ms for 0.2 sampling rate. The reason for the high errors
is because high probe latencies which correspond to network
issues are sparse in the dataset. When such probes are missed
during sampling, the query can significantly underestimate the

10



0 10 20 30 40
Number of src nodes
0

300

600

900

TP
ut

 (
M

bp
s)

(a) 10x

0 20 40 60 80 100
Number of src nodes
0

300

600

900

1200

(b) 5x

Jarvis Best-OP Expected

0 60 120 180
Number of src nodes
0

150

300

450

(c) No scaling

Fig. 10: Query throughput over varying number of source
nodes and different input rates.

probe latencies observed by a node. Critically, for such low
sampling rates, WSP misses 10-38% of the alerts that should
be generated given the alert threshold. Finally, we note that
the network bandwidth reduction obtained by Jarvis (i.e., 11.4-
90% of input rate) is same or better, without compromising
accuracy.

E. Multiple Data Source Nodes

We discuss the efficacy of Jarvis when multiple data sources
are sending data to a single stream processor node. We
compare Jarvis against Best-OP (i.e., the state-of-the-art in
dynamic operator-level partitioning) on Pingmesh’s S2SProbe
query while varying the number of data source nodes for
different input rates.

Query throughput. Figure 10(a) varies the number of data
source nodes for an input rate of 26.2 Mbps, which is scaled
by 10× over the dataset’s calculated rate. On each data source,
we set CPU to 55% to ensure that Best-OP executes only the
F operator while not fully utilizing the given CPU budget.
In Best-OP, F operator does not reduce data significantly, so
the policy suffers from network bottleneck as soon as we add
more data sources. In contrast, Jarvis scales up to 32 nodes
without impacting throughput. Beyond 32 nodes, throughput
degradation is observed due to network bottleneck.

Figure 10(a) varies the number of data source nodes for an
input rate of 13.2 Mbps (5× scaling). On each data source,
we set the available CPU to 30%, to reflect the change in
query compute demand from decreasing the input rate. Best-
OP scales to 40 nodes after which it becomes network bottle-
necked. Jarvis scales up to nearly 70 nodes, 75% improvement
in number of data sources supported over Best-OP.

Finally, when the input rate is set to 2.62 Mbps (Fig-
ure 10(c)) and 5% of the CPU is allocated to the query, Best-
OP starts to degrade in throughput at 180 nodes while Jarvis
is seen to scale even for 250 data sources.

Query latency. Jarvis improves epoch processing latency
over Best-OP due to reduced network traffic. For instance,
when both policies are able to handle the input rate (e.g., 5×
scaling and 40 data sources), Jarvis improves median latency
by 3.4× (from 1800 ms down to 500 ms) over Best-OP in
the configuration. Similarly, Jarvis reduces the max latency
from five seconds down to two seconds. For configurations
where Best-OP cannot keep up with input rate due to network
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Fig. 11: Query throughput for executing multiple queries on
data source at different input rates.

bottleneck (e.g., 5× and 60 nodes), we observe that the max
latency of Best-OP grows beyond 60 seconds while Jarvis
maintains it within five seconds.

F. Multiple Queries on Data Source Node

Finally, we investigate the implications when multiple
queries are executed on a Jarvis-enabled single-data source
node. Our experiment runs multiple instances of S2SProbe
query while each instance is configured to use a fixed amount
of CPU resource (via fixed load factors). Figure 11 plots
aggregate query throughput for various per-query input data
rates and for single- and dual-core data sources.

We observe that there is no significant interference among
query instances until the system is bottlenecked by the com-
pute budget. Under system stress at 10× input scaling, single-
core throughput saturates at two queries given per-query
CPU demand of 55%. Two-core throughput does not increase
beyond three queries. At 5× scaling, per-query CPU demand
drops to 30% and Jarvis supports up to four and six queries on
a single- and two-core setup, respectively. At no input scaling
and per-query CPU demand of 5%, Jarvis supports 15 queries
and 25 queries with one and two cores, respectively.

VII. RELATED WORK

In-situ analytics. They reduce data movement by executing
query operations locally on the data source nodes. iMR [58]
uses data summaries to trade off accuracy for performance.
Rule-based heuristics [59]–[61] statically determine which
operators are pushed to data source; e.g., operators beyond the
first stateful operator cannot be pushed. Such static partitioning
quickly becomes sub-optimal in our system under dynamic
resource conditions (Section II-B).

MapReduce implementations adapted for streaming applica-
tions [55], [62] perform compute load balancing across map
operator instances by splitting input load across them (detailed
comparison against Jarvis can be found in Section VI-B.)
DIRAQ [63] and FlexAnalytics [64] execute indexing and
compression operators at the data source. Task-level (akin
to operator-level) dynamic resource allocation is enabled by
different frameworks; for instance, Spark uses Mesos and
YARN [39]. Operator-level placement is evaluated extensively
in Section VI-B.
Stream operator placement. It determines how to place
DAG operators across computing nodes for efficient query
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execution. These approaches are based on operator-level par-
titioning [48], [65]–[69], which is less effective than data-
level partitioning when applied in our setup. Prior work finds
an optimal placement on heterogeneous resources [70], [71]
requiring solving an NP-hard optimization problem, which
makes it impractical when fast adaptation is required across
large number of data sources (see Section III). Flouris et al.
suggest several heuristics to assign operators near data source
to minimize network transmission costs under geo-distributed
sites [72]. All the proposed algorithms consider coarse-grained
operator-level partitioning, which is less effective compared to
Jarvis. Furthermore, apart from greedy heuristics, they exhibit
exponential time complexity in the number of data source
nodes, when considering placement of each query instance’s
operator across data source and stream processor nodes.

Nardelli et al. study model-based and model-free heuristics
for operator placement [56], concluding that there is no one-
size-fits-all solution. Model-based approaches have been im-
plemented in centralized [65] and decentralized [67] systems
for operator placement. They rely on accurate query cost
estimates, which are computationally expensive to profile on
the data source. Cost model-agnostic approach based on rule-
based heuristics has been studied in [66]. In Section VI-C,
we show that the combination of model-based and model-
agnostic approaches (as in Jarvis) outperforms each approach
when applied individually.

Parallel query processing. Prior work improves query
performance by dynamically alleviating compute bottlenecks
through operator scaling on input data. DS2 [43] makes a
scaling decision over all query operators at a time given the
correct query performance tracing result. Stela [73] prioritizes
scaling of operators that have the greatest impact on overall
query throughput. Similarly, other works in this domain all
make scaling decisions at operator level [74]–[83]. Applying
these approaches to our setup requires that the query operators
be replicated between each data source and its parent stream
processor node. However, compute resource allocation on the
data source in our system happens at the query level; and
a query consists of multiple operators with different data
reduction capabilities. Our optimization goal is thus different:
incoming records need to be carefully apportioned across
multiple co-located query operators, in order to minimize data
transfer costs within a compute budget.

Conventional key-based load splitting strategies [84]–[90]
are complementary to our work. These strategies assign input
key ranges to different stateful operator instances such that
each instance keeps the state of a distinct, non-overlapping
key range. Integrating key-based load splitting into Jarvis may
further reduce network transfer costs by minimizing the num-
ber of output keys sent from the data source. Recent studies
investigate assigning subsequences of records or windows to
operator instances based on the currently assigned compute
load in the host node [91]–[93]. These approaches do not
assume that compute resources in each stream processor node
are shared by multiple data sources (see Figure 4). Therefore,

compute load on the stream processor node depends on jointly
considering splitting decisions over data source nodes. This is
exponential in the number of data sources.

SkewTune [94] and Google Dataflow [95] employ work-
stealing techniques for straggler mitigation while others [96],
[97] use local estimates of compute load to detect a congested
host node and re-route input records to a different node in
a greedy manner. In our setup, each data source has a fixed
compute budget allocated for a query consisting of multiple
operators with different data reduction capabilities. We could
consider re-routing input records to a stream processor node,
when an operator does not result in a significant data reduction.
This boils down to “w/o LP-init” which is evaluated for
convergence speed in Section VI-C. To facilitate throughput
comparison of Jarvis with compute load balancing techniques
at the query level, we evaluate “LB-DP” in Section VI-B.
Stream computations on the edge. EdgeWise [98] is a
streaming engine run on the edge, improving throughput and
latency by prioritizing query operators experiencing backpres-
sure. Droplet [99] and Costless [100] address the operator
placement problem between edge and cloud resources for
video analytics applications. They neither leverage the benefits
of the data-level partitioning nor respond to dynamic resource
conditions on the edge. Jarvis does both.

VIII. CONCLUSION

We presented Jarvis, a fully decentralized data-level query
partitioning engine for server monitoring systems. Our analysis
using real-world monitoring query workloads suggests that
Jarvis substantially improves system throughput while quickly
adapting to changes in resource conditions.
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[46] B. Radunović and J.-Y. L. Boudec, “A Unified Framework for
Max-Min and Min-Max Fairness with Applications,” IEEE/ACM
Trans. Netw., vol. 15, no. 5, p. 1073–1083, Oct. 2007. [Online].
Available: https://doi.org/10.1109/TNET.2007.896231

[47] A. Jonathan, A. Chandra, and J. Weissman, “Multi-Query Optimization
in Wide-Area Streaming Analytics,” in Proceedings of the ACM
Symposium on Cloud Computing, ser. SoCC ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 412–425.
[Online]. Available: https://doi.org/10.1145/3267809.3267842

[48] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-aware operator placement for stream-processing
systems,” in 22nd International Conference on Data Engineering, 2006,
pp. 49–49.

[49] A. S. Foundation, “A subproject of Apache NiFi to collect data where
it originates,” 2018, https://nifi.apache.org/minifi/.

[50] Apache Software Foundation, “An easy to use, powerful, and reliable
system to process and distribute data,” 2018, https://nifi.apache.org/.

[51] Esoteric, “Java binary serialization and cloning: fast, efficient, auto-
matic,” 2020, https://github.com/EsotericSoftware/kryo/.

[52] Apache Flink, “Apache NiFi Connector,” 2021, https://ci.apache.org/
projects/flink/flink-docs-master/docs/connectors/datastream/nifi/.

[53] Flink Side Output, “Side Outputs,” 2021, https://ci.apache.org/projects/
flink/flink-docs-master/docs/dev/datastream/side output/.

[54] Flink, “Apache Flink - Timely Stream Processing,” 2020, https://ci.
apache.org/projects/flink/flink-docs-release-1.13/docs/concepts/time/.

[55] A. M. Aly, A. Sallam, B. M. Gnanasekaran, L.-V. Nguyen-Dinh, W. G.
Aref, M. Ouzzani, and A. Ghafoor, “M3: Stream processing on main-
memory mapreduce,” in 2012 IEEE 28th International Conference on
Data Engineering, 2012, pp. 1253–1256.

[56] M. Nardelli, V. Cardellini, V. Grassi, and F. L. Presti, “Efficient operator
placement for distributed data stream processing applications,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 8, pp.
1753–1767, 2019.

[57] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L. Cox,
and S. Rixner, “Predictive parallelization: Taming tail latencies
in web search,” in Proceedings of the 37th International ACM
SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 253–262. [Online]. Available:
https://doi.org/10.1145/2600428.2609572

[58] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum, “In-situ
mapreduce for log processing,” in Proceedings of the 2011 USENIX
Conference on USENIX Annual Technical Conference, ser. USENIX-
ATC’11. USA: USENIX Association, 2011, p. 9.

[59] R. Gracia-Tinedo, M. Sanchez-Artigas, P. Garcia-Lopez, Y. Moatti, and
F. Gluszak, “Lamda-flow: Automatic pushdown of dataflow operators
close to the data,” in 2019 19th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, 2019, pp. 112–121.

[60] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan, and
M. Stumm, “lprof: A non-intrusive request flow profiler for distributed
systems,” in 11th USENIX Symposium on Operating Systems Design
and Implementation. Broomfield, CO: USENIX Association, Oct.
2014, pp. 629–644. [Online]. Available: https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/zhao

[61] Y. Moatti, E. Rom, R. Gracia-Tinedo, D. Naor, D. Chen, J. Sampe,
M. Sanchez-Artigas, P. Garcıa-Lopez, F. Gluszak, E. Deschdt, F. Pace,
D. Venzano, and P. Michiardi, “Too big to eat: Boosting analytics
data ingestion from object stores with scoop,” in 2017 IEEE 33rd
International Conference on Data Engineering, 2017, pp. 309–320.

[62] C. Lei, Z. Zhuang, E. A. Rundensteiner, and M. Y. Eltabakh,
“Redoop infrastructure for recurring big data queries,” Proc. VLDB
Endow., vol. 7, no. 13, p. 1589–1592, Aug. 2014. [Online]. Available:
https://doi.org/10.14778/2733004.2733037

[63] S. Lakshminarasimhan, X. Zou, D. A. Boyuka, S. V. Pendse, J. Jenkins,
V. Vishwanath, M. E. Papka, S. Klasky, and N. F. Samatova, “Diraq:
Scalable in situ data- and resource-aware indexing for optimized query
performance,” Cluster Computing, vol. 17, no. 4, p. 1101–1119, Dec.
2014. [Online]. Available: https://doi.org/10.1007/s10586-014-0358-z

[64] H. Zou, Y. Yu, W. Tang, and H.-W. M. Chen, “Flexanalytics: A
flexible data analytics framework for big data applications with i/o
performance improvement,” Big Data Research, vol. 1, pp. 4–13, 2014,
special Issue on Scalable Computing for Big Data. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214579614000021
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