arXiv:1602.03770v1 [cs.DC] 11 Feb 2016

Integrative Dynamic Reconfiguration in a
Parallel Stream Processing Engine

Kasper Grud Skat Madsen
University of
Southern Denmark

kaspergsm@imada.sdu.dk

ABSTRACT

Load balancing, operator instance collocations and horizon-
tal scaling are critical issues in Parallel Stream Processing
Engines to achieve low data processing latency, optimized
cluster utilization and minimized communication cost re-
spectively. In previous work, these issues are typically tack-
led separately and independently. We argue that these prob-
lems are tightly coupled in the sense that they all need to
determine the allocations of workloads and migrate compu-
tational states at runtime. Optimizing them independently
would result in suboptimal solutions. Therefore, in this pa-
per, we investigate how these three issues can be modeled as
one integrated optimization problem. In particular, we first
consider jobs where workload allocations have little effect
on the communication cost, and model the problem of load
balance as a Mixed-Integer Linear Program. Afterwards, we
present an extended solution called ALBIC, which support
general jobs. We implement the proposed techniques on top
of Apache Storm, an open-source Parallel Stream Process-
ing Engine. The extensive experimental results over both
synthetic and real datasets show that our techniques clearly
outperform existing approaches.

1. INTRODUCTION

Recently, Parallel Stream Processing Engines (PSPEs) are
emerging to process the ever growing big streams of data
generated by mobile devices, sensors, online social networks,
online financial transactions, and so on. Representatives of
modern PSPEs include Apache Storm [38], Apache S4 [30]
and Google MillWheel [7]. A job in an PSPE consists of
a set of operators, and each operator is usually parallelized
into a number of instances, each processing a subset of the
operator’s input to increase the data throughput. The out-
put of the instances of upstream operators, except the sink
operators, is input to their downstream neighbors, forming
a pipelined network, called the topology of the job.

In general, there are three highly correlated job optimiza-
tion problems in a PSPE. First of all, load balancing across

Yongluan Zhou
University of
Southern Denmark

zhou@imada.sdu.dk

Jianneng Cao
Institute for Infocomm
Research in Singapore

caojn@i2r.a-star.edu.sg

the processing nodes is critical to maximizing cluster uti-
lization and minimizing data processing latency especially
during temporary load spikes. While load balancing in par-
allel computing systems [31][34] has been studied extensively
in the literature, developing load balancing mechanisms in
PSPEs faces new challenges. Operator instances in PSPEs
are long-standing, and probably need to be reallocated many
times during their life-time. In other words, load rebalancing
decisions have to be made continuously and periodically to
maintain satisfactory system performance. As operator in-
stances in PSPEs may be associated with computing states
and their reallocations may involve state migrations with
significant overheads, load balancing decisions have to take
such overheads into account.

Secondly, neighboring operator instances in PSPEs con-
tinuously transfer data between each other. Collocating
them at the same node will significantly reduce the sys-
tem’s workload by eliminating the overhead of cross-node
data transmission, which includes both network bandwidth
consumption [61[32] and CPU consumption caused by data
serialization and deserialization. Moreover, the fact that
the load of an operator instance is correlated with its rela-
tive location to its neighbors also complicates the problem of
load balancing. Assigning a location-independent load value
to each instance cannot model the real situation and hence
cannot optimize the performance. To simplify the problem,
previous studies of dynamic load balancing in PSPEs, such
as [291[361411[45] largely ignore the effect of collocating op-
erator instances.

Thirdly, with the development of cloud computing plat-
forms and distributed system kernels (such as Mesos [16]),
horizontal scaling of an PSPE, i.e. the ability to dynami-
cally acquire and relinquish computing resources at runtime,
is crucial to achieve high resource utilization and low opera-
tional cost. We argue that the problem of horizontal scaling
is tightly coupled with both load balancing and operator in-
stance collocation. For example, the overload of the system
could possibly be rectified by collocating operator instances
that have a high communication volume between each other
to save the cost of data serialization and deserialization in-
stead of acquiring more resources. Another example is that
horizontal scaling, load balancing and operator instance col-
location all involve state migrations, which may incur signif-
icant overhead. Hence optimizing them integratively would
result in a solution with better load balancing and lower
overhead. However, there is a lack of study on how to per-
form such an integrative optimization.

To fill the gap, we revisit the load balancing problem in

http://arxiv.org/abs/1602.03770v1

PSPEs and propose a novel solution that also takes operator
instance collocation and horizontal scaling into account. We
first study the scenarios where collocating operator instances
has little effect. Such scenarios occur when each operator
instance has to transfer data to a lot of neighbors evenly.
We model this problem as a Mized-Integer Linear Program
(MILP). Then we extend our solution to cases where collo-
cating operator instances can significantly affect the system
performance. The extended solution, called ALBIC (Auto-
nomic Load Balancing with Integrated Collocation), dynam-
ically constrains the MILP so that it gradually improves the
collocation at runtime while ensuring a user-defined load-
balance constraint is met.
In summary, the contributions of this paper include:

e We propose a simple yet effective adaptation frame-
work that integrates the dynamic optimization of load
balancing, operator instance allocation and horizontal
scaling. To the best of our knowledge, this is the first
work toward this direction.

e We model load balancing and horizontal scaling as
an integrated Mixed-Integer Linear Program (MILP),
and by using an LP solver, achieve a load distribu-
tion with much better balance than existing heuristic
approaches.

e We propose ALBIC, which automatically detects bene-
ficial instance collocations and gradually increases such
collocations, while maintaining a good load balance.

e We implement all the proposed techniques on top of
Apache Storm [38] and conduct extensive experiments
using both synthetic and real datasets to examine the
performance of the proposed approaches and compare
them with the state-of-the-art approaches [21,129136].
The results show that our integrative approaches sig-
nificantly outperform the existing ones.

2. RELATED WORK

2.1 Static Scheduler

SODA [39] adopts a static job admission algorithm based
on the capacity of the cluster and then allocates operators
to the nodes, using a simple heuristic approach. SQPR [19]
optimizes query admission, operator allocation, query reuse
and load balancing as an integrative problem. FUGU [15]
employs load balancing to support horizontal scaling when
adding or removing jobs.

COLA |21] uses a balanced graph partitioning algorithm
to put operators into a number of balanced partitions to
achieve both load balancing and minimization of cross-node
communication. It first puts all operators into one partition,
and then gradually splits the partitions until a solution with
a sufficient load balance is obtained. Splitting is done by a
balanced graph partitioning algorithm, which ensures the
load of each partition is relatively even, while minimizing
the data sent across different partitions.

Stanoi et al. [37] focus on operator allocations that maxi-
mize data throughput. Rivetti et al. [33] focus on optimizing
load balance. Lastly, several works [22/[42] attempt to allo-
cate operators such that the system becomes more resilient
to workload-fluctuations and hence the overhead of state
migrations can be avoided.

2.2 Adaptive Scheduler

Operator placement without intra-operator paral-
lelization. Many early researches assume an operator can
be processed by a single processing node, and hence they do
not consider intra-operator parallelization. Xing et al. [41]
and Zhou et al. [45] have studied how to dynamically allocate
operators within a cluster to achieve load balancing. A more
recent paper [I3] improves the load balancing solution by
using a multi-input multi-output feedback linear quadratic
regulatorbased on control theory.Jian et al. [25] optimize op-
erator allocation to minimize the total communication cost
with a large number of jobs. Pietzuch et al. [32] and Yanif
et al. [0] consider operator allocation that minimizes net-
work usage between operators. As all the above work do
not consider intra-operator parallelization, they cannot eas-
ily be adopted for solving our problem.

Load balancing with intra-operator parallelization.
Flux [36] is one of the very few early researches that consider
intra-operator parallelization. It adapts data partitioning
periodically. At the end of each period, nodes are sorted in
descending order of their workloads, and then it moves the
biggest suitable data partition at the first node to the last
one in the list, so that load-variance is decreased. If nec-
essary, it also moves a partition at the second node to the
second last one in the list, and so on. Spark Streaming [43]
processes input as a series of mini-batches, where a mini-
batch can be processed by a task on any node. Load bal-
ancing can be easily achieved by allocating tasks. Both these
methods do not consider collocating operator instances.

Several recent works focuses on developing partitioning
functions that can achieve load balancing without or with
few state migrations. A recent paper [11] discusses how to
define a partitioning function, which can balance load, mem-
ory and bandwidth, while ensuring changes to the partition-
ing function impacts as small a subset of keys as possible, in
order to minimize the need for state migration. The method
of “The Power of Two Choices” (PoTC) [29] continuously
defines two hash functions hi(z) and ha(z), such that each
key x can be sent to one of two alternative downstream op-
erator instances. Each operator instance tries to balance
the amount of work sent downstream, such that all opera-
tor instances downstream receives an even workload. Since
the state is split over two operator instances per key, the
state must be merged before the final computation can be
applied. This incurs a continuous overhead, even if no load
balancing is needed for the job. Notice that the merge step
cannot be balanced, which can lead to unbalanced workload
in case the merge step is costly. Again this line of works also
do not consider collocating operator instances.

2.3 Dynamic Scaling

Apache Mesos [I6] is a platform that facilitates sharing of
computational resources among the (different) systems on a
cluster, which can help maximize its utilization. To benefit
from a platform like Mesos, a PSPE has to adaptively recon-
figure its resource usage according to its present workload.

There are multiple PSPEs [12[1835]40] that support hori-
zontal scaling and load balancing, by collecting system-wide
statistics over a certain timespan, then making global deci-
sions on the basis of these. However, these techniques do not
consider collocation of operator instances to reduce commu-
nication overhead.

StreamCloud [I4] supports both dynamic scaling and load
balancing, and uses a simplified and static operator colloca-

Symbol Description

n; Node ¢

O; Operator @

0 Operator instance j

Gk Key group k

Ok Computation state of gy

load; Load of node n;

gLoady, Load of g

kall; Binary variable indicating if n; is
marked for removal

SPL Statistics Period Length

Table 1: Symbols

tion method. It assumes a job is composed by relational
operators, whose semantics are known to the system. They
group a stateless operator, which can be parallelized ran-
domly (e.g. a selection operator), with a neighboring state-
ful operator, which should be parallelized by the key of the
input (e.g. a group-by aggregate operator), into a compo-
nent. Then the component will be parallelized using the key
of the stateful operator. This approach achieves collocation
of some communicating instances, but not the instances of
two stateful operators. Our approach, on the other hand,
assumes the operator semantics are opaque to the system
and considers collocations of instances of any operators.

There also exist work mainly focused on dynamically cal-
culating the number of resources needed for a stream pro-
cessing job with various goals, such as minimizing the mon-
etary cost of using cloud services [18], and limiting the ex-
pected processing latency [10]. Another recent paper [23]
considers both latency and throughput in a holistic man-
ner. Based on a user specified latency constraint, their ap-
proach will determine the degree of parallelism and granu-
larity of scheduling for the computation, in order to satisfy
the latency constraint while achieving maximum through-
put. These methods can be adopted in our framework to
calculate the amount of needed resources when making hor-
izontal scaling decisions.

3. SYSTEM MODEL

Data Model. Input data of each operator is modelled
as a number of continuous streams of tuples in the form of
(key,value, ts), where key is used to partition the operator’s
input stream, value is content of the tuple, and ts is its
timestamp. Both key and value are opaque to the system.

Query Model. A job corresponds to a set of user-defined
continuous queries. The queries can be formulated as an op-
erator network, which is a directed acyclic graph (O, E),
where each vertex is an operator O; and each edge is a
stream, where the direction represents the direction of data
flow. The src operators produce inputs for the job and the
sink operators produce no output. By allowing a sink oper-
ator being attached to any operator, the query model sup-
ports concurrent queries and operator sharing.

Execution Model. Each input tuple of O; is associated
with a key and these input keys are partitioned into a num-
ber of non-overlapping subsets, each is called a key group
and denoted as gx. The main assumption is that the pro-
cessing of key groups is independent of one another. Each
key group gr must therefore have an independent processing
state oy.

A cluster has a set of nodes N = {ni,...,n|y|} and each
node n; processes a non-overlapping subset of key groups
from any operator. If key groups gr and g; are both pro-
cessed at node n;, they are said to be collocated. If a subset
of key groups from operator O; is allocated at n;, we say that
n; possesses an operator instance o; of O;. For simplicity
we also use O; to denote the set of instances of O;.

Processing Order. Obtaining a reproducible ordering of
input tuples is costly, because an operator can have several
unsynchronized input streams from multiple upstream oper-
ator instances. In this paper, we assume the system employs
out-of-order processing techniques, which means that oper-
ators eventually produce the same result for the same input
data as long as the unorderedness is within some bound [24].
Some computation relies on processing the input in a pre-
defined strict order, in which case one has to order the data
using an additional function before feeding the data to the
actual computation, e.g. the SUnion function [§]. Therefore,
our assumption of out-of-order processing does not exclude
applications that require a strict input order.

State Migration. State Migration is conducted using
direct state migration [27], which works as follows. Con-
sider moving one key group gr € O; from node n; to na.
Initially, all the instances of upstream operators of O; are
informed that they must redirect new tuples for key group
gr. to na. All the new tuples are then buffered at ns. Node
n1 serializes all the data, which is necessary to move the
key group g, and sends it to no. Lastly, ne deserializes the
data from n; to re-construct key group gx, and processes all
the buffered data. The state migration cost is calculated by
the cost model given in the referenced paper. All the solu-
tions proposed in this paper, are independent on the actual
state migration technique applied, hence alternative state
migration techniques [9,27[40] can be applied.

Statistics. The system maintains statistics on the us-
ages of CPU, memory and network bandwidth, as well as
the input- and output data rates of processing each key
group. Such statistics are collected and calculated over ev-
ery period P;_,; : [T;,T}], where T; and T} are two wall-clock
timestamps and T; < 7. The length of the period T; — T;
is a tunable parameter, which is called the statistics period
length (SPL). A load value of a particular resource is a per-
centage point in the range [0, 100].

Based on the statistics, we detect the bottleneck resource
of the computation, i.e. the one with the greatest total
usage in the whole system. The load balancing objective
will use the load values of the bottleneck resource. We define
gLoady and load; as the average load value of the bottleneck
resource over the latest SPL of a key group g; and a node
n; respectively.

Workload Fluctuations. In this paper, we distinguish
between short-term and long-term workload fluctuations.
There already exist techniques to handle short-term fluc-
tuations, such as data buffering, back-pressure and frequent
minor adaptations like [36]. But these techniques still can-
not solve all the problems especially with very high load
spikes. For example, back-pressure and data buffering may
build up a very long queue or even spill data to disks and
hence may incur excessive latency; and frequent adaptation
may incur high communication overhead and reduces the
system throughput.

As shown by the analysis in [42], a more balanced long-
term load distribution can be more resilient to short-term

Algorithm 1: Adaptation Framework

1 for each node n; € N that is set to be removed by the
scaling algorithm in previous periods do

if n;.keygroups is empty then

| terminate node n;

plan < keyGroupAlloc()

if Scaling(plan) then

// Wait until new nodes are allocated

plan < keyGroupAlloc() > recalc after scaling

apply(plan)

> the allocation plan

® N O A W N

fluctuations by reducing the probability and the degree of
short-term overloading at any particular node and can al-
leviate the aforementioned problems caused by short-term
spikes. This paper does not aim to replace the techniques for
handling short-term spikes, but rather focuses on ensuring
a good load balance over a relatively long period of time.

Heterogeneity. It is not assumed the nodes in the clus-
ter are homogeneous, so in order to compare two load values,
they must be multiplied with the node capacity. The con-
stants can be inferred at runtime, by first assuming all nodes
are homogeneous, then measuring the actual effect of state
migration. Notice that heterogeneous performance cannot
be expected even for nodes of the same type, due to their
locations in a data center, network considerations and other
factors outside the control of the system.

Controller. The controller is a system level operator
that makes global decisions. The controller is responsible for
collecting statistics from all operator instances and making
them easily accessible to the adaptation algorithm. Further-
more, it also runs the adaptation algorithms periodically.

4. INTEGRATIVE RECONFIGURATION

4.1 Integrative Adaptation Framework

The adaptation framework takes horizontal scaling, load
balancing and operator instance collocation into account.
Here horizontal scaling is the ability to dynamically scale
the number of nodes in the cluster, while load balancing and
operator instance collocation are, respectively, to balance
the workload over a given set of nodes and to minimize the
cost of data communication by allocating the key groups of
the operators.

Algorithm [I] presents our simple yet effective integrative
adaptation framework. The adaptation is run periodically.
In lines 1-3, it starts by checking all the processing nodes
that are marked for removal in the previous adaptation pe-
riods, and if all the key groups have been moved out from
these nodes, then they can be safely removed from the job.

After that, the algorithm calculates a potential allocation
plan for the operator instances (line 4), which factors in both
load balancing and collocation of operator instances. This
new allocation plan will not be deployed immediately, but
will be used when making decisions about whether horizon-
tal scaling is needed (line 5). This is important to avoid
unnecessary or undesirable scaling because:

e A potential allocation optimizes load balancing that
may solve the overloading problem of a processing node
without scaling;

e Collocation of communicating operator instances may
decrease the total load on the system so that scaling
out can be avoided;

e (Undesirable) Scaling-in will not be done if it is im-
possible to balance the load well enough among the
remaining nodes.

Furthermore, after making a scaling decision in line 5, we
will redo the allocation planning algorithm again (line 7),
which will make an integrative decision for scaling, balanc-
ing and collocation. As discussed in the following subsec-
tions, we put a constraint on the overhead of state migration
within each adaptation period. Therefore, the allocation al-
gorithm needs to decide which operator instances should be
migrated to solve the more urgent problems. For example,
it may decide to migrate the load away from an overloaded
node instead of moving the load away from a node marked
for removal by the scaling algorithm.

4.2 Horizontal Scaling

The scaling decision [I0,12/[26] is determining how many
nodes are needed to process the current workload. Previ-
ously proposed algorithms, such as [I0,[12], can be directly
applied in our framework. As developing a novel scaling
optimizer is outside the scope of this paper and the actual
algorithm would not affect the conclusion of this paper, we
assume the use of existing techniques for calculating the
number of needed nodes. In addition, we do not assume a
particular way to add new nodes to a job, which can be done
by starting new instances in Amazon EC2, waking up nodes
that were put into sleep for energy saving, or reallocating
resources from other jobs to this one.

4.3 Key Group Allocation
4.3.1 LP Solver

The following solution can be applied to situations where
there is little opportunity to minimize communication cost
by collocating key groups. To analyze different situations,
we consider four common partitioning patterns, which are
similar to those proposed in [44]:

Partial Partitioning Partial Merge Full Partitioning One-To-One

L <

Figure 1: Common Partitioning Patterns

e Partial Merge: Each operator instance outputs all tu-
ples to one downstream operator instance.

e Partial Partitioning: Each operator instance outputs
tuples to a subset of downstream operator instances.

e One-To-One: Each operator instance outputs tuples
to exactly one target operator instance, and each tar-
get instance receives tuples only from one upstream
operator instance.

e Full Partitioning: Each operator instance outputs tu-
ples to all downstream operator instances. This is a
special case of Partial Partitioning.

The LP Solver described in this section, is thus suitable for
topologies exhibiting the two partial patterns with high de-
grees (including Full Partitioning patterns) when the amount

Symbol Description

A Nodes are not marked for removal

B Nodes are marked for removal by the scaling
algorithm

G All the key groups

Qi k binary variable indicating if gr is currently
allocated to n;

ik binary variable indicating if gy is allocated to
n; in the new solution

mean [‘—i‘ “2n,en loadi], ie. the average load

d Maximum load deviation from mean Vn; € A

d—dy Maximum upper load deviation from mean

d—d; Maximum lower load deviation from mean

w1, W2 Weights in the objective function

mceg Migration cost for gy

Table 2: MILP Symbols

of data transmitted from an instance to different down-
stream instances are not skewed. In such cases, there is
limited benefit of collocating key groups, because data are
evenly sent to many downstream instances.

Metric. To measure load imbalance, we define a metric
called load distance, which is the largest difference between
the exhibited load of any node in the cluster and the average
load in the cluster. We would like to find a load balancing
solution that minimizes the load distance, because this is
the state where the system can tolerate maximum load fluc-
tuations at any node, without exhibiting under- or overload.

Let B be the set of nodes that are marked for removal
by the horizontal scaling algorithm and A be the rest of the
processing nodes such that N = AU B. Then the average
load, mean, is defined as [‘—i\‘ 2, en loadi], where load; is
the load of n;. The objective can be formally stated below:

Objective: Minimize maxn,ca |load; — mean| and
> on,eplloadi) s.t. the cost of migration < mazMigrCost.

It is important to bound the cost of rebalancing, as the
solution could otherwise end up being very costly to apply
within each adaptation round and hence incur excessive pro-
cessing latency. We model the cost of migrating a keygroup
gk as mcr = « - |og|, where |og| is the size of the state of
keygroup gr and « is a constant, chosen such that mcy is
the time to serialize the state on a node with average load.
Our techniques are largely independent on the cost-model
chosen, and the cost-model can be chosen according to the
actually employed state migration technique. As the maxi-
mum migration cost is bounded, horizontal scale-in will not
necessarily be done within one adaptation round, but in-
stead will gradually migrate key groups from B to A.

The minimization problem is NP-hard, because it is an in-
stance of the Multi-Resource Generalized Assignment Prob-
lem [28]. To derive a solution, we model the minimization
problem as a Mixed-Integer Linear Program as follows.

Variables. TablePlsummarizes the symbols. The current
allocation of key groups to nodes are represented by a set
of binary variables g; with a value of 1 if key group g is
located at node n; or 0 otherwise. The new allocation of
key groups is denoted by the binary variables x; x, which is
defined in a similar way as ¢;x. A node n; is marked for
removal if kill; = 1. The variables d, d,, and d; model the
load deviations from mean.

Mixed-Integer Linear Program

min = w1 - d — wa(du + d;)

s.1.
(1) Vyea: > mix=1
n;EN
(2) Z Z (1= gik) - ik - mex] < mazMigrCost
n;EN gL €G
(3) Vnen: Z (zi,k - gLoadr) < mean + (d — du)
9k €G
(4) Vmienaki=o: Y (wik - gLoady) > mean — (d — dy)

9LEG
(5) mean—d>0

Constraints. Constraint (1) ensures that each key group
is allocated to exactly one node. Constraint (2) bounds the
maximum cost of state migration. Constraint (3) bounds
the maximum load per node. Constraint (4) bounds the
minimum load per node, and is effectively disabled for nodes
marked for removal. Constraint (5) is needed to ensure that
d does not exceed the lower bound of load.

Explanation. The MILP minimizes the load distance,
with the help of three variables and two constraints. Con-
straints (3) and (4) define the maximum and minimum load
of each node in the cluster, where the limits are influenced
by the variables d, d,, and d;, such that the difference be-
tween maximum and minimum load can be minimized by
choosing appropriate values of the variables.

The variable d represents the maximum load deviation
from mean in all the nodes in A. By minimizing the value
of d, it is guaranteed that at least the upper or the lower
bound of load on all nodes will be tight. In order to make
both the upper and lower bounds tight, we introduce the
variables d.,d; € R, such that d, (or d;) is chosen to be
greater than zero to tighten the upper (or lower) bound.

The solution thus depends on the variable d being mini-
mized first and then secondarily d,, and d; being maximized.
To achieve this, the constants wi and w2 in the objective
function should be chosen such that wi >> ws.

Extending to Multi-Dimensional Load. For ease of
presentation, the above formulation only considers 1-dimen-
sional load value, i.e. the usage of the bottleneck resource.
This may be sufficient for many computations where the
usage of different resources are correlated, e.g. higher data
inputs usually mean higher usage of CPU (due to more com-
putations and more data serialization and deserialization),
memory and network bandwidth. Therefore, balancing the
usage of the bottleneck resource may also bring a good dis-
tribution of the usage of other resources. If this is not the
case, then thanks to the flexibility of the MILP model, it
can be easily extended to add a constraint on the maximum
usage of each non-bottleneck resource on each node.

Extending to Heterogeneous Nodes. Heterogene-
ity is supported by multiplying the gLoad) constant (con-
straints 3 and 4) by a node capacity weight, thus form-
ing a new constant. Changing the values of constants will
change the corner points of the solution and not the perfor-
mance/quality (e.g. using Simplex).

Supporting Horizontal Scale-In. When the horizontal
scaling algorithm decides to scale-in, it marks a set of nodes,
B, for removal and the load balance algorithm should mi-

grate key groups away from the nodes to be removed when
appropriate. A careful reader may notice that our MILP
will primarily minimize load distance d, and we do not ex-
plicitly give higher priority to the migrations of key groups
from B to A. Here we will prove that solving our MILP will
eventually move all the key groups from B to A.

LEMMA 1. No key group will be migrated from A to B.

Proor. We first define how to choose four nodes ni to
n4 € A from an arbitrary cluster of N nodes. Without loss
of generality, we assume load; > loads > loads > loads and
Vig{1,2,3,4yloadz > load; > loads. The load of each node is
modelled as follows: loadi = mean + h, load2 = mean + 1,
loads = mean — k and loads = mean — j. Lastly, the key
group g: to move is located on node n; and key group g: has
load gLoad:. The proof proceeds by showing that migrating
g+ to or within A is always preferred.

Case 1, j > h: If migrating g; to B, the resulting value of
d = j, remains unchanged. In other words, this operation
cannot decrease the value of d. Consider now migrating
g+ within A. The value of d is decreased by min(gLoad,
j — k, h — i), which is always greater than zero. To see
why d is decreased by this amount, see that the statement
actually considers three aspects: (1) size of migrated load,
(2) maximum possible reduction in underload and (3) max-
imum possible reduction in overload. Taking the minimum
of these three, actually gives the bounding one, which is how
d is defined.

Case 2, j < h: If migrating g+ to B, the value of d is
decreased by min(gLoady, h — j, h — i). By migrating g:
within A, d is instead decreased by min(gLoady, j — k, h —
). Both calculations considers three aspects: (1) size of
migrated load, (2) maximum possible reduction in underload
and (3) maximum possible reduction in overload, as before.

First we argue that j —k > h —j, because this proves that
d is decreased by at least as much when moving g within A,
compared to moving g to B. j—k>h—j< h—k>h—j
< —k > —j <> k < j, therefore the statement holds.

As d can be decreased by the same amount by moving
g+ within A or to B, we now need to prove that migrating
within A is still the preferred choice in this case. First, see
that the variable d,, (as defined in MILP) is changed by the
same value independent of whether g; is moved within A
or to B, since the reduction in overload is the same. Sec-
ondarily, consider if migrating g: to B, the value of d; (as
defined in MILP) is unchanged as no underloaded node in
A receives any load. Lastly, see that if migrating g: within
A, the value of d; is increased by min(gLoadk, j — k). Since
dy + d; is therefore increased by moving g within A, and
since d,, and d; are secondarily maximized by the MILP, it
is preferred to move g; within A.

We now consider |A| < 4. The case when A contains
only one node is trivial, as g; will only be moved to B when
the node is overloaded, which by definition is impossible. If
|A| = 3, then either i =0 or kK = 0 and when |A| = 2, then
it = k = 0. By using these conditions, one can easily prove
that the lemma holds for both cases. To keep the proof
succint, we ommit the details. [

LEMMA 2. The minimum value of d can only be achieved
by migrating all key groups from nodes in B to nodes in A.

PROOF. We denote the sum of loads on the nodes in A
and B as La and Lp, respectively, and Ly = La + Lp.

Consider not moving any key group from nodes in B to
those in A. The value of d > % — ‘LTA‘ = ‘LITB“ which follows

directly from the definition of d (constraints 3 and 4). Now
consider allowing the migration of key groups from nodes in

. L L L .
B to nodes in A. The value of d > ﬁ — ﬁ — ‘—AB‘ = 0. This

again follows directly from the definition of d. [

4.3.2 Autonomic Load Balancing with Integrated Col-

location

Data communication between key groups on separate pro-
cessing nodes consumes not only bandwidth, but also CPU,
as it requires data serialization and deserialization. Collo-
cating key groups that does a significant amount of commu-
nication can therefore save both bandwidth and CPU, and
thus reduce the system load.

Topologies exhibiting extensive One-To-One partitioning
patterns, the two partial patterns with low-degrees, or even
the two partial patterns with high-degrees (including full
partitioning) but high skewness, could have abundant op-
portunities to minimize communications by collocating key
groups. Note that we assume the computation of each oper-
ator is opaque to the system and we cannot deduce the rela-
tions between the input key and output key of an operator.
Therefore, we cannot perform a pre-analysis of the commu-
nication patterns in the topology and produce an optimized
collocate plan statically as done in StreamCloud [14]. In
other words, we have to dynamically detect the communi-
cation pattern and its changes over time, and then optimize
the collocation plan dynamically.

The above MILP cannot be simply extended to model
the collocation of key groups, as detecting if two key groups
are collocated needs a quadratic formulation. For efficiency
reasons, we avoid quadratic models, as they are computa-
tionally much more expensive to solve than linear models.
Therefore we propose a heuristic algorithm to run on top of
the MILP, called ALBIC (Autonomic Load Balancing with
Integrated Collocation). ALBIC will dynamically measure
the benefit of collocating each pair of key groups. For each
invocation, ALBIC optimistically collocates one set of key
groups with maximum benefit. During dynamic load bal-
ancing, the collocated key groups would be considered for
migration as indivisible units. If the load of a set of col-
located key groups becomes too large, it will be split into
relatively even-sized partitions. In this way, ALBIC opti-
mizes the key group collocation integratively with horizontal
scaling and load balancing.

Step 1 - Calculate Scores. Let out(g;) be the total
data rate sent from a key group g¢; within the timespan SPL
and let out(gi,g;) be data rate sent from key group g; to
gj. To decide if a keygroup pair g;, g; can contribute to the
overall collocation, the value of out(g;,g;) should exceed a
threshold value avg(g;) - sF', where the avg(g;) is defined as
the total number of tuples sent downstream from g; divided
by total number of downstream key groups and sF is a score
factor. Setting sF' = 1 means key groups sending more than
average to each other will be considered. Setting sF' = 2
means key groups sending more than twice the average to
each other will be considered, and so on.

Step 2 - Maintain Collocation. ALBIC merges all ex-
isting collocated key group pairs into a minimum number
of sets, such that any pair of sets whose intersection is not
empty, will be replaced by the union of those two sets. A
set cannot be too large, as that hinders good load balanc-

Algorithm 2: ALBIC

Input: maxLD (max load distance, default = 10)
maxPL (max partition load, initial = 25)
stepPL (change in partition load, default = 5)
sF (score factor, default = 1.5)

1 // Calculate scores (step 1)

2 for each operator O do

3 for each keygroup gr € O.keygroups do

4 outPut <= 3°50c0 . down ZgjeDakgs out|gx][g;]
5 avg < oulput/ Y- 56co down PO -keygroups|
6 for each operator DO € O.downstream do

7 for each key group g; € DO.keygroups do
8 if outfgi[[g;] > avg -sF then

9 if gi, g; are collocated then

10 | add gk, g; to colGrps

11 else

12 | add gk, g; to toBeColGrps

13 // Maintain collocation (step 2)

14 sets < calcSets(colGrps)

15 for each set S € sets do

16 p1 <[22, es(gr-migrCost)/maxMigrCost]

17 p2 <[22, cs(9Loady)/maxPL]

18 for each set P € graphPart(S, maz(p1,p2)) do

19 // contraint: P is migrated as a unit

20 partitions < partitions + P

21 // Improve collocation (step 3)

22 ¢;, g; < random from uncolGrps w. max value

23 ny + keygrpToNode(g;), n2 + keygrpToNode(g;)

24 if g;, g; ¢ partitions then

25 | Add constraint: g;, g; on node w. load=min(l1,l2)
26 else if g; € partitions AND g; ¢ partitions then

27 | Add constraint: g;, g; on node n;

28 else if g; ¢ partitions AND g; € partitions then

29 | Add constraint: g;, g; on node na

30 else if g;, g; € partitions then

31 p1 < getPartition(g;), p2 < getPartition(g;)

32 Add constraint: p1,p2 on node w. load=min(l1,l2)
33 // Solve (step 4)

34 solution < lp-solver(this)

35 if calcLoadDistance(solution) > maxLD then

36 | return albic(maxLD, maxPL-stepPL, stepPL, sF)
37 return solution

ing and state migration. To overcome this problem, each
set is split into a number of partitions, attempting to en-
sure that (1) the migration cost of a partition Pmec is less
than mazMigrCost and (2) the maximum load PL of any
partition is less than maxPL. ALBIC uses a graph model,
where each key group is modelled as a vertex and each edge
has weight = out(gi,g;). The weight of the vertex of g; is
set as the mc;, its migration cost, if Pmc/maxMigrCost >
PL/mazPL. Otherwise it is set as gLoad;, the load of g;.
Ties are broken randomly. Balanced graph partitioning [20]
is then applied to generate balanced partitions with mini-
mum inter-partition weighted edge-cuts. It may need to be
applied again on some partitions if they still violate one of
the two constraints.

Step 3 - Improve Collocation. Select one random
key group pair ¢i,g; from the set toBeColGrps with the
maximum value of out(gs,g;). Let ni1 and n2 be the node

Symbol Description

out(g;) The output rate of g;

avg(gs) out(g;) divided by #downstream key groups
out(gi,g;) The rate of data sent from g; to g;

Pmc Migration cost for unspecified partition

maxLD Maximum load distance

maxPL Maximum load of any partition
stepPL Decrease in maxPL when recalculating
sF Score factor

Table 3: ALBIC Symbols

where g; and g; are currently allocated respectively. There
are three cases:

Case 1: neither g; or g; s part of any set of collocated
key groups. This case is handled by adding a constraint to
the MILP to collocate g;, g; on the node n; or no with the
smallest load.

Case 2: either g; or g; is part of a partition of collocated
key groups. This case is handled by adding a constraint
to the MILP to collocate g, g; on the node, where the key
group that is part of a set of collocated key groups is located.

Case 3: g; and g; belong respective sets of collocated key
groups. This case is handled similarly as Case 1.

ALBIC always tries to collocate one pair of key groups
with the largest amount of communication to reduce the
cost of serialization and deserialization.

Step 4 - Solving. The constrained MILP is solved and
the load distance of the resulting allocation is calculated.
If the load distance is larger than max LD (the user-defined
maximum load distance), the problem is resolved by forming
smaller (more) partitions by reducing the max PL (max par-
tition load) parameter. Notice that when maxPL = 0 there
must be exactly one partition per key group, in which case
ALBIC simply solves the pure MILP, without considering
collocation at all.

In the last part of this description, we provide a discus-
sion of the default values of arguments to ALBIC. As there
is a trade-off between the value of maxzLD and the collo-
cation which can be obtained, we use a default value of
maxLD = 10, which guarantees a reasonable load distance
without impacting the obtainable collocation unnecessary.
ALBIC achieves a much lower load distance than maxLD
for all experiments conducted. The initial value of maxzPL
is 25%, which makes it very unlikely this initial value im-
pacts the obtainable collocation while ensuring no partition
gets very large load, for load balancing purposes. If the con-
straint of max LD is violated, the value of maxPL is grad-
ually decreased by stepPL and ALBIC will therefore use
more and more partitions to produce a solution respecting
the constraint of maxLD. The default value of stepPL =5
is chosen such that the solution will not need to be recalcu-
lated too many times (max five times). In our experiments,
it is very rare that any recalculation of ALBIC is needed.

5. EXPERIMENTS

Hardwares. All our distributed experiments are con-
ducted on Amazon Elastic Compute Cloud (EC2) with Apache
Storm. A cluster consists of one master node, between one
and four input nodes and between five and twenty worker
nodes. The master node has instance type ml.medium, and
executes the Storm master, Apache Zookeeper [17] and the
Storm UI. The worker nodes have instance type m1l.medium

3,5#5‘35;'7‘ T 37 5'1'35;'7‘ —
ST A Zeli
8 5760 sec] 8 576Osec
84l at &4l \ \ A]
5 3] A\l Y S 3Ly f \
gz’ ,mWLEQ : §27 b
- Lpmat 5 LR |
0 0 -

ommwmwmmmmm 0 10 20 30 40 50 60 70 80 90100
Varies Varies

MaxMigrations = 10 MaxMigrations = 20

Flux —+— Flux —+—
~ 7, 5sec —~ 7 F.5sec
R 10 sec R 10 sec
et N et
@ @

/\ b /

NN B
ZALASY] .ﬁaf\/’\/v \¥
B Bl
Jé«?‘: ﬁ—%ﬁs;%a*ﬁ‘*% X Jéﬁ@*{:ﬂ%ﬁ4’i‘*’_‘~?‘ Mé

0102030405060708090100 0102030405060708090100
aries Varies

Maxl\/hgratlons =30 MaxMigrations = 40

Figure 2: Experimental Setting: 20 nodes, 400 key groups, 10 operators

8

5F‘\ux —t— lflux 4 j T j T]
£25 1o Sec m S r %8 Sec)
S B o el
5] f Sl
Jir

Z15) ™ A M/*\\Z\Vﬂf\q
S o S 3¢ I
7100 o T > g B
Ss [ropir T S 1 wi

i o S 0

ommwwmmm%%m omqum@h%%m
ares

Maxl\/hgratlons =10 MaxMigrations = 20

Flux —— Flux —— j j j j j j

—~ 7} 5sec 7L 5sec
R 10 sec e 10 sec
Lol Lol
85l fH\ 85t A ’\
5,0 / 8,0 w /4\’/‘\0—+j
B4 ¥ 74 \
U3W S 3l
B2 ok B 2 |
S7 O A g S e ST Attt falSrerit

0071620 30 40 50 60 70 80 90100 0071620 30 40 50 60 70 80 90100

Varies Varies

MaxMigrations = 30 MaxMigrations = 40

Figure 3: Experimental Setting: 40 nodes, 800 key groups, 20 operators

F“UX 497 j j j j j J_L,El/ 20

S $25 10 sec i ;\3
60 e ﬁ ﬁLJJ =15 68 8¢

20 - 8

5 o 8

%15 N I w 10

510 o 9

B B

o 5 A‘/ o

4 : e 4 :

%mmwmmmm%%m 00770 20 30 40 50 60 70 80 90100
Varies Varies

MaxMigrations = 10 MaxMigrations = 20

8 Flux 8 Flux —+—
,37 5sec ?7 5sec
E\,6 0 sec E\,6 0 sec
£ £
B4 B4
o3 o3
By
-1 -1

0 0

0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
Varies Varies

MaxMigrations = 30 MaxMigrations = 40

Figure 4: Experimental Setting: 60 nodes, 1200 key groups, 30 operators

and are used to execute the actual job logic. The input nodes
have instance type m3.xlarge and are used to produce input
to the processing nodes. A few optimizer experiments are
also executed locally, on a single desktop computer, with a
Core i7-2600K (3.4Ghz) processor and 8G of memory, run-
ning Windows 8.1.

Initialization. As Apache Storm is based on Java, it
requires an initialization phase after deployment, where the
Just-In-Time compiler can do runtime optimizations. To
respect this, we ignore the unstable initialization phase for
each experiment, which can be seen from the missing initial
time periods in our figures.

Metrics. We use load distance to measure the load imbal-
ance. As shown in previous work [221[42], a more balanced
load distribution can be more resilient to short-term load
fluctuations by minimizing the chances of overloading and
the queueing latency during load spikes.

To verify the collocation of communicating key groups can
reduce the system workload, we use the metric load index
to measure how the system load is changed over time. It is
defined as the current average system load divided by the
average system load right after the initialization phase.

Techniques. The MILP (and ALBIC) is implemented
using IBM ILOG CPLEX v12.6.1 [1] and Metis v5.1 [2].
In addition, all the approaches are executed with default
parameters stated in the previous sections.

We compare our MILP with Flux [36] and PoTC [29],
which can achieve dynamic load balancing. As Flux con-

trols overhead by limiting the number of state migrations,
we modify our MILP in the same way (i.e. we change from a
limit on maxzMigrCost to maxMigrations). We also com-
pare ALBIC with COLA [2I], which, to the best of our
knowledge, is the only approach that achieve similar ob-
jectives as ALBIC. As COLA is a static optimizer and does
not consider runtime adaptations, invoking it for each adap-
tation period would incur massive state migrations. The
comparison is to show how well ALBIC adapts a key group
allocation plan in comparison to a complete re-optimization.

Datasets. We use three datasets for our experiments.
The dataset Parsed Wikipedia edit history [5], contains the
complete Wikipedia edit history up to January 2008. The
data is rich with minimum 14 attributes for each of the
116, 590, 856 article revisions. The data input rate is fluc-
tuating in the order of hundreds of tuples per second. To
better illustrate the capability of our solution, we scale the
size of the data, while maintaining the input distribution.

The dataset Airline On-Time [3] is provided by the Re-
search and Innovative Technology Administration, United
States Department of Transportation. We use data from
the period January 2004 to December 2013, which contains
information about airplanes, such as departure, arrival, ex-
pected time of arrival.

The dataset Global Surface Summary of the Day [4] is
provided by the National Oceanic and Atmospheric Admin-
istration, USA. We use data from the period January 2004
to December 2013. The data contains mean temperature,

mean visibility, precipitation and more, for each of the sev-
eral thousand weather stations.

5.1 Solver Performancefor MILP

We first investigate the relationship between solving time
and solution quality for the MILP. The experiment was ex-
ecuted with the local desktop.

As the performance of the solver is dependent on multiple
factors such as cluster size and load distribution, we use
synthetic data to simulate these scenarios. Key groups are
evenly allocated, such that each node has the same number
of key groups. The load of each key group is initially set to
the mean, which is then adjusted by a percentage, randomly
chosen from the range [—5%, 5%]. This is to simulate that in
a realistic setting, the nodes that process these key groups
have load fluctuation from one to another. Now we further
adjust the load on 20% of the nodes, which is controlled by
a variable called wvaries. Half of the nodes whose load are
changed gets a reduction of 0.5 - varies in their load and
the other half gets an increase in load of 0.5 - varies. The
load changes are done by modifying the load of a randomly
selected set of key groups on a node.

Figures [2 - M show the results of three different clusters,
with varying values of maxMigrations and load fluctuations.
The results show that our MILP approach consistently out-
performs Flux, even after just a few seconds of optimization
by the solver. The MILP approach quickly converges to-
wards a pretty good solution (within a few seconds), which
can be improved only slightly by further solving. It is only
for the largest cluster considered in the experiments, that it
could be benefical to solve for more than a few seconds.

Next we investigate the effect of the integration of hori-
zontal scaling with our MILP, by comparing it with a non-
integrated approach, which first performs scale-in as an in-
dependent process and then tries to move the key groups
from the to-be-removed nodes to the other nodes evenly.
We experiment on the largest cluster defined above. We
set maxMigrations to twenty and mark ten nodes for re-
moval. We tested two situations, where one and five nodes
are overloaded (100% loaded), denoted as 10L and 50L re-
spectively. The result in Figure [Blshows that the integrated
approach obtains a good load distance much faster than the
non-integrated approach for both cases, while being able to
complete scaling-in within a similar time period. This is
because the integrated MILP can adaptively prioritize the
more urgent migrations to keep the load distance within a
good range without sacrificing much on the scaling time.

gg . 16} Integrated ===
& = 14} Non-Integrated ==
8 30 S5, =
g el Sasy g 12r
g 50\ g 100
SEEARY INT (50L) — @
15 NON-INT (50L) | g 8
k) \ INT (10L) - £ 6l
S 10 ON-INT (10L) & | gl
g i 3 2+
4 6 8 10 12 0 ‘ ‘
#Periods (SPL) 50L 0L

(a) Load Distance (b) Time to scale in

Figure 5: Integrating horizontal scaling with load balancing

5.2 Load Balancingwith MILP

This experiment investigates the quality and overhead of
load balancing which can be obtained by solving the MILP.
We first provide a comparison to Flux [36] and to the “Power
of Both Choices” (PoTC) [29]. Later, we evaluate the im-
portance of limiting the overhead of the MILP. The experi-
ment was executed on EC2, with one input node and twenty
worker nodes. The experiment was executed on the dataset
Parsed Wikipedia edit history.

Real Job 1. The job consists of one input and three oper-
ators with one hundred key groups each. The first operator
calculates a GeoHash value per input tuple. The second op-
erator calculates TopK updated articles with a window of
1 minute and the last operator calculates global TopK up-
dated articles, also with a window of 1 minute. The dataset
does not contain location data, so we assume a completely
even distribution of GeoHash values covering Denmark.

| Input '—)| GeoHash l-—)| TopK '—)| GlobalTopK |

5.2.1 Comparison with Flux and PoTC

We set maxMigrations to 13 key groups per SPL, for
both the MILP and Flux.

& M F|||_F> - . 15 M |||_P -
< ux L ux
220 POTC —*- su
I B
g15 513f
o
210} 1)

3 B
S 5¢ Qair
0 e AN FRIARR by 10
0 10 20 30 40 50 60 0 10 20 30 40 50 60
#Periods (SPL) #Periods (SPL)

Figure 6: Quality Figure 7: #Migrations

Figure [6] shows the load distances, directly after apply-
ing migrations. The MILP approach achieves a stable load
distance consistently below 1%, while Flux exhibits signifi-
cant fluctuations up to 7%. The reason that our approach
outperforms Flux, is that Flux makes sub-optimal state mi-
gration decisions, i.e. Flux can require more state migration
operations to load balance than what is necessary, meaning
the maxMigrations constraint will then prevent Flux from
achieving as good load balance as the MILP.

PoTC cannot achieve a consistently good load distance.
This happens because the job needs to do merge (every
minute) and the amount of state to merge, varies over time
and from node to node. This introduces skewness in the
load, which is not considered by the PoTC approach. No-
tice also that the PoTC approach incurs a continuous over-
head to process the merging operations, regardless of the
load distribution.

To recap, the benefits of our MILP is threefold: (1) it
achieves better load balancing than Flux and PoTC; (2)
it outperforms Flux and PoTC in terms of overhead; and
(3) it can easily be adjusted by adding other constraints to
support specific cases, e.g. limiting the maximum memory
usage on a node.

5.2.2 Unrestricted Load Balancing
If the overhead of load balancing is not restricted, the

MILP solver may potentially migrate too many key groups.
To avoid this problem, the MILP has a constraint of the

maximum migration cost which can be incurred per invoca-
tion. In this experiment, we investigate how the load bal-
ance “quality” and the load balance overhead, depends on
this constraint (here shown as mazMigrations).

wuf T lo‘k No limit —— ot ‘ lo‘k No limit ——
) roups r roups
S12f 138y groups - S50 13Kkey groups
%10’ =2
Ral 8r 300 \H‘
3 6f 1 | I
LR Sa o
ol g 101 U\ H MU
RV, Al ol el L
0 10 20 30 40 50 60 0 10" 200 30" 40" 50" 60
#Periods (SPL) #Periods (SPL)

Figure 8: Quality Figure 9: Overhead

Figure [§] shows the obtained load balancing is highly cor-
related with the number of allowed state migrations. The
unrestricted solution provides the best load balance, while
the one with a limit of 10 key groups provides a solution with
significant spikes. Figure[@shows that the overhead in terms
of migration latency is very large for the unrestricted solu-
tion, due to a large number of key groups being migrated.
The y-axis is the sum of latency incurred by all state mi-
grations, which is defined as the amount of time that the
processing of a to-be-migrated key group is paused.

Each key group to migrate incurs in average 2.5 seconds
of latency for this experiment, when migrating up to 13 key
groups at a time. Assume e.g. SPL is set to five min-
utes, which means each of the 13 key groups to migrate,
will only be paused for % -100 = 0.8% of the total time.
As the experiment was executed with 300 key groups, only
3263_*310% - 100 = 0.04% of the total processing incurs latency.
Furthermore, using a more sophisticated state migration
technique than direct state migration, could potentially re-
duce the latency to almost zero [27]. Our approach can
therefore incur very low overhead on the system.

5.3 Load Balance and Collocation (Synthetic)

In this experiment we use the synthetic data and job to
compare ALBIC and COLA, in terms of of load distance and
collocation. The synthetic data and job are more flexible
for us to generate a large topology and vary the parameters.
The experimental configuration here is the same as that in
Section [5.]] except that we control the maximum obtainable
collocation by ensuring x% of the key groups to have 1-1
communication. Furthermore, for each iteration of solving,
the load of 20% of the nodes is adjusted by a percentage,
randomly chosen from the range [—2%, 2%].

o 100 — . .
120 FLoad Dist. EALBIC — Load Dist. (ALBIC) —+—
100} Collocate (ALBIC 80+ Collocate EALBIC
o Load Dist. ECOLA —k= - ® Load Dist. ECOLA —*—
@ gol Collocate (COLA EFDEEI 260l Collocate (COLA) —=—
8 eof = g, o
£ - g
40+ =g}
=1
20l SE 20
O) N —
0 10 20 30 40 50 60 70 80 90100 90 nodes 40 nodes 60 nodes

Max Collocation Cluster Configurations

Figure 10: Collocation Figure 11: Configurations
Figure [I0 considers a cluster of 40 nodes, 800 key groups
and 20 operators. We set maxMigrations = 20 and vary
the maximum collocation factor from 0 to 100. The figure
shows that ALBIC achieves a smaller, hence better, load

10

distance than COLA. ALBIC also outperforms COLA in
terms of collocation by up to ten percent. Recall that both
approaches try to define partitions containing collocated key
groups, while respecting some maximum load distance. The
partitions must be split until the load distance requirements
are satisfied by the allocation. Since ALBIC uses a much
more sophisticated technique to do load balance, namely
MILP, in comparison to the simple heuristic in COLA, it
does not need to split partitions as much as COLA to achieve
the same load distance. Therefore, it achieves better key
group collocations.

In Figure [[I] we set the maximum collocation factor to
50 and use the following three cluster configurations: (1) 20
nodes, 400 key groups, 10 operators; (2) 40 nodes, 800 key
groups, 20 operator; and (3) 60 nodes, 1200 key groups, 30
operators. The results show that both ALBIC and COLA
can achieve good solutions, while ALBIC significantly and
consistently outperforms COLA in both load distance and
collocation for various system sizes.

5.4 Load Balanceand Collocation (Real Data)

In this experiment, we compare ALBIC and COLA with
real data and realistic jobs. The experiment is executed on
EC2, with four input node and twenty worker nodes.

Real Job 2 contains two operators, with five key groups
per operator per node. The first operator extracts delays
and the second operator sums delays by airplane per year.
Both operators are parallelized on the same attribute. Thus,
it is possible to define a perfect collocation of operators,
where no data needs to be serialized and deserialized. Sim-
ilarly, we can also define a worst allocation of operators,
where every tuple needs to be sent over the network. The
initial allocation of key groups is chosen such that the initial
collocation is as little as possible, which is to see if ALBIC
can gradually increase the collocation at runtime.

| Input '—)| ExtractDelay lv—)| SumbDelay |

Figure [[2 shows the collocation factor, load distance, load
index and number of migrations done. As expected, COLA
reaches the optimum collocation factor immediately because
it optimize the plan from scratch. ALBIC, using its adap-
tive strategy, can gradually reach the same collocation factor
over time. Furthermore, thanks to the MILP solver, ALBIC
can consistently achieve a lower load distance than COLA,
which adopts simple heuristics. For the load index, ALBIC
gets a decrease from 100% to 50%, which means the system
load has been cut in half due to the collocation of commu-
nicating key groups. COLA can only reduce the load by
25%, due to the large overhead of migrations. COLA mi-
grates close to 200 key groups per SPL, while ALBIC only
migrates 10 key groups. In summary, this experiment veri-
fies that data communication does bring a significant work-
load to the system and minimizing it helps rectifying system
overload, and potentially save the overhead of scaling-out.

Real Job 3 extends real job 2, with an additional op-
erator that sums delays per route, where a unique route is
defined by having the same origin and destination airport.
We do not consider routes that span multiple airports. To
execute this experiment, the input rate for the COLA ex-
periment is lowered to 50% (maintaining data distribution),

8

VIV C " ALBIC —+ 100f TALBIC
100 o 10 COLA 00 W COLA
o 80]F/ o 8 o 9 \¥“W 81507
2 £ g 2 g0 A 2
«g 60 e ‘g 6 % P\ /|4 B100 ALBIC ——
1 70 R o LA
o 40 o 3 4r | + b 1l =
20 7 ALBIC 2 “"‘/“‘N‘f‘t Ay Wk 60 \ * 50¢
a —— VAR AN \ W VIV \
ol £ ., COLA - 0 M Al Y R L e e
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
#Periods (SPL #Periods (SPL) #Periods (SPL) #Periods
Collocation Factor Load Distance Load Index #Migrations
Figure 12: Real Job 2
& 14F ALBIC —— 100 =] ALBIC
50 1 1L COLA ol K. COLA 250
a0 Y 810 2, R £o00|
L " | L | <]
S g 801 S =
o] ¥ (R L I - =1 e
a0l Pl 28 , g L) F100}
«7/ 4r 1 heit I N 60 \‘Ma\jr‘\ *
10 ALBIC —— 2t el RN I .y 50¢
ol ., COLA— ol v T) I 0Lt
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
#Periods (SPL) #Periods (SPL) #Periods (SPL) #Periods (SPL)
Collocation Factor Load Distance Load Index #Migrations
Figure 13: Real Job 3
because the overhead of migrations is simply too overwhelm- 1007
ing for the system. 8 80t
= F E—E—E—E—E—E—E—E—E—EI—E—E—E—E—E—E—M——%E
53 60 Collocation (ALBIC) —+— A i
S 40| Load Index (ALBIC 7*,,*"’(
K Load Dist. (ALBIC) %~ L
| Input '—)| ExtractDelay l'—)| SumbDelay '-—)| RouteDelay 20| Collocation (C?VL/A*’j;b)f—f*/
ST e K N e Xy e Ko
% 10 20 70 8 90 100

Figure [I[3] shows a similar trend as the previous experi-
ment. One can see that the collocation factor is only half
of the previous experiment. This is because the RouteDelay
operator cannot be collocated with the SumDelay operator.

Real Job 4 extends real job 3 with several additional
operators. A WeatherInput operator reads streaming input
from the dataset Global Surface Summary of the Day based
on the timestamps in the data. From the weatherdata we
calculate a rainscore, which is a value from 0 to 100, cal-
culated as the percentage of precipitation compared to the
maximal historically measured value. The higher the rain-
score, the more rain there was. The computation could be
extended with a score for wind, atmospheric pressure and
even thunderstorms. Each route is joined with the rainscore
for a given route and the courier efficiency is calculated as
the sum of delays for rainscores in intervals of ten. The
store operators periodically writes results to a local rela-
tional database.

| Input |—)| ExtractDelay |——)| SumbDelay |——)| RouteDelay |—)| Store |
|Weather|nput |—)| Join |——)| Efficiency |—)| Store |

Figure [T4] shows the results. For brevity, we do not show
the number of migrations conducted, but it is 10 for each it-
eration of ALBIC as expected. It is impossible to run COLA
for each adaptation period, since the overhead of migrating
key groups is too massive and exceeds the system capac-
ity. Instead, we have executed the job three times using
a random allocation without collocation and measured the
collocation factor COLA achieves, which is very consistent

11

40 50 60
#Periods (SPL)

Figure 14: Real Job 4

around 61%. ALBIC gradually achieves a similar colloca-
tion factor and reduces the load index while maintaining a
low load distance.

As verified by the above experiments, both ALBIC and
COLA can improve the collocation, while exhibiting a rea-
sonable load distance at runtime. The benefit of ALBIC is
twofold: (1) it incurs much less overhead at runtime and
(2) it continuously and adaptively minimizes the load dis-
tance. It would be reasonable to use COLA for an initial key
group allocation at job submission, and then to use ALBIC
for maintaining a good allocation at runtime. If one uses
a simpler load balancing algorithm such as MILP or Flux
instead of ALBIC, the collocation achieved by COLA would
deteriorate at runtime.

We have also studied how collocation can improve the
performance of Real Job 1 described in Section The
result is that the collocation maxes out at around 5%, which
is not large enough to make any conclusions on the saved
workload, as the savings are masked by the load fluctuations.
The collocation optimization has little effect to this job due
to the way the input data of each operator is partitioned.
The three partitioning functions are all independent on each
other, hence they all exhibit the Full Partitioning pattern
with very even distributions, which has little opportunity
for collocation.

6. CONCLUSION

We have presented an integrated solution for load bal-
ancing, horizontal scaling and operator instance collocation

suitable for general PSPEs. We first investigated how to
model load balancing and dynamic scaling as an MILP,
which is suitable when collocation of operator instances has
little effect on the communication cost. As verified by our
experiments, solving the MILP problem can achieve better
load balance with a lower overhead of state migration com-
pared to existing approaches. We then presented an exten-
sion of MILP called ALBIC, which optimizes the collocation
of operator instances, while maintaining good load balanc-
ing and incurring low overhead at runtime. Our experiments
verify that it maximizes the beneficial collocations without
sacrificing the load balance and adaptation cost.

7. REFERENCES
[1]

[21] R. Khandekar et al. Cola: Optimizing stream
processing applications via graph partitioning. In
Middleware. 2009.

[22] C. Lei and E. A. Rundensteiner. Robust distributed
query processing for streaming data. ACM TODS,
2014.

[23] B. Li, Y. Diao, and P. Shenoy. Supporting scalable
analytics with latency constraints. Proc. VLDB
Endow., 2015.

[24] J. Li et al. Out-of-order processing: A new
architecture for high-performance stream systems.
Proc. VLDB Endow., 2008.

[25] J. Li et al. Minimizing communication cost in
distributed multi-query processing. In ICDE, 2009.

[26] K. G. S. Madsen et al. Integrating fault-tolerance and

http://ibm.com/software/commerce/optimization/cplex-optittiséicithdesa Histributed data stream processing

Accessed: 2015-07-15.
(2]

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview,

Accessed: 2015-10-01.
(3]

system. In SSDBM, 2014.
[27] K. G. S. Madsen and Y. Zhou. Dynamic resource
management in a massively parallel stream processing
engine. In CIKM, 2015.
[28] J. B. Mazzola et al. Heuristics for the multi-resource

http://apps.bts.gov/xml/ontimesummarystatistics/src/indegenaialized assignment problem. Naval Research

Accessed: 2015-10-14.
(4]

Logistics, 2001.
[29] M. A. U. Nasir et al. The power of both choices:

https://data.noaa.gov/dataset/global-surface-summary-of -ihctdeai-lgaddbalancing for distributed stream

Accessed: 2016-01-05.

[5] SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/datal

[6] Y. Ahmad et al. Network awareness in internet-scale
stream processing. IEEE Data Eng. Bull., 2005.

[7] T. Akidau et al. Millwheel: Fault-tolerant stream
processing at internet scale. In VLDB, 2013.

[8] M. Balazinska et al. Fault-tolerance in the borealis
distributed stream processing system. ACM TODS,
2008.

[9] R. Castro Fernandez et al. Integrating scale out and
fault tolerance in stream processing using operator
state management. In SIGMOD, 2013.

[10] T. Z. J. Fu et al. DRS: dynamic resource scheduling
for real-time analytics over fast streams. ICDCS, 2015.

[11] B. Gedik. Partitioning functions for stateful data
parallelism in stream processing. VLDB, 2014.

[12] B. Gedik et al. Elastic scaling for data stream
processing. TPDS, 2013.

[13] A. Gounaris et al. Efficient load balancing in
partitioned queries under random perturbations. ACM
Trans. Auton. Adapt. Syst., 2012.

[14] V. Gulisano et al. Streamcloud: An elastic and
scalable data streaming system. IEEE TPDS, 2012.

[15] T. Heinze et al. Elastic complex event processing
under varying query load. In VLDB, 2013.

[16] B. Hindman et al. Mesos: A platform for fine-grained
resource sharing in the data center. In NSDI, 2011.

[17] P. Hunt et al. Zookeeper: wait-free coordination for
internet-scale systems. In USENIXATC, 2010.

[18] A. Ishii and T. Suzumura. Elastic stream computing
with clouds. In CLOUD, 2011.

[19] E. Kalyvianaki et al. Sqpr: Stream query planning
with reuse. In ICDE, 2011.

[20] G. Karypis and V. Kumar. Multilevel algorithms for
multi-constraint graph partitioning. In SC, 1998.

processing engines. In ICDE, 2015.

[30] L. Neumeyer et al. S4: Distributed stream computing
platform. In ICDMW, 2010.

[31] B. Overeinder et al. A dynamic load balancing system
for parallel cluster computing. Future Generation
Computer Systems, 1996.

[32] P. Pietzuch et al. Network-aware operator placement
for stream-processing systems. In JCDE, 2006.

[33] N. Rivetti et al. Efficient key grouping for
near-optimal load balancing in stream processing
systems. In DEBS, 2015.

[34] K. W. Ross and D. D. Yao. Optimal load balancing
and scheduling in a distributed computer system.
Journal of the ACM, 1991.

[35] B. Satzger et al. Esc: Towards an Elastic Stream
Computing Platform for the Cloud. In CLOUD, 2011.

[36] M. A. Shah et al. Flux: An adaptive partitioning
operator for continuous query systems. In /CDE, 2003.

[37] L. Stanoi et al. Whitewater: Distributed processing of
fast streams. TKDEFE, 2007.

[38] A. Toshniwal et al. Storm@twitter. In SIGMOD, 2014.

[39] J. Wolf et al. Soda: An optimizing scheduler for
large-scale stream-based distributed computer
systems. In Middleware. 2008.

[40] Y. Wu and K.-L. Tan. Chronostream: Elastic stateful
stream computation in the cloud. In ICDE, 2015.

[41] Y. Xing et al. Dynamic load distribution in the
borealis stream processor. In ICDFE, 2005.

[42] Y. Xing et al. Providing resiliency to load variations
in distributed stream processing. In VLDB, 2006.

[43] M. Zaharia et al. Discretized streams: Fault-tolerant
streaming computation at scale. In SOSP, 2013.

[44] J. Zhou et al. Advanced partitioning techniques for
massively distributed computation. In SIGMOD, 2012.

[45] Y. Zhou et al. Efficient dynamic operator placement in
a locally distributed continuous query system. In
OTM. 2006.

http://ibm.com/software/commerce/optimization/cplex-optimizer/index.html
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://apps.bts.gov/xml/ontimesummarystatistics/src/index.xml
https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod
http://snap.stanford.edu/data

	1 Introduction
	2 Related Work
	2.1 Static Scheduler
	2.2 Adaptive Scheduler
	2.3 Dynamic Scaling

	3 System Model
	4 Integrative Reconfiguration
	4.1 Integrative Adaptation Framework
	4.2 Horizontal Scaling
	4.3 Key Group Allocation
	4.3.1 LP Solver
	4.3.2 Autonomic Load Balancing with Integrated Collocation

	5 Experiments
	5.1 Solver Performance for MILP
	5.2 Load Balancing with MILP
	5.2.1 Comparison with Flux and PoTC
	5.2.2 Unrestricted Load Balancing

	5.3 Load Balance and Collocation (Synthetic)
	5.4 Load Balance and Collocation (Real Data)

	6 Conclusion
	7 References

