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Abstract—This paper presents an open source tool for testing 
the recognition accuracy of Chinese handwriting input methods. 
The tool consists of two modules, namely the PC and Android 
mobile client. The PC client reads handwritten samples in the 
computer, and transfers them individually to the Android client 
in accordance with the socket communication protocol. After the 
Android client receives the data, it simulates the handwriting on 
screen of client device, and triggers the corresponding 
handwriting recognition method. The recognition accuracy is 
recorded by the Android client. We present the design principles 
and describe the implementation of the test platform. We 
construct several test datasets for evaluating different 
handwriting recognition systems, and conduct an objective and 
comprehensive test using six Chinese handwriting input methods 
with five datasets. The test results for the recognition accuracy 
are then compared and analyzed. 

Keywords—handwritten Chinese character recognition; 
handwriting input method; Android; open source tool 

I. INTRODUCTION 
With the popularization of smart phones, tablet PCs, and 

other intelligent terminals, the widespread use of touch screens 
and the development of handwriting recognition technologies 
mean that textual input is no longer limited to the keyboard. 
Indeed, handwritten input is becoming increasingly popular. In 
recent years, researchers in the field of handwritten character 
recognition have made significant progress [1-5]. In the 
ICDAR 2011 online Chinese handwriting recognition 
competition, the maximum recognition rate was 95.77%, and 
this figure increased to 97.39% in 2013 [6,7]. Some academic 
research has fed into practical applications in mobile devices, 
such as the development of input methods for Chinese 
handwriting. However, limitations in computing and storage 
resources mean that not all cutting-edge technologies can be 
applied to mobile devices. 

Currently, mainstream Chinese input methods (IME) such 
as Google Pinyin, Baidu, Sogou, SCUT gPen, iFLY, and 
Hanvon provide handwriting input modules. Some offer both 
single-character recognition and input as well as overlapping 
handwriting and text-line input methods. Of all the input 
methods offered by the Chinese mobile phone market, 10.5% 
of users stated that they prefer handwriting input [8]. This 
figure is the second-highest after Pinyin (76.7%), and much 
higher than voice input (4.6%) and Chinese stroke input (5.1%) 
[8]. If we assume there are 500 million smartphone users in 

China [9], this indicates that around 50 million people would 
prefer to use handwriting input. Thus, the handwriting input 
method is a significant technique, and is an important feature of 
applications for mobile phones and devices. 

The input methods mentioned above provide relatively 
mature handwriting input, but none of them specify the 
underlying technology. Some developers of handwriting input 
methods have declared their products to have very high 
recognition performance, but there is a lack of strict and 
rigorous test evidence. Indeed, it is difficult to objectively 
compare the real recognition performance of different 
handwriting IMEs because there is neither an open testing tool 
nor standard test data available to evaluate them. In view of 
this, we have designed a test tool based on Android and the 
MonkeyRunner Tool [10] to conduct a large-scale objective 
evaluation of different Chinese handwriting input methods. In 
this paper, we describe the design of this tool, as well as the 
test data, methods, and evaluation criteria used. In addition to 
analyze the recognition accuracy, we also compare aspects of 
each input method, including their packet size, ROM 
occupation, CPU usage, and memory usage during the 
handwriting process. An objective test of six mainstream 
Chinese IMEs is conducted, and comparative results for the 
recognition performance are presented and analyzed. 

The source code for our test tool and the test data that we 
describe in this paper will be publicly available for research 
purposes1. 

II. SYSTEM FRAMEWORK  
The framework of the test tool is illustrated in Figure 1. 

The test tool is composed of two parts: a PC and a mobile 
client. The former includes the MonkeyRunner API [10], 
which is an automated test tool for Android device applications. 
The mobile client is designed and implemented based on the 
Android system. The test process proceeds as follows: 

 
Step 1: The PC client loads the handwritten sample from a file 

and sends it to the mobile client.  
Step 2: After the phone client has received the data, it simulates 

the handwriting process on the screen of the mobile phone. 
Step 3: When a character sample has been completely written, 

the corresponding handwriting input method will be 
activated. 

Step 4: The mobile client obtains and records the recognition 
result, and then calculates the recognition rate. 

1 https://github.com/HCIILAB/IME_Test.git 



Step 5: Return to Step 1 if further test samples are available; 
otherwise, exit the program.  
 

 
Figure 1 Testing tool framework 

 

A. PC client based on the MonkeyRunner tool 
Handwriting samples are stored on the PC client. The 

sample data are read and sent to the mobile client automatically, 
and the mobile client then simulates the finger movements 
needed to write the sample on the screen. The mobile client 
then automatically tests the handwriting input methods on 
several devices at the same time. Google’s MonkeyRunner tool 
meets the technical requirements of this step. MonkeyRunner 
can control one or more Android devices simultaneously, and 
provides an interface for sending touch events, enabling us to 
simulate the handwriting operation of a finger on the screen 
[10]. 

We have developed a Python script that runs on the PC 
client. This can read the trajectories of handwritten characters 
from the test sample file, and then sends the corresponding 
actions to the mobile device through the function interface 
provided by MonkeyRunner. The handwriting strokes are 
categorized into three types: pen-down points, pen-moving 
points, or pen-up points. Categorized touch/write events are 
sent to the Android client device, which is connected to the PC 
client via a USB under the socket communication protocol. 

When simulating handwriting on the touch screen, the 
device will resample the handwriting trajectories so that the 
IME program receives the correct handwriting data. This 
process requires regular time intervals between points (denoted 
as t1). However, after the trajectory of a character has been sent, 
there is a short period of sleep time (denoted as t2) in which the 
IME identifies the character. For the same device, higher value 
of t1 results in a higher number of received handwriting points 
after resampling (but this will increase the processing time and 
the amount of data). The value of t2 must be greater than the 
waiting time in which the IME starts the recognition process 
and outputs its result (this value is usually greater than 300 ms). 

B. Android client 
The main function of the Android client is to obtain the 

recognition results for the input method, and then compare 

these to the ground truth, save the recognition results, and 
compute the recognition accuracy. 

As shown in Figure 2(a), the client has three main 
functional areas. The TextView area is used to display the 
current recognition accuracy. The Button area is used to load 
labeling files, and EditText is a text box that displays the 
recognition result for the IME. The client has additional 
monitoring and statistics modules. The former is used to 
monitor any change of status in the EditText area. Once the 
IME recognizes the input and submits this to EditText, the 
length of the text in the box will change. As the monitoring 
module obtains results, they are passed to the statistics module 
for comparison with the relevant ground truth label. 
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Figure 2 Pictures of the test platform 

III. PREPARATION OF THE TEST DATASET 
Our test data is taken from the eight databases detailed in 

Table 1. By randomly sampling from these datasets, we 
constructed five test sets described in Table 2. These comprise 
a simplified Chinese set (denoted as SimpleChar) in GB2312-
80 standard, traditional Chinese set (denoted as TradChar) in 
Big5 standard, mixed simplified and traditional Chinese set 
(denoted as SimpTradChar), rarely-used Chinese character set 
(denoted as RarelyUsedChar), and symbol set (denoted as 
SymbolChar). Note that SymbolChar contains uppercase and 
lowercase letters, numbers, punctuation, common symbols, 
and so on, as shown in Table 3. 

The samples for TradChar, RarelyUsedChar, and 
SymbolChar were selected from In-House DB2; SimpleChar 
samples were selected from the other seven databases. 
SimpTradChar is a combined set formed of SimpleChar and 
TradChar. All test data are publicly available, and can be 
downloaded from the website of our laboratory 2. 

 
Table 1 Sample databases 

 
CASIA 

OLHWDB
1.0[1] 

CASIA 
OLHWDB 

1.1 [1] 

CASIA 
OLHWDB 

1.2 [1] 

863 
[12] 

SCUT-
COUCH 

[13] 

HKU 
[14] 

In-House 
DB1  

In-House 
DB2 

Number 
of 

samples 
143600 98235 79154 40578 161166 120863 184089 994500 

 
If we take the SimpleChar dataset as an example, we 

randomly selected 20,000 samples (without repetition) from 
the datasets listed in Table 1 to form a test set. Repeating this 
operation five times produced five SimpleChar datasets, which 
we denote as SimpleChar_1~SimpleChar_5 accordingly. The 
other test sets were constructed in the same manner. As there 2 http://www.hcii-lab.net/data/onHCCTestDataset/onHCCTest.html 



are fewer samples in SymbolChar, the number of test samples 
in this category was 10,000 for each subset. 

The SCUT gPen handwriting IME developed by SCUT-
HCII Laboratory was used in the experiments. However, the 
test datasets described above were not used to train our 
handwriting recognition engine. 

 
Table 2 Number of characters and samples in the five test sets	
  

Sets SimpleChar TradChar SimpTradChar RarelyUsedChar SymbolChar 
# of 
classes 6763 5401 8817 785 196 

# of 
samples 813288 540100 1353388 78500 19600 

	
  
Table 3 SymbolChar Class and RarelyUsedChar Class 

 
	
  
To conduct the tests, we used six Xiaomi Red Rice 1S 

Android phones [8], and set t1 = 0.006 s, t2 = 1.2 s.  

IV.  EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental results 
We conducted automatic testing on several leading 

Chinese handwriting IMEs to objectively evaluate and 
compare their recognition performance. Currently, there are 
many Chinese IMEs in the market, including Baidu [16], 
Sogou [17], SCUT gPen [18], iFLY [19], Hanvon [20], 
Google Pinyin [21], TouchPal [22], and QQ [23]. We selected 
six of these for testing. To avoid the unintentional effects on 
the IME providers, the specific name of the IME will not be 
mentioned in later experiments. Instead, we will use the 
following symbols to denote them: 

l BDD: Input Method 1 
l gPen: Input Method 2 
l GGG: Input Method 3 
l XFF: Input Method 4 
l SGG: Input Method 5 
l HWW: Input Method 6 
Table 4 gives some relevant information about several 

versions of the input method. 
 

Table 4.  Information of six input methods	
  
 BDD SGG gPen XFF GGG HWW 

Version V5.1.5 V7.0 V4.0.0 V5.0.1680 V4.0.0 V2.2.23 
Released 

date 20140928 20141111 20141023 20141028 20141106 20120110 

 
 

 

Before testing, we compared the package size, ROM 
occupation, CPU usage, and memory usage during 
handwriting of the IMEs. The results are shown in Figure 3. 

As it can be seen from Figure 3, the installation packages 
and ROM sizes of each input method are different because 
different input methods use different handwriting recognition 
classifiers and dictionary models. In general, IMEs with more 
complex and larger classifier recognition dictionaries exhibit 
higher recognition accuracy but will require more memory 
space and higher CPU performance. Additionally, some input 
methods have a word association corpus and language model 
that requires extra storage space. BDD and HWW have 
smaller package and ROM sizes, SGG has a larger installation 
package and ROM size, and GGG has a higher memory usage 
and CPU usage. Finally, it should be pointed out that the 
installation package of BDD does not include a handwriting 
recognition engine. This must be downloaded from the 
Internet, which results in an additional file size of about 3 MB. 

	
  
Figure 3 Performance of different IMEs. 

 
Tables 5–9 present the recognition rates for each IME 

with the five different test datasets. 
 

Table 5 SimpleChar test results 
 BDD SGG gPen XFF GGG HWW 
SimpleChar_1 72.43 88.33 95.48 89.07 80.22 92.11 
SimpleChar_2 72.43 87.34 95.31 90.68 80.99 92.55 
SimpleChar_3 71.56 87.84 95.45 90.30 79.58 91.96 
SimpleChar_4 71.15 87.62 95.08 89.34 79.36 92.20 
SimpleChar_5 72.94 88.50 95.40 89.65 80.20 92.48 

Average 72.10 87.93 95.34 89.81 80.07 92.26 
 
 



Table 6 TradChar test results 
 BDD SGG gPen XFF GGG HWW 

TradChar_1 66.91 91.15 94.34 90.08 79.84 91.06 
TradChar_2 68.46 91.22 95.99 89.40 78.40 90.93 
TradChar_3 67.92 91.10 95.32 90.28 77.62 91.03 
TradChar_4 66.43 90.94 95.68 89.67 78.65 91.00 
TradChar_5 67.48 90.83 96.14 90.13 81.52 91.13 

Average 67.44 91.05 95.49 89.91 79.21 91.03 
 

Table 7 SimpTradChar test results 
 BDD SGG gPen XFF GGG HWW 

SimpTradChar_1 71.08 90.15 96.48 90.39 78.95 91.02 
SimpTradChar_2 70.65 89.31 94.85 89.94 78.68 91.82 
SimpTradChar_3 70.86 89.47 96.41 90.33 81.36 91.39 
SimpTradChar_4 70.38 89.60 95.31 89.84 81.76 90.98 
SimpTradChar_5 70.08 89.77 96.29 90.18 78.97 90.71 

Average 70.61 89.66 95.87 90.14 79.94 91.18 
 

Table 8 RarelyUsedChar test results 
 BDD SGG gPen XFF GGG HWW 

RarelyUsedChar_1 52.45 2.08 95.15 67.25 30.61 89.43 
RarelyUsedChar_2 51.28 2.17 94.68 68.75 32.49 90.08 
RarelyUsedChar_3 51.35 2.14 94.87 67.53 32.76 89.79 
RarelyUsedChar_4 51.23 2.07 94.67 68.65 29.63 90.03 
RarelyUsedChar_5 51.79 2.06 94.81 69.10 28.48 90.17 

Average 51.62 2.10 94.84 68.26 30.79 89.90 
 

Table 9 SymbolChar test results 
 BDD SGG gPen XFF GGG HWW 

SymbolChar_1 42.80 56.19 84.71 20.39 30.82 N/A 
SymbolChar_2 43.49 56.69 84.74 21.89 31.13 N/A 
SymbolChar_3 43.77 56.43 84.96 22.35 30.60 N/A 
SymbolChar_4 43.73 56.46 84.50 20.22 31.39 N/A 
SymbolChar_5 43.25 56.51 84.40 19.98 30.76 N/A 

Average 43.41 56.46 84.66 20.97 30.94 N/A 
 

Table 10 Test results for SimpTradChar in overlap mode 
 BDD gPen XFF GGG 

SimpTradChar_1 65.89 88.80 88.36 78.95 
SimpTradChar_2 65.30 88.89 87.81 78.68 
SimpTradChar_3 66.32 88.62 87.48 81.36 

Average 65.84 88.77 87.88 79.66 
	
  
Table 11 Test results for SimpTradChar in text-line mode 

 BDD gPen XFF GGG 
SimpTradChar_1 60.10 81.38 89.80 78.95 
SimpTradChar_2 60.20 80.43 90.45 78.68 
SimpTradChar_3 60.52 81.52 89.97 81.36 

Average 60.27 81.11 90.07 79.66 
 

Two new methods of input, the text-line and overlap 
multi-characters modes, greatly improve the efficiency of text 
input. Single-character recognition is usually supported in 
both modes, but this can lead to lower recognition accuracy 
because the recognition engine needs to segment the character 
strings. Because segmentation algorithms have a certain error 
rate, the accuracy of the text-line IME naturally declined. We 
tested the recognition rate of the handwriting IMEs that 
support text-line and overlap multi-characters input modes. 
Table 10 gives the results for the overlap mode, and Table 11 
presents the results for the text-line input mode. 

B. Analysis of test results 
Analyzing the results in Tables 5–9, we can make the 

following observations and conclusions: 
(1) gPen IME produces the best recognition performance, 

with a significantly better recognition rate for every test 
dataset than other IMEs . 

(2) With SimpleChar, TradChar, and SimpTradChar, the 
performance of SGG, XFF, and HWW are fairly good, 
whereas HWW is slightly higher than the other two. 

(3) With RarelyUsedChar, gPen and HWW can recognize 
most characters with high accuracy, but GGG can only 
recognize a small proportion, and SGG produced hardly any 
correct results. 

(4) The recognition rate of the alphanumeric and symbol 
sets is dramatically lower than with the other datasets for all 
IMEs except gPen. The test data contain a number of symbols 
that are rarely used on a phone, such as ∫, ∮, φ, ψ, √, ‰, and π. 
Most of these symbols are only supported by gPen. In addition, 
there are many similar characters in this dataset, such as x and 
X, o, O, and 0, 1 and l, and so on. For the HWW handwriting 
IME to recognize symbols, they must be written in a specific 
pre-defined region, otherwise the handwritten characters will 
not be recognized correctly. 

(5) GGG does not achieve the high performance level as 
we expected. One reason may be that it integrates three input 
modes (single/text-line/overlap character input), causing the 
misrecognition of a single character as several characters, 
especially for Chinese characters with a left–right structure.  

(6) The overall recognition rate of BDD is much lower 
than we expected, which is somehow contrary to our 
experience using mobile phones. We have not yet determined 
the cause of this problem. One possibility is that BDD may re-
sample the input data. Re-sampling is often distance-based, 
i.e., when the value of the distance between a stroke point and 
the previous point is smaller than a certain threshold, the point 
is discarded. When we simulated handwriting input during the 
experiment, the size of the character was normalized to 180, 
which is smaller than the normal character size that is input by 
a user. This normalization leads to a reduction in distance 
between points, which may cause the input method to receive 
fewer stroke point data. Another resampling method is based 
on time, i.e., when the time interval between a stroke point and 
the previous point is below a certain threshold, the point will 
be discarded. When we simulated handwriting on the phones, 
t1 was set to 0.006 s. It is uncertain whether this setting 
prevented BDD from obtaining a sufficient number of points. 



We experimented with different t1 settings, but BDD still did 
not produce particularly good performance. 

From Tables 10 and 11, it can be seen that the text-line 
and overlap multi-characters input modes cause the accuracy 
of three IMEs to decrease, with only GGG producing exactly 
the same results. gPen suffers the highest decrease in accuracy, 
falling by 7.10% in overlap multi-characters mode and 14.76% 
in text-line mode. The accuracy of XFF decreases only 
slightly, by 2.26% and 0.07%, demonstrating the robustness of 
this IME in such modes. 

Overall, it is clear that each IME has its own advantages. 
In terms of character recognition, gPen performs best, 
significantly better than the other handwriting IMEs. HWW, 
SGG, and XFF perform fairly well. For the recognition of 
rarely used characters, gPen and HWW outperform the other 
IMEs. In terms of symbol recognition, gPen is again the best, 
whereas for text-line and overlap multi-characters input modes, 
XFF displays impressive performance. 

Note that the testing and statistics reported in this paper 
are based on the automatic simulation of handwriting on a 
touch-screen phone. Some errors may have been introduced by 
hardware limitations, communication errors, data sampling 
errors, and so on. We observed a slight gap between the test 
results and the real recognition rates of the input method 
developed by the authors’ laboratory, where an average error 
rate of approximately 0.5–2% was observed. Although this 
test tool does not guarantee that the results will be strictly 
consistent with the real writing results, it is clearly a valuable 
and useful tool for estimating and testing the recognition 
accuracy of different IMEs. 

V. CONCLUSION 
This paper presented an open source test tool for Chinese 

handwriting IMEs. By analyzing the performance of different 
IMEs in different situations, we demonstrated the feasibility 
and effectiveness of this tool.  

During the experiments, we encountered problems such as 
differences between the simulated and real handwriting, and 
the t1 parameter setting. In addition, the proposed tool could 
not provide statistics for the recognition rate of the Top N (N 
≥ 2), and could not analyze the recognition rates of 
handwritten text lines and overlapping handwriting. These 
limitations remain open issues for further study. 
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