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Abstract— In the emerging cloud computing paradigm, data
owners become increasingly motivated to outsource their complex
data management systems from local sites to the commercial
public cloud for great flexibility and economic savings. For the
consideration of users’ privacy, sensitive data have to be en-
crypted before outsourcing, which makes effective data utilization
a very challenging task. In this paper, for the first time, we
define and solve the problem of privacy-preserving query over
encrypted graph-structured data in cloud computing (PPGQ),
and establish a set of strict privacy requirements for such a
secure cloud data utilization system to become a reality. Our
work utilizes the principle of “filtering-and-verification”. We pre-
build a feature-based index to provide feature-related information
about each encrypted data graph, and then choose the efficient
inner product as the pruning tool to carry out the filtering
procedure. To meet the challenge of supporting graph query
without privacy breaches, we propose a secure inner product
computation technique, and then improve it to achieve various
privacy requirements under the known-background threat model.

I. INTRODUCTION

In the increasingly prevalent cloud computing, datacenters
play a fundamental role as the major cloud infrastructure
providers [1], such as Amazon, Google, and Microsoft Azure.
Datacenters provide the utility computing service to software
service providers who further provide the application service
to end users through Internet. The later service has long
been called “Software as a Service (SaaS)”, and the former
service has recently been called “Infrastructure as a Service
(IaaS)”, where the software service provider is also referred
to as cloud service provider. To take advantage of comput-
ing and storage resources provided by cloud infrastructure
providers, data owners outsource more and more data to the
datacenters [2] through cloud service providers, e.g., the online
storage service provider, which are not fully trusted by data
owners. As a general data structure to describe the relation
between entities, the graph has been increasingly used to
model complicated structures and schemaless data, such as
the personal social network (the social graph), the relational
database, XML documents and chemical compounds studied
by research labs [3]–[8]. Images in the personal album can
also be modeled as the attributed relational graph (ARG) [9].
For the protection of users’ privacy, these sensitive data have
to be encrypted before outsourcing to the cloud. Moreover,
some data are supposed to be shared among trusted partners.

For example, the album owner may share family party photos
with only authorized users including family members and
friends. For another example, the lab director and members
are given the authorization to access the entire lab data. In
both cases, authorized users are usually planning to retrieve
some portion of data they are interested rather than the entire
dataset, mostly because of the “pay-for-use” billing rule in the
cloud computing paradigm. Considering the large amount of
data centralized in the datacenter, it is a very challenging task
to effectively utilize the graph-structured data after encryption.

With the conventional graph data utilization method, we
first take the query graph as an input, and then perform
the graph containment query: given a query graph as 𝑄
and a collection of data graphs as 𝒢 = (𝐺1, 𝐺2, . . . , 𝐺𝑚),
find all the supergraphs of 𝑄 in 𝒢, denoted as 𝒢𝑄. The
straightforward solution is to check whether 𝑄 is subgraph
isomorphic to every 𝐺𝑖 in 𝒢 or not. However, checking
subgraph isomorphism is NP-complete, and therefore it is
infeasible to employ such costly solution. To efficiently solve
the graph containment query problem, there have been a lot
of proposed techniques [3]–[8], most of which follow the
principle of “filtering-and-verification”. In the filtering phase, a
pre-built feature-based index is utilized to prune as many data
graphs from the dataset as possible and output the candidate
supergraph set. Every feature in the index is a fragment of
a data graph, e.g., the subgraph. In the verification phase,
each candidate supergraph is verified by checking subgraph
isomorphism. Since the candidate supergraph set is much
smaller than the entire dataset, such approach involves less
subgraph isomorphism checking, and therefore is significantly
more efficient than the straightforward solution. However,
when data graphs are stored in the encrypted form in the cloud,
the encryption excludes the filtering method which is based on
the plaintext index.

In the most related literature, the searchable encryp-
tion [10]–[14] is a helpful technique that treats encrypted
data as documents and allows a user to securely search over
it through specifying single keyword or multiple keywords
with Boolean relations. However, the direct application of
these approaches to deploy the secure large scale cloud data
utilization system would not be necessarily suitable. The
keyword-based search provides much less semantics than the
graph-based query since the graph could characterize more
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complicated relations than Boolean relation. More importantly,
these searchable encryption schemes are developed as crypto
primitives and cannot accommodate such high service-level
requirements like system usability, user query experience, and
easy information discovery in mind. Therefore, how to design
an efficient encrypted query mechanism which supports graph
semantics without privacy breaches still remains a challenging
open problem.

In this paper, for the first time, we define and solve the
problem of privacy-preserving graph query in cloud com-
puting (PPGQ). To reduce the times of checking subgraph
isomorphism, we adopt the efficient principle of “filtering-and-
verification” to prune as many negative data graphs as possible
before verification. A feature-based index is firstly built to
provide feature-related information about every encrypted data
graph. Then, we choose the efficient inner product as the
pruning tool to carry out the filtering procedure. To achieve
this functionality in index construction, each data graph is
associated with a binary vector as a subindex where each
bit represents whether the corresponding feature is subgraph
isomorphic to this data graph or not. The query graph is also
described as a binary vector where each bit means whether the
corresponding feature is contained in this query graph or not.
The inner product of the query vector and the data vector could
exactly measure the number of query features contained in the
data graph, which is used to filter negative data graphs that do
not contain the query graph. However, directly outsourcing the
data vector or the query vector will violate the index privacy
or the query privacy. To meet the challenge of supporting
graph semantics without privacy breaches, we propose a secure
inner product computation mechanism, which is adapted from
a secure 𝑘-nearest neighbor (kNN) technique [15], and then
show our improvements on it to achieve various privacy
requirements under the known-background threat model. Our
contributions are summarized as follows,
1) For the first time, we explore the problem of query
over encrypted graph-structured data in cloud computing, and
establish a set of strict privacy requirements for such a secure
cloud data utilization system to become a reality.
2) Our proposed scheme follows the principle of “filtering-
and-verification” for efficiency consideration, and thorough
analysis investigating privacy and efficiency guarantees of the
proposed scheme is given.
3) The evaluation, which is performed with the widely-used
AIDS antiviral screen dataset on the Amazon EC2 cloud
infrastructure, further shows our proposed scheme introduces
low computation and communication overhead.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model, the threat model
and our design goals. Section III gives preliminaries, and
section IV describes the framework and privacy requirements
in PPGQ, followed by section V, which gives our proposed
scheme. Section VI presents evaluation results. We discuss
related work on both keyword searchable encryption and graph
containment query in Section VII, and conclude the paper in
Section VIII.

Fig. 1: Architecture of graph query over encrypted cloud data

II. PROBLEM FORMULATION

A. The System Model

Considering a cloud data storage service, involving four
different entities: the data owner, the data user, the storage ser-
vice provider/cloud service provider, and the datacenter/cloud
infrastructure provider. To take advantage of the utility com-
puting services provided by the datacenter, e.g., computing
and storage resources, the storage service provider deploys its
storage service on top of the utility computing in datacenter
and delivers the service to end users (including data owners
and data users) through Internet. In our system model, neither
cloud service provider nor cloud infrastructure provider is fully
trusted by data owners or data users, so they are treated as an
integrated entity, named the cloud server, as shown in Fig. 1.

The data owner has a graph-structured dataset 𝒢 to be
outsourced to the cloud server in the encrypted form 𝒢. To
enable the query capability over 𝒢 for effective data utilization,
the data owner will build an encrypted searchable index ℐ from
𝒢 before data outsourcing, and then both the index ℐ and the
encrypted graph dataset 𝒢 are outsourced to the cloud server.
For every query graph 𝑄, an authorized user acquires a corre-
sponding trapdoor 𝑇𝑄 through the search control mechanism,
e.g., broadcast encryption [10], and then sends it to the cloud
server. Upon receiving 𝑇𝑄 from data users, the cloud server is
responsible to perform query over the encrypted index ℐ and
return the encrypted candidate supergraphs. Finally, data users
decrypt the candidate supergraphs through the access control
mechanism, and verify each candidate by checking subgraph
isomorphism.

B. The Known Background Threat Model

The cloud server is considered as “honest-but-curious”
in our model, which is consistent with most related works
on searchable encryption [14], [16]. Specifically, the cloud
server acts in an “honest” fashion and correctly follows the
designated protocol specification. However, it is “curious”
to infer and analyze the data and the index in its storage
and interactions during the protocol so as to learn additional
information. The encrypted data 𝒢 and searchable index ℐ can
be easily obtained by the cloud server, because both of them
are outsourced and stored on the cloud server. In addition to
these encrypted information, the cloud server is supposed to
know some backgrounds on the dataset, such as its subject
and related statistical information. As a possible attack similar
to that in [17], the cloud server could utilize the feature
frequency to identify features contained in the query graph.
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C. Design Goals

To enable the graph query for the effective utilization of
outsourced cloud data under the aforementioned model, our
design should simultaneously achieve security and perfor-
mance guarantees.

∙ Effectiveness: To design a graph query scheme that
introduces few false positives in the candidate supergraph
set.

∙ Privacy: To prevent the cloud server from learning
additional information over outsourced data and index
in query interactions, and to meet privacy requirements
specified in section IV-C.

∙ Efficiency: Above goals on effectiveness and privacy
should be achieved with low communication and com-
putation overhead.

D. Notations

∙ 𝒢 – the graph-structured dataset, denoted as a collection
of 𝑚 data graphs 𝒢 = (𝐺1, 𝐺2, . . . , 𝐺𝑚).

∙ 𝒢 – the encrypted graph-structured dataset outsourced
into the cloud, denoted as 𝒢 = (𝐺̃1, 𝐺̃2, . . . , 𝐺̃𝑚).

∙ id(𝐺𝑖) – the identifier of the data graph 𝐺𝑖 that can help
uniquely locate the graph.

∙ ℱ – the feature set mined from the graph dataset, denoted
as ℱ = (𝐹1, 𝐹2, . . . , 𝐹𝑛).

∙ 𝒟 – the frequent feature dictionary, denoted as 𝒟 =
{ℒ𝐹1

,ℒ𝐹2
, . . . ,ℒ𝐹𝑛

}, where ℒ𝐹𝑗
is the unique canonical

label of 𝐹𝑗 ;
∙ ℐ – the searchable index associated with 𝒢, denoted as

(𝐼1, 𝐼2, . . . , 𝐼𝑚), where each subindex 𝐼𝑖 is built from 𝐺𝑖.
∙ 𝑄 – the query graph from the data user.
∙ ℱ𝑄 – the subset of ℱ , consisting of frequent features

contained in 𝑄, denoted as ℱ𝑄 = {𝐹𝑗 ∣𝐹𝑗 ⊆ 𝑄,𝐹𝑗 ∈ ℱ}.
∙ 𝒢{𝑄} – the subset of 𝒢, consisting of exact supergraphs of

the graph 𝑄, denoted as 𝒢{𝑄} = {id(𝐺𝑖)∣𝑄 ⊆ 𝐺𝑖, 𝐺𝑖 ∈
𝒢}.

∙ 𝒢ℱ𝑄
– the subset of 𝒢, consisting of candidate super-

graphs of the graph 𝑄, denoted as 𝒢ℱ𝑄
= ∩𝒢{𝐹𝑗}, where

𝐹𝑗 ∈ ℱ𝑄.
∙ 𝑇𝑄 – the trapdoor for the query graph 𝑄.

III. PRELIMINARIES

A. Graph Query

A labeled, undirected, and connected graph is a five-tuple
as {𝑉,𝐸,Σ𝑉 ,Σ𝐸 , 𝐿}, where 𝑉 is the vertex set, 𝐸 ⊆ 𝑉 ×𝑉
is the edge set, and 𝐿 is a labeling function: 𝑉 → Σ𝑉 and
𝐸 → Σ𝐸 . We use the number of vertices ∣𝑉 (𝐺)∣ to represent
the size of the graph 𝐺.
Subgraph Isomorphism Given two graphs 𝐺 =
{𝑉,𝐸,Σ𝑉 ,Σ𝐸 , 𝐿} and 𝐺′ = {𝑉 ′, 𝐸′,Σ𝑉 ,Σ𝐸 , 𝐿

′}, 𝐺
is subgraph isomorphic to 𝐺′ if there is an injection
𝑓 : 𝑉 → 𝑉 ′ such that

1. ∀ 𝑣 ∈ 𝑉, 𝐿(𝑣) = 𝐿′(𝑓(𝑣)).
2. ∀ (𝑢, 𝑣) ∈ 𝐸, (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸′.
3. ∀ (𝑢, 𝑣) ∈ 𝐸,𝐿(𝑢, 𝑣) = 𝐿′(𝑓(𝑢), 𝑓(𝑣)).

Graph Containment Query If 𝐺 is subgraph isomorphic to
𝐺′, we call 𝐺 is a 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ of 𝐺′ or 𝐺′ is a 𝑠𝑢𝑝𝑒𝑟𝑔𝑟𝑎𝑝ℎ
of 𝐺, denoted as 𝐺 ⊆ 𝐺′. Such relation is also referred to
as 𝐺 is 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝐺′ or 𝐺′ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝐺. Given a graph
dataset 𝒢 = (𝐺1, 𝐺2, . . . , 𝐺𝑚) and a query graph 𝑄, a graph
containment query problem is to find all the supergraphs of 𝑄
from the dataset 𝒢, denoted as 𝒢{𝑄} = {id(𝐺𝑖)∣𝑄 ⊆ 𝐺𝑖, 𝐺𝑖 ∈
𝒢} where id(𝐺𝑖) is the identifier of the graph 𝐺𝑖. The number
of supergraphs of 𝑄, i.e., ∣𝒢{𝑄}∣, is called the support, or the
frequency of 𝑄.

Considering the large size of the graph dataset, it is im-
practical to solve the graph containment query problem by se-
quentially checking whether 𝑄 is subgraph isomorphic to each
graph in 𝒢 or not, because checking subgraph isomorphism has
been proved to be NP-complete [18]. To reduce the times of
checking subgraph isomorphism, most graph query works [3]–
[8] follow the principle of “filtering-and-verification”.
Filtering-and-Verification In the filtering phase, a feature-
based index for the dataset 𝒢 is utilized to prune most negative
data graphs that does not contain the query graph 𝑄, and then
produce the candidate supergraph set. In the verification phase,
the subgraph isomorphism is checked between the query graph
and every candidate supergraph to output the exact supergraph
set 𝒢{𝑄}.

The feature-based index is pre-built from the entire graph
dataset, where each feature 𝐹𝑗 is a substructure of a data graph
in the dataset, such as subpath [3], subtree [5], [6], [8] and
subsubgraph [4], [7]. Let ℱ = (𝐹1, 𝐹2, . . . , 𝐹𝑛) represent the
feature set. The supergraph set of every feature 𝐹𝑗 , denoted as
𝒢{𝐹𝑗}, is stored in the index. Let ℱ𝑄 = {𝐹𝑗 ∣𝐹𝑗 ⊆ 𝑄,𝐹𝑗 ∈ ℱ}
denote the query feature set consisting of features contained
in the query graph. Then, the candidate supergraphs of the
query graph 𝐺 can be obtained by the intersection operation
as 𝒢ℱ𝑄

= ∩𝒢{𝐹𝑘}, where 𝐹𝑘 ∈ ℱ𝑄. The false positive ratio

is then defined as
∣𝒢ℱ𝑄

∣
∣𝒢{𝑄}∣

Frequent and Discriminative Substructure It is infeasible
and unnecessary to index every possible substructure of all
the graphs in a large dataset, and therefore only frequent and
discriminative substructures are indexed to reduce the index
size. A feature 𝐹𝑗 is frequent if its support, or frequency is
large enough, i.e., ∣𝒢{𝐹𝑗}∣ ≥ 𝜎, where 𝜎 is called the minimum
support. A feature 𝐹𝑗 is discriminative if it can provide more

pruning power than its subgraph feature set, i.e.,
∣∩𝑘𝒢{𝐹𝑘}∣
∣𝒢{𝐹𝑗}∣

≥
𝛾, where 𝐹𝑘 ⊆ 𝐹𝑗 and 𝛾 is called the discriminative threshold.

B. Secure Euclidean Distance Computation

In order to compute the inner product in a privacy-
preserving method, we will adapt the secure Euclidean dis-
tance computation in the secure 𝑘-nearest neighbor (kNN)
scheme [15]. In this scheme, the Euclidean distance between
a database record 𝑝𝑖 and a query vector 𝑞 is used to select 𝑘
nearest database records. The secret key is composed of one
(𝑑 + 1)-bit vector as 𝑆 and two (𝑑 + 1) × (𝑑 + 1) invertible
matrices as {𝑀1,𝑀2}, where 𝑑 is the number of fields for each
record 𝑝𝑖. First, every data vector 𝑝𝑖 and the query vector 𝑞 are
extended to (𝑑+1)-dimensional vectors as 𝑝𝑖 and 𝑞⃗, where the
(𝑑 + 1)-th dimension is set to −0.5∣∣𝑝2𝑖 ∣∣ and 1, respectively.

395



Besides, the query vector 𝑞⃗ is scaled by a random number
𝑟 > 0 as (𝑟𝑞, 𝑟). Then, 𝑝𝑖 is split into two random vectors
as {𝑝𝑖′, 𝑝𝑖′′}, and 𝑞⃗ is also split into two random vectors as
{𝑞⃗ ′, 𝑞⃗ ′′}. Note here that vector 𝑆 functions as a splitting
indicator. Namely, if the 𝑗-th bit of 𝑆 is 0, 𝑝𝑖′[𝑗] and 𝑝𝑖

′′[𝑗]
are set as the same as 𝑝𝑖[𝑗], while 𝑞⃗ ′[𝑗] and 𝑞⃗ ′′[𝑗] are set to
two random numbers so that their sum is equal to 𝑞⃗[𝑗]; if the
𝑗-th bit of 𝑆 is 1, the splitting process is similar except that
𝑝𝑖 and 𝑞⃗ are switched. The split data vector pair {𝑝𝑖′, 𝑝𝑖′′} is
encrypted as {𝑀𝑇

1 𝑝𝑖
′,𝑀𝑇

2 𝑝𝑖
′′}, and the split query vector pair

{𝑞⃗ ′, 𝑞⃗ ′′} is encrypted as {𝑀−1
1 𝑞⃗ ′,𝑀−1

2 𝑞⃗ ′′}. In the query
step, the product of the data vector pair and the query vector
pair, i.e., −0.5𝑟(∣∣𝑝𝑖∣∣2 − 2𝑝𝑖 ⋅ 𝑞), is serving as the indicator
of the Euclidean distance (∣∣𝑝𝑖∣∣2 − 2𝑝𝑖 ⋅ 𝑞 + ∣∣𝑞∣∣2) to select
𝑘 nearest neighbors. Without prior knowledge of the secret
key, neither the data vector nor the query vector, after such
a series of processes, can be recovered by analyzing their
corresponding ciphertexts. The security analysis in [15] shows
that this computation technique is secure against known-
plaintext attack, which is roughly equal in security to a 𝑑-bit
symmetric key. Therefore, 𝑑 should be no less than 80 to make
the search space sufficiently large.

IV. PPGQ: THE FRAMEWORK AND PRIVACY

In this section, we define the framework of query over
encrypted graph-structured data in cloud computing and estab-
lish various strict system-wise privacy requirements for such
a secure cloud data utilization system.

A. The Framework

Our proposed framework focuses on how the query works
with the help of index which is outsourced to the cloud server.
We do not illustrate how the data itself is encrypted, out-
sourced or accessed, as this is a complementary and orthogonal
issue and has been studied elsewhere [16]. The framework of
PPGQ is illustrated as follows.

∙ FSCon(𝒢, 𝜎) Takes the graph dataset 𝒢 and the mini-
mum support 𝜎 as inputs, outputs a frequent feature set
ℱ .

∙ KeyGen(𝜉) Takes a secret 𝜉 as input and outputs a
symmetric key 𝒦.

∙ BuildIndex(𝒢,𝒦) Takes the graph dataset 𝒢 and the
symmetric key 𝒦 as inputs, output a searchable index
ℐ.

∙ TDGen(𝑄,𝒦) Takes the query graph 𝑄 and the symmet-
ric key 𝒦 as inputs, outputs a corresponding trapdoor
𝑇𝑄.

∙ Query(𝑇𝑄, ℐ) Takes the trapdoor 𝑇𝑄 and the searchable
index ℐ as inputs, returns 𝒢ℱ𝑄

, i.e., the candidate super-
graphs of query graph 𝑄.

The first three algorithms, i.e., FSCon, BuildIndex, and
BuildIndex, are run by the data owner as pre-processes. The
query algorithm is run on the cloud server as a part of the
cloud data storage service. According to various search control
mechanisms, the trapdoor generation algorithm TDGen may
be run by either the data owner or the data user. Besides,
depending on some specific application scenarios, while search

requests on confidential documents may be allowed for all
users, the access to document contents may be forbidden for
those low-priority data users. Note that neither search control
or access control are within the scope of this paper.

B. Choosing Frequent Features

To build a feature-based index, there are three choices of
features, i.e., subpath, subtree and subgraph, which can be
extracted from the graph dataset. According to the feature
comparison in [5], with the same minimum support, either
subtree-based or subgraph-based feature set is larger than
subpath-based one, especially when the feature size is between
5 and 20. To be consistent with the size of graph which is
∣𝑉 (𝐺)∣, the size of feature is measured by its number of ver-
tices ∣𝑉 (𝐹𝑖)∣. As for the cloud server, the larger feature set will
demand more index storage, and also incur larger computation
cost during the query process. However, the pruning power of
the subgraph-based index performs the best among all the three
choices, which leads to the lowest false positive ratio and the
smallest candidate supergraph set.From the perspective of the
data user, the size of the candidate supergraph set has a direct
and important impact on the communication and computation
cost. Compared with the powerful cloud server, data users
may access the cloud server through portable devices, e.g.,
mobile phones and netbooks, which have limited capability
of communication and computation to retrieve the candidate
supergraph set and check subgraph isomorphism. To this end,
the subgraph-based index is more appropriate than the other
two choices for our PPGQ framework that is designed for the
efficient graph-structured data utilization in cloud computing.
To generate the frequent feature set, there have been a lot
of frequent subgraph mining algorithms over the large graph
dataset, such as 𝑔𝑆𝑝𝑎𝑛 [19], and 𝐺𝑎𝑠𝑡𝑜𝑛 [20]. For the index-
ing purpose, every frequent subgraph should be represented
as a unique canonical label which can be accomplished by
existing graph sequentialization techniques, like 𝐶𝐴𝑀 [21]
and 𝐷𝐹𝑆 [19]. Besides, the shrinking process on the frequent
feature set is not adopted in our framework since it will
weaken the pruning power of index. As the subgraph is chosen
as the feature to build index in our framework, we do not
distinguish between frequent feature and frequent subgraph in
the rest of this paper.

C. Privacy Requirements

As described in the framework, data privacy is to prevent
the cloud server from prying into outsourced data, and can
be well protected by existing access control mechanism [16].
In related works on privacy-preserving query, like searchable
encryption [10], representative privacy requirement is that the
server should learn nothing but query results. With this general
privacy statement, we explore and establish a set of stringent
privacy requirements specifically for the PPGQ framework.
While data privacy guarantees are demanded by default in the
related literature, various query privacy requirements involved
in the query procedure are more complex and difficult to tackle
as follows.
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Fig. 2: Distribution of Feature Support

1) Index Privacy: With respect to the index privacy, if the
cloud server deduces any association between frequent features
and encrypted dataset from outsourced index, it may learn the
major structure of a graph, or even the entire topology of a
small graph. Therefore, searchable index should be constructed
in such a way that prevents the cloud server from performing
such kind of association attack.

2) Feature Privacy: Data users usually prefer to keep their
query from being exposed to others like the cloud server, and
the most important concern is to hide what they are querying,
i.e., the features indicated by the corresponding trapdoor.
Although trapdoor can be generated in a cryptographic way
to protect the query features, the cloud server may do some
statistical analysis over the search results to make an estimate.
Especially, the feature support (i.e., the number of data graphs
containing the feature), a kind of statistical information, is
sufficient to identify the feature with high probability. When
the cloud server knows some background information of
the dataset, this feature-specific information can be utilized
to reverse-engineer the feature. As presented in Fig. 2, the
distribution of feature support in the AIDS antiviral screen
dataset [22] provides enough information to identify most
frequent features in the dataset. Such problem is similar with
the keyword privacy issue in [23], where document frequency
(the number of documents containing the keyword) is used as
a statistical information to reverse-engineer the keyword.

3) Trapdoor Unlinkability: The trapdoor generation func-
tion should be a randomized one instead of being determinis-
tic. In particular, the cloud server should not be able to deduce
the relationship of any given trapdoors, e.g., to determine
whether the two trapdoors are formed by the same search
request or not. Otherwise, the deterministic trapdoor gener-
ation would give the cloud server advantage to accumulate
frequencies of different search requests regarding different
features, which may further violate the aforementioned feature
privacy requirement. So the fundamental protection for trap-
door unlinkability is to introduce sufficient nondeterminacy
into the trapdoor generation procedure.

4) Access Pattern: Access pattern is the sequence of query
results where each query result is 𝒢ℱ𝑄

, including the id list
of candidate supergraphs of the query graph. Then the access
pattern is denoted as (𝒢ℱ𝑄1

,𝒢ℱ𝑄1
, . . .) which are the results

of sequential queries. In related literature, although a few
schemes (e.g., [24]) have been proposed to utilize private
information retrieval (PIR) technique [25] to hide access pat-

TABLE I: Analysis on inner products in two correlated queries

𝐺 ℱ𝑄 ℱ𝑄′ = ℱ𝑄
∪{𝐹𝑘} 𝑦𝑖

′/𝑦𝑖 𝜆′ − 𝜆

𝐺𝑖 𝑦𝑖 = 𝑟𝜆𝑖 𝜆𝑖
′ = 𝜆𝑖 + 1, 𝑦𝑖

′ = 𝑟′𝜆𝑖
′ 𝜆𝑖+1

𝜆𝑖
⋅ 𝑟′

𝑟
1

𝐺𝑗 𝑦𝑗 = 𝑟𝜆𝑗 𝜆𝑗
′ = 𝜆𝑗 , 𝑦𝑗

′ = 𝑟′𝜆𝑗
′ 𝑟′

𝑟
0

tern, our proposed schemes are not designed to protect access
pattern for the efficiency concerns. This is because any PIR-
based technique must “touch” the whole dataset outsourced on
the server which is inefficient in the large scale cloud system.
To this end, the query result of any single feature 𝐹𝑗 , which is
part of access pattern, cannot be hidden from the cloud server.
Such query result 𝒢{𝐹𝑗} will directly expose the support of
the feature, and break the feature privacy as discussed above.
Therefore, we do not consider the single-feature query in our
proposed schemes.

V. PPGQ: THE PROPOSED SCHEME AND ANALYSIS

In order to accomplish the filtering purpose in the graph
query procedure, the data graph 𝐺𝑖 is selected as a candidate
supergraph of the query graph 𝑄 if and only if 𝐺𝑖 contains
all the frequent features in 𝑄. Let 𝜆𝑖 represent the number
of query features contained in the data graph 𝐺𝑖. For every
candidate supergraph 𝐺𝑖, its corresponding 𝜆𝑖 should be equal
to the size of the query feature set ℱ𝑄, i.e., 𝜆𝑖 = ∣ℱ𝑄∣. To
obtain the candidate supergraph set, we propose to employ the
efficient inner product computation for pruning negative data
graphs 𝐺𝑗 that do not contain the query graph, i.e., 𝜆𝑗 < ℱ𝑄.
Specifically, every data graph 𝐺𝑖 is formalized as a bit vector
𝑔𝑖 where each bit 𝑔𝑖[𝑗] is determined by checking whether
𝐺𝑖 contains the frequent feature 𝐹𝑗 or not. If 𝐹𝑗 ⊆ 𝐺𝑖, 𝑔𝑖[𝑗]
is set as 1; otherwise, it is set as 0. The query graph 𝑄 is
formalized as a bit vector 𝑞 where each bit 𝑞[𝑗] also represents
the existence of the frequent feature 𝐹𝑗 in the query feature
set ℱ𝑄. Then, 𝜆𝑖 can be acquired via computing the inner
product of the data vector 𝑔𝑖 and the query vector 𝑞, i.e.,
𝑔𝑖 ⋅ 𝑞. To preserve the strict system-wise privacy, the data
vector 𝑔𝑖 and the query vector 𝑞 should not be exposed to
the cloud server. In this section, we first design a secure inner
product computation mechanism, which is adapted from the
secure Euclidean distance computation technique, and then
show how to improve it to be privacy-preserving under the
known-background threat model.

A. Secure Inner Product Computation

As the inner product of the data vector and the query vector
is preferred to select candidate supergraphs of the query graph,
the secure Euclidean distance computation technique in the
secure 𝑘𝑁𝑁 scheme [15] cannot be directly utilized here. By
eliminating the extended dimension which is related to the
Euclidean distance, the final inner product result changes to
be 𝑟(𝑔𝑖 ⋅ 𝑞). Since the new result 𝑟(𝑔𝑖 ⋅ 𝑞) can serve as an
indicator of the original inner product 𝑔𝑖 ⋅ 𝑞, it seems that an
efficient and secure inner product computation scheme can
be appropriately achieved. However, the cloud server may
break the feature privacy via analyzing final inner products and
figuring out some feature-specific statistical information, e.g.,
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Fig. 3: Build subindex for each data graph

the support of feature. With the background knowledge of the
outsourced graph dataset, which can be obtained by the cloud
server under the known-background model, such feature-
specific information could be further utilized to identify what
feature is included in the query at high probability. We first
demonstrate how such statistical analysis attack could break
feature privacy as follows.

Whenever there exist two query graphs which have inclusion
relationship, the cloud server could explore the relationship
among final inner products in two queries. Assume that 𝑇𝑄

and 𝑇𝑄′ be trapdoors for two query graphs 𝑄 and 𝑄′, and
their corresponding query feature sets have the inclusion
relation as ℱ𝑄 ⊂ ℱ𝑄′ . Especially, when the differential
feature subset contains only one feature, i.e., ∣ℱ𝑄′′ ∣ = 1
where ℱ𝑄′′ = ℱ𝑄′∖ℱ𝑄, the cloud server can deduce an
estimate of the support of the differential feature and further
identify this feature with the background knowledge of the
graph dataset. As listed in Tab. I, the second query feature
set ℱ𝑄′ includes one more feature as 𝐹𝑘 than the first one
ℱ𝑄. The cloud server evaluates the expression 𝑦𝑖′/𝑦𝑖, which is
equal to (𝜆𝑖

′/𝜆𝑖)(𝑟
′/𝑟) for every graph 𝐺𝑖, and then obtains a

large number of different values. However, these values could
be distinguished into two categories. If the graph 𝐺𝑖 does
not contain the feature 𝐹𝑘, i.e., 𝜆𝑖

′ = 𝜆𝑖, its corresponding
expression evaluation 𝑦𝑖

′/𝑦𝑖 is equal to 𝑟′/𝑟; otherwise, it
is larger than 𝑟′/𝑟 and can be easily detected because of its
special ratio as 𝜆𝑖+1

𝜆𝑖
. Therefore, the minimum values over the

whole dataset indicate that corresponding data graphs do not
contain the feature 𝐹𝑘, and other graphs with larger values
contain it. In addition, by checking whether the expression 𝑦𝑖
is equal to 0 or not, the special case where the data graph
𝐺𝑖 contains neither feature in ℱ𝑄 can be recognized by the
cloud server. In such case, the existence of feature 𝐹𝑘 in 𝐺𝑖

can be determined by checking whether the expression 𝑦𝑖
′ is

equal to 0 or not. To this end, the total number of data graphs
containing this feature, i.e., ∣𝒢{𝐹𝑘}∣, is uncovered. Under the
known-background threat model, the cloud server could break
the feature privacy with both the support of single feature and
the distribution of all the supports as illustrated in Fig. 2.

Fig. 4: Generate trapdoor for query graph

B. The Proposed Privacy-Preserving Graph Query Scheme

The statistical analysis attack shown above works when the
final inner product 𝑦𝑖 is a multiple of 𝜆𝑖, i.e., the number of
query features contained in the data graph 𝐺𝑖. To this end,
we should break such scale relationship to make the previous
statistical analysis attack infeasible. Our proposed design is
to convert both the data vector and the query vector from the
bit structure to more sophisticated structures. Specifically, if
the frequent feature 𝐹𝑗 is contained in the data graph 𝐺𝑖, the
corresponding element 𝑔𝑖[𝑗] in the data vector 𝑔𝑖 is set as 𝜌[𝑗]
instead of 1 where 𝜌 is a 𝑛-dimensional vector; otherwise,
𝑔𝑖[𝑗] is set as 𝑋[𝑖][𝑗] where 𝑋 is a 𝑛 × 𝑛 matrix and 𝑋[𝑖][𝑗]

is a random number less than 𝜌[𝑗]. Correspondingly, if 𝐹𝑗 is
contained in the query graph 𝑄, 𝑞[𝑗] is set as a positive random
number 𝑟𝑗 instead of 1; otherwise, 𝑞[𝑗] is set as 0. In addition,
to hide the original inner product, we resume the dimension
extending operation where the 𝑔𝑖[𝑛+1] is set as 1 and the 𝑞[𝑛+1]

is set as a random number 𝑡. As a result of these modifications,
the final inner product of the data vector and the query vector,
i.e., 𝑔𝑖 ⋅ 𝑞 + 𝑡, should be equal to 𝜌 ⋅ 𝑞 + 𝑡 for any candidate
supergraph. Note that, the vector 𝜌 is constant as a part of the
secret key, but 𝑡 and 𝑟𝑗 in 𝑞 are randomly generated for each
query. Our proposed privacy-preserving graph query scheme
is designed as follows with details in Fig. 5.

∙ FSCon(𝒢, 𝜎) The data owner utilizes existing frequent
subgraph mining algorithms to generate the frequent
subgraph set ℱ , and then creates the frequent feature
dictionary 𝒟 and the feature-based inverted index 𝐼𝑖𝑛𝑣 .

∙ KeyGen(𝐾𝑆 , 𝑛) With the master key 𝐾𝑆 , the data owner
generates the secret key 𝒦, consisting of the splitting
indicator 𝑆, two invertible matrices {𝑀1,𝑀2}, and the
vector 𝜌.

∙ BuildIndex(𝒢,ℱ ,𝒦) For each data graph 𝐺𝑖, this algo-
rithm creates the subindex 𝐼𝑖 as shown in Fig. 3. The data
owner first creates a vector 𝑔𝑖 with length 𝑛, in which the
value of 𝑔𝑖[𝑗] is determined by whether graph 𝐺𝑖 contains
the corresponding feature 𝐹𝑗 or not (steps 1 and 2).
Subsequently, the data vector 𝑔𝑖 is processed by applying
the dimension extending where the (𝑛+1)-th entry in 𝑔𝑖
is set to 1 (step 3) and further adopting the splitting and
encrypting procedures in the secure Euclidean Distance
computation scheme (steps 4 and 5). Finally, a subindex
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FSCon(𝒢, 𝜎)
1. Mine frequent feature set ℱ = {𝐹1, 𝐹2, . . . , 𝐹𝑛} from graph dataset 𝒢 with the minimum support threshold 𝜎;

i) For each frequent feature 𝐹𝑗 , where 1 ≤ 𝑗 ≤ 𝑛, generate its supergraph id set 𝒢{𝐹𝑗};
2. Create the frequent feature dictionary 𝒟 = {ℒ𝐹1

,ℒ𝐹2
, . . . ,ℒ𝐹𝑛

}, where ℒ𝐹𝑗
is the unique canonical label of 𝐹𝑗 ;

3. Build the feature-based inverted index 𝐼𝑖𝑛𝑣 = {𝒢{𝐹1},𝒢{𝐹2}, . . . ,𝒢{𝐹𝑛}}.
KeyGen(𝐾𝑆 , 𝑛)

1. Create an (𝑛+ 1)-bit vector 𝑆, two (𝑛+ 1)× (𝑛+ 1) invertible matrices 𝑀1,𝑀2, and an 𝑛-dimensional vector 𝜌;

i) {𝑆,𝑀1,𝑀2, 𝜌} ℛ←− 𝐾𝑆 ;
2. Output the secret key 𝒦 = {𝑆,𝑀1,𝑀2, 𝜌}.

BuildIndex(𝐼𝑖𝑛𝑣,𝒦)
1. Create a 𝑛× 𝑛 matrix 𝑋 , where 𝑋[𝑖][𝑗] is a random number less than 𝒦[4][𝑗];
2. For each graph 𝐺𝑖, where 1 ≤ 𝑖 ≤ 𝑚, create a 𝑛-dimensional data vector 𝑔𝑖;

i) If 𝑖𝑑(𝐺𝑖) ∈ 𝐼𝑖𝑛𝑣[𝑗], set 𝑔𝑖[𝑗] = 𝒦[4][𝑗]; otherwise, set 𝑔𝑖[𝑗] = 𝑋[𝑖][𝑗];
3. Extend every 𝑔𝑖 to (𝑛+ 1)-dimensional 𝑔𝑖;

i) For 1 ≤ 𝑗 ≤ 𝑛, set 𝑔⃗𝑖[𝑗] = 𝑔𝑖[𝑗]; Set 𝑔⃗𝑖[𝑛+1] = 1;
4. According to the splitting indicator 𝒦[1], split every 𝑔𝑖 to two vectors 𝑔𝑖′ and 𝑔𝑖

′′;
i) For 1 ≤ 𝑗 ≤ 𝑛+ 1, if 𝒦[1][𝑗] = 0, set both 𝑔⃗𝑖

′
[𝑗] and 𝑔⃗𝑖

′′
[𝑗] as 𝑔⃗𝑖[𝑗];

otherwise, set 𝑔⃗𝑖′[𝑗] and 𝑔⃗𝑖
′′
[𝑗] as two random numbers such that 𝑔⃗𝑖′[𝑗] + 𝑔⃗𝑖

′′
[𝑗] = 𝑔⃗𝑖[𝑗];

5. Encrypt these two vectors by inverses of the two matrices, and combine them as the subindex 𝐼𝑖 for 𝐺𝑖;
i) 𝐼𝑖 = {((𝒦[2])

−1)𝑇 𝑔𝑖
′, ((𝒦[3])

−1)𝑇 𝑔𝑖
′′};

6. Output the encrypted index 𝐼 = {𝐼1, 𝐼2, ⋅ ⋅ ⋅ , 𝐼𝑚}.
TDGen(𝑄,𝒟,𝒦)

1. Initialize the query feature set: ℱ𝑄 = ∅;
2. For each frequent feature 𝒟[𝑗], 1 ≤ 𝑗 ≤ 𝑛:

i) If 𝒟[𝑗] ⊆ 𝑄, ℱ𝑄 = ℱ𝑄

∪{𝒟[𝑗]};
3. Create a 𝑛-dimensional query vector 𝑞 for the input query graph 𝑄;

i) Generate 𝑛 positive random numbers as 𝑟1, 𝑟2, . . . , 𝑟𝑛;
ii) For 1 ≤ 𝑗 ≤ 𝑛, if 𝒟[𝑗] ∈ ℱ𝑄, set 𝑞[𝑗] = 𝑟𝑗 ; otherwise, set 𝑞[𝑗] = 0;

4. Extend 𝑞 to (𝑛+ 1)-dimensional 𝑞⃗, and generate a random number 𝑡;
i) For 1 ≤ 𝑗 ≤ 𝑛, set 𝑞⃗[𝑗] = 𝑞[𝑗]; Set 𝑞⃗[𝑛+1] = 𝑡;

5. According to the splitting indicator 𝒦[1], split 𝑞⃗ to two vectors as 𝑞⃗′ and 𝑞⃗′′;
i) For 1 ≤ 𝑗 ≤ 𝑛+ 1, if 𝒦[1][𝑗] = 1, set both 𝑞⃗′[𝑗] and 𝑞⃗′′[𝑗] as 𝑞⃗[𝑗];

otherwise, set 𝑞⃗′[𝑗] and 𝑞⃗′′[𝑗] as two random numbers such that 𝑞⃗′[𝑗] + 𝑞⃗′′[𝑗] = 𝑞⃗[𝑗];
6. Encrypt these two vectors by the two invertible matrices as {(𝒦[2])

𝑇 𝑞⃗′, (𝒦[3])
𝑇 𝑞⃗′′};

7. Output the trapdoor 𝑇𝑄 for query graph 𝑄;
i) 𝑇𝑄 = {(𝒦[2])

𝑇 𝑞⃗′, (𝒦[3])
𝑇 𝑞⃗′′,

∑𝒦[4][𝑗]𝑞[𝑗] + 𝑡};
Query(ℐ, 𝑇𝑄)

1. Initialize the query result: 𝒢ℱ𝑄
= ∅;

2. For each subindex 𝐼[𝑖], 1 ≤ 𝑖 ≤ 𝑚:
i) Compute inner product as 𝐼𝑖[1] ⋅ 𝑇𝑄[1] + 𝐼𝑖[2] ⋅ 𝑇𝑄[2];
ii) If the inner product is equal to 𝑇𝑄[3], set 𝒢ℱ𝑄

= 𝒢ℱ𝑄

∪{id(𝐺𝑖)};
3. Output the query result 𝒢ℱ𝑄

.

Fig. 5: Privacy-Preserving Graph Query Scheme

𝐼𝑖 = {(𝑀−1
1 )𝑇 𝑔𝑖

′, (𝑀−1
2 )𝑇 𝑔𝑖

′′} is created for every data
graph 𝐺𝑖 and associated with the encrypted data graph
𝐺̃𝑖 for outsourcing to the cloud server .

∙ TDGen(𝑄) With the query graph 𝑄 as input from the
data user, this algorithm outputs the trapdoor 𝑇𝑄 as shown
in Fig. 4. The query feature set ℱ𝑄 is first generated
through checking which features in ℱ are also contained
in 𝑄 (steps 1 and 2). An 𝑛-dimensional vector 𝑞 is created
by assigning a positive random number 𝑟𝑗 to the element
𝑞[𝑗] if 𝐹𝑗 ∈ ℱ𝑄; otherwise, 𝑞[𝑗] = 0 (step 3). This initial
query vector 𝑞 is then extended to an (𝑛+1)-dimensional
vector as 𝑞⃗ = (𝑞, 𝑡), where 𝑡 is a non-zero random number

(step 4). After adopting the splitting and encrypting
processes in the secure Euclidean distance computation
technique (steps 5 and 6), the trapdoor 𝑇𝑄 for the query
graph 𝑄 is generated as {𝑀1𝑞⃗

′,𝑀2𝑞⃗
′′,
∑

𝜌[𝑗]𝑞[𝑗] + 𝑡},
where the third element is the expected final inner product
of the query vector and the data vector for every candidate
supergraph.

∙ Query(ℐ, 𝑇𝑄) With the trapdoor 𝑇𝑄, the cloud server
computes the inner product of {𝑇𝑄[1], 𝑇𝑄[2]} with every
subindex 𝐼𝑖 for data graph 𝐺𝑖, and returns graph id list
𝒢ℱ𝑄

where each graph has an inner product as exactly
same as 𝑇𝑄[3]. The data user can further do the graph
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Fig. 6: Relation between minimum support and (a) Frequent
feature set size. (b) False positive ratio.

verification to remove false positives from 𝒢ℱ𝑄
, and

finally get the exact result as 𝒢{𝑄}.

C. The Analysis

Analysis of this scheme follows three aspects of design
goals described in section II-C.

1) Effectiveness: Assume 𝑄 consists of ℓ query features,
i.e., ℓ = ∣ℱ𝑄∣. For any supergraph 𝐺𝑖 of the query graph 𝑄,
it includes all the ℓ features in ℱ𝑄 which is extracted from 𝑄.
Therefore, all the ℓ corresponding elements in the data vector
are equal to those in the 𝜌, respectively, i.e., 𝑔𝑖[𝑗𝑘] = 𝜌[𝑗𝑘],
where 1 ≤ 𝑘 ≤ ℓ. Besides, each corresponding element in the
query vector as 𝑞𝑖[𝑗𝑘] is set as 𝑟𝑗𝑘 , and all other elements is
set as 0. The final inner product 𝑔𝑖 ⋅ 𝑞 + 𝑡 for any supergraph
𝐺𝑖 is then equal to

∑
𝜌[𝑗𝑘]𝑟𝑗𝑘 + 𝑡, which is also the result of

𝜌⋅𝑞+𝑡. The later one 𝜌⋅𝑞+𝑡 has been included in the trapdoor
and serves as an indicator to select candidate supergraphs. It
means that our scheme does not introduce any false negative
into the result 𝒢ℱ𝑄

, as every exact supergraph in 𝒢{𝑄} will
produce the same inner product as 𝜌 ⋅ 𝑞 + 𝑡 with the query
vector. But false positive supergraphs may be introduced into
𝒢ℱ𝑄

by those data graphs that do not contain the query graph
𝑄 but contain all the features in ℱ𝑄.

2) Efficiency: As far as the data user is concerned, the query
response is well presented because the final inner product for
every data graph can be efficiently computed by the cloud
server via two multiplications of (𝑛+1)-dimensional vectors.
Although some costly computations are involved in FSCon
and BuildIndex, such as graph sequentialization, they are
unavoidable for building a graph index. And more importantly,
they are executed for only one time during the whole scheme.
Apart from these computations, the encryption of the data
vector or the query vector only needs two multiplications of a
(𝑛+1)× (𝑛+1) matrix and a (𝑛+1)-dimensional vector in
BuildIndex or TDGen, respectively. Besides, to avoid the high
computation cost of inverting two high-dimension matrices in
TDGen, every query vector is encrypted by the two matrices
𝑀1 and 𝑀2 themselves, instead of their inverses of 𝑀1 and
𝑀2 utilized in the secure Euclidean distance computation.
Correspondingly, the costly inverting operation is transferred
to the one-time index construction procedure.
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Fig. 7: Index construction cost. (a) Storage cost of index. (b)
Time of index construction.

3) Privacy: With the randomness introduced by the split-
ting process and the random numbers 𝑟𝑗 and 𝑡, our scheme
can generate two totally different trapdoors for the same
query graph 𝑄. This nondeterministic property of the trapdoor
generation can guarantee the trapdoor unlinkability. Recall
that the data vector encryption with matrices has been proved
to be secure against known-plaintext attack in [15], the index
privacy is protected unless the secret key 𝒦 is disclosed.

As mentioned above, in the secure inner product computa-
tion technique, the primary reason why the statistical analysis
attack works is that the final inner product 𝑦𝑖 has the scale rela-
tionship with 𝜆𝑖. And this scale relationship exists just because
𝑦𝑖 is a multiple of the original inner product 𝑔𝑖⋅𝑞 which is equal
to 𝜆𝑖. Our proposed scheme introduces randomness in both 𝑔𝑖
and 𝑞 to break the equivalence relationship between 𝑔𝑖 ⋅ 𝑞 and
𝜆𝑖. As a consequence, the value of 𝑔𝑖 ⋅ 𝑞 does not completely
depend on 𝜆𝑖. In the case where data graph 𝐺𝑖 contain fewer
query features than data graph 𝐺𝑗 , it is still possible that
𝑔𝑖 ⋅𝑞 ≥ 𝑔𝑗 ⋅𝑞. Moreover, the extended dimension 𝑡 is utilized to
break the direct scale relationship between 𝑦𝑖 and 𝑔𝑖 ⋅𝑞, which
further eliminates the indirect scale relationship between 𝑦𝑖
and 𝜆𝑖. So the cloud server cannot deduce the special ratio as
𝜆𝑖+1
𝜆𝑖

which is used to detect the inclusion relationship between
two query feature sets as discussed in the previous section V-
A. Without disclosing such inclusion relationship, the cloud
server cannot compute the support of a single feature. In other
words, the statistical analysis cannot break the feature privacy,
and all the expected privacy requirements in section IV-C are
being met by the proposed scheme.

VI. EXPERIMENTAL EVALUATIONS

In this section, we demonstrate a thorough experimental
evaluation of the proposed scheme on the AIDS antiviral
screen dataset [22] that is widely used in graph query related
works [4]–[8]. It contains 42, 390 compounds with totally 62
distinct vertex labels. The 5 datasets in our experiment, as
same as in [4], are 𝒢2000, 𝒢4000, 𝒢6000, 𝒢8000, and 𝒢10000,
where 𝒢𝑁 contains 𝑁 graphs randomly chosen from the AIDS
dataset. We also adopt the same 6 sets of query graphs 𝑄4,
𝑄8, 𝑄12, 𝑄16, 𝑄20 and 𝑄24, where 𝑄𝑖 contains 𝑖 query graphs
with 𝑖 edges. Default dataset and query graphs are set as 𝒢4000
and 𝑄4 in our experiment, respectively. 𝑔𝑆𝑝𝑎𝑛 [19] is used as
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Fig. 8: Trapdoor generation time. (a) in different dataset with
same query size as 4. (b) for different query size with same
dataset size as 4000.

the frequent subgraph mining algorithm in our scheme. The
maximum size of frequent subgraph 𝑚𝑎𝑥𝐿 is set to 11, and
the minimum support 𝜎 for feature 𝐹𝑗 is defined as follows,

𝜎 = 1 if ∣𝑉 (𝐹𝑗)∣ < 5; otherwise, 𝜎 =
√

∣𝑉 (𝐹𝑗)∣
𝑚𝑎𝑥𝐿 ⋅𝑚𝑖𝑛𝑠𝑢𝑝 ⋅ ∣𝒢∣,

where the default 𝑚𝑖𝑛𝑠𝑢𝑝 is set to 10% and ∣𝒢∣ is the size of
dataset. Graph boosting toolbox [26] is utilized to implement
𝑔𝑆𝑝𝑎𝑛 algorithm and check subgraph isomorphism, and the
public utility routines by Numerical Recipes are employed to
compute the inverse of matrix. The query performance in our
scheme is evaluated on the Amazon Elastic Compute Cloud
(EC2) in which we deploy the basic 64-bit Linux Amazon
Machine Image (AMI) with 4 CPU cores (2 × 1.2GHz); the
performance of other procedures in our scheme, such as index
construction and trapdoor generation related to data owners or
data users, is evaluated on a 2.8GHz CPU with Redhat Linux.
The compared schemes are gIndex [4] and TreePi [6], and
their performance data are provided in [6] which are also run
on a 2.8GHz CPU with RedHat Linux.

A. False Positive and Index Construction

The minimum support determines the threshold for a sub-
graph of being an indexed feature. Specifically, the large
value of minimum support means that only very frequent sub-
graphs in the dataset could be treated as valid in the filtering
procedure. However, such high requirement will reduce the
number of features included in the index whose pruning power
would be directly affected. With the decreasing number of
indexed features, the query graph can only be represented by
less number of query features, and therefore more and more
data graphs, which does not contain the query graph 𝑄 but
contain all the graphs in the smaller size query feature set
ℱ𝑄, are included in the candidate supergraph set 𝒢ℱ𝑄

. As
demonstrated in Fig. 6 where four different minimum supports
through adjusting 𝑚𝑖𝑛𝑠𝑢𝑝 from 8% to 11% are examined,

the false positive ratio defined as
∣𝒢ℱ𝑄

∣
∣𝒢{𝑄}∣ raises in accordance

with the 𝑚𝑖𝑛𝑠𝑢𝑝. Although the minimum support should be
set as small as possible to prune as many data graphs as
possible, the larger one will introduce more storage cost of
index due to the larger size of frequent feature set as shown
in Fig. 7(a). Moreover, as shown in Fig. 6(a), the size of
the frequent feature set increases in a lower speed when

2000 4000 6000 8000 10000
0

2

4

6

8

# of graphs in the dataset

Q
u
e
ry

 e
x
e
c
u
ti
o
n
 t
im

e
 o

n
 s

e
rv

e
r 

(s
)

(a)

0 5 10 15 20 25
2.6

2.65

2.7

2.75

2.8

2.85

# of edges in the query graph

Q
u
e
ry

 e
x
e
c
u
ti
o
n
 t
im

e
 o

n
 s

e
rv

e
r 

(s
)

(b)

Fig. 9: Query execution time on server. (a) in different dataset
with same query size as 4. (b) for different query size with
same dataset size as 4000.
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Fig. 10: Trapdoor size in different dataset

the dataset is larger than 600, while the minimum support

𝜎 =
√

∣𝑉 (𝐹𝑗)∣
𝑚𝑎𝑥𝐿 ⋅𝑚𝑖𝑛𝑠𝑢𝑝 ⋅ ∣𝒢∣ increases linearly with the size

of dataset. As a result, there will be increasing false positives
in the candidate supergraph set, which is validated in Fig. 6(b).

As shown in Fig. 6(a), our frequent feature set is larger than
that in the other two related works since our scheme does not
adopt the shrinking process on the frequent set by choosing
discriminative subgraphs. Besides, the false positive ratio in
our scheme is almost same as that in gSpan and a little larger
than the scheme Tree+△ [6], through the performance data
provided in [6]. As shown in Fig. 7(b), because our index
construction involves the encryption process on data vectors,
the time cost here is about four times larger than that in other
schemes which only deal with plaintext index. Note that this
construction is only a one-time procedure in the whole scheme.

B. Trapdoor Generation and Query

Like index construction, every trapdoor generation incurs
two multiplications of a matrix and a split query vector, whose
dimensionality becomes larger with the increasing number of
documents in dataset. As demonstrated in Fig. 8(a), the time to
generate a trapdoor is linear with the number of data graphs in
the dataset. Fig. 8(b) demonstrates the trapdoor generation cost
is almost linear with the size of query graph, which is defined
as the number of edges in the query graph. Such linearity is
caused by the fact that the major costly operation mapping
query graph to vector is roughly determined by query size
since all the query features should be mapped.

In the query process in our scheme design, the cloud server
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executes the filtering process by computing the inner product
of trapdoor and each encrypted data vector. Fig. 9 shows that
the query time is almost linear with the number of data graphs
in the dataset. Although the query time in our scheme is much
larger than that in gSpan, whose query time is around 100
milliseconds presented in [7], our scheme is performing query
on the encrypted index. With respect to the communication
cost in the query procedure, the size of trapdoor is the same
as that of subindex for single data graph. As shown in Fig. 10,
the size of trapdoor keeps constant in the same dataset, no
matter how many features are contained in a query graph.

VII. RELATED WORK

Graph Containment Query To reduce the computation cost
caused by checking subgraph isomorphism, most research
on plaintext graph containment query problem follows the
“filtering-and-verification” framework [3]–[8] to decrease the
size of candidate supergraph set. Feature-based index has
been increasingly explored by choosing different substructures
as features. Shasha et al. [3] designed a path-based index
approach. However, paths carry few structural information and
therefore have limited filtering power. Yan et al. [4] proposed
gIndex to build index from frequent and discriminative sub-
graphs which can carry more structure characteristics. Zhang
et al. [6] utilized frequent and discriminative subtrees instead
of subgraphs to build the index.
Keyword-based Searchable Encryption Traditional single
keyword searchable encryption schemes [10]–[14] usually
build an encrypted searchable index such that its content is
hidden to the server unless it is given appropriate trapdoors
generated via secret key(s) [2]. To enrich search semantics,
conjunctive keyword search [27] over encrypted data have
been proposed. These schemes incur large overhead caused by
their fundamental primitives, such as computation cost by bi-
linear map [27].As a more general search approach, predicate
encryption schemes [28] are recently proposed to support both
conjunctive and disjunctive search. However, none of existing
boolean keyword searchable encryption schemes support graph
semantics as we propose to explore in this paper.

VIII. CONCLUSION

In this paper, for the first time, we define and solve the
problem of query over encrypted graph-structured cloud data,
and establish a variety of privacy requirements. For the effi-
ciency consideration, we adopt the principle of “filtering-and-
verification” to prune as many negative data graphs as possible
before verification, where a feature-based index is pre-built to
provide feature-related information for every encrypted data
graph. Then, we choose the inner product as the pruning tool
to carry out the filtering procedure efficiently. To meet the
challenge of supporting graph semantics, we propose a secure
inner product computation, and then improve it to achieve
various privacy requirements under the known-background
threat model. Thorough analysis investigating privacy and
efficiency of our scheme is given, and the evaluation further
shows our scheme introduces low overhead on computation
and communication. As our future work, we will explore
privacy-preserving schemes under stronger threat models.
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