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Abstract

We study the robustness of image classifiers to temporal perturbations derived from videos. As
part of this study, we construct two datasets 1, ImageNet-Vid-Robust and YTBB-Robust,
containing a total of 57,897 images grouped into 3,139 sets of perceptually similar images.
Our datasets were derived from ImageNet-Vid and Youtube-BB respectively and thoroughly
re-annotated by human experts for image similarity. We evaluate a diverse array of classifiers
pre-trained on ImageNet and show a median classification accuracy drop of 16 and 10 on our two
datasets. Additionally, we evaluate three detection models and show that natural perturbations
induce both classification as well as localization errors, leading to a median drop in detection mAP
of 14 points. Our analysis demonstrates that perturbations occurring naturally in videos pose a
substantial and realistic challenge to deploying convolutional neural networks in environments
that require both reliable and low-latency predictions.

1 Introduction

Convolutional neural networks (CNNs) still exhibit many troubling failure modes. At one extreme,
`p-adversarial examples cause large drops in accuracy for state-of-the-art models while relying only
on visually imperceptible changes to the input image [3, 11]. However, this failure mode usually does
not pose a problem outside a fully adversarial context because carefully crafted `p-perturbations are
unlikely to occur naturally in the real world.

To study more realistic failure modes, researchers have investigated benign image perturbations
such as rotations & translations, colorspace changes, and various image corruptions [6, 7, 14, 15].
However, it is still unclear whether these perturbations reflect the robustness challenges arising in
real data since the perturbations also rely on synthetic image modifications.

Recent work has therefore turned to videos as a source of naturally occurring perturbations of images
[1, 12, 31]. In contrast to other failure modes, the perturbed images are taken from existing image

∗Equal contribution
1Our datasets are available at this url: https://modestyachts.github.io/robust-vid/
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Figure 1: Three examples of natural perturbations from nearby video frames and resulting classifier
predictions from a ResNet-152 model fine-tuned on ImageNet-Vid. While the images appear almost
identical to the human eye, the classifier confidence changes substantially.

data without further modifications to make the task more difficult. As a result, robustness to such
perturbations directly corresponds to performance improvements on real data.

However, it is currently unclear to what extent such video perturbations pose a robustness challenge.
Azulay and Weiss [1] and Zheng et al. [31] only provide anecdotal evidence from a small number of
videos. Gu et al. [12] go beyond individual videos and utilize a large video dataset [24] in order to
measure the effect of video perturbations more quantitatively. In their evaluation, the best image
classifiers lose about 3% accuracy for video frames up to 0.3 seconds away. However, the authors did
not employ humans to review the frames in their videos. Hence the accuracy drop could also be
caused by significant changes in the video frames (e.g., due to fast camera or object motion). Since
the 3% accuracy drop is small to begin with, it remains unclear whether video perturbations are a
robustness challenge for current image classifiers.

We address these issues by conducting a thorough evaluation of robustness to natural perturbations
arising in videos. As a cornerstone of our investigation, we introduce two test sets for evaluating model
robustness: ImageNet-Vid-Robust and YTBB-Robust, carefully curated from the ImageNet-Vid
and Youtube-BB datasets, respectively [24, 27]. All images in the two datasets were screened by
a set of expert labelers to ensure high annotation quality and minimize selection biases that arise
when filtering a dataset with CNNs. To the best of our knowledge these are the first datasets of their
kind, containing tens of thousands of images that are human reviewed and grouped into thousands
of perceptually similar sets. In total, our datasets contain 3,139 sets of temporally adjacent and
visually similar images (57,897 images total).

We then utilize these datasets to measure the robustness of current CNNs to small, naturally
occurring perturbations. Our testbed contains over 45 different models, varying both architecture
and training methodology (adversarial training, data augmentation, etc.). To better understand
the drop in accuracy due to natural perturbations, we also introduce a robustness metric that
is more stringent than those employed in prior work. Under this metric, we find that natural
perturbations from ImageNet-Vid-Robust and YTBB-Robust induce a median accuracy drop
of 16% and 10% respectively for classification tasks and a median 14 point drop in mAP for detection
tasks.2 Even for the best-performing classification models, we observe an accuracy drop of 14% for

2We only evaluated detection on ImageNet-Vid-Robust as bounding-box annotations in Youtube-BB are
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Figure 2: Temporally adjacent frames may not be visually similar. We show three randomly sampled
frame pairs where the nearby frame was marked as “dissimilar” to the anchor frame during human
review and then discarded from our dataset.

ImageNet-Vid-Robust and 8% for YTBB-Robust.

Our results show that robustness to natural perturbations in videos is indeed a significant challenge
for current CNNs. As these models are increasingly deployed in safety-critical environments that
require both high accuracy and low latency (e.g., autonomous vehicles), ensuring reliable predictions
on every frame of a video is an important direction for future work.

2 Constructing a test set for robustness

ImageNet-Vid-Robust and YTBB-Robust are sourced from videos in the ImageNet-Vid and
Youtube-BB datasets [24, 27]. All object classes in ImageNet-Vid and Youtube-BB are from the
WordNet hierarchy [22] and direct ancestors of ILSVRC-2012 classes. Using the WordNet hierarchy,
we construct a canonical mapping from ILSVRC-2012 classes to ImageNet-Vid and Youtube-BB
classes, which allows us to evaluate off-the-shelf ILSVRC-2012 models on ImageNet-Vid-Robust
and YTBB-Robust. We provide more background on the source datsets in Appendix A.

2.1 Constructing ImageNet-Vid-Robust and YTBB-Robust

Next, we describe how we extracted sets of naturally perturbed frames from ImageNet-Vid and
Youtube-BB to create ImageNet-Vid-Robust and YTBB-Robust. A straightforward approach
would be to select a set of anchor frames and use temporally adjacent frames in the video with the
assumption that such frames contain only small perturbations from the anchor. However, as Figure
2 illustrates, this assumption is frequently violated, especially due to fast camera or object motion.

Instead, we first collect preliminary datasets of natural perturbations following the same approach,
and then manually review each of the frame sets. For each video, we randomly sample an anchor
frame and take k = 10 frames before and after the anchor frame as candidate perturbation images.3

This results in two datasets containing one anchor frame each from 3,139 videos, with approximately
20 candidate perturbation per anchor frame.4

available only at a temporal resolution of 1 frame-per-second and hence not dense enough for our evaluation.
3For YTBB-Robust we use a subset of the anchor frames used by Gu et al. [12].
4Anchor frames near the start or end of the video may have less than 20 candidate frames.
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ImageNet-Vid-Robust YTBB-Robust

Anchor frames
Reviewed 1,314 2,467
Accepted 1,109 (84%) 2,030 (82%)

Labels updated - 834 (41%)

Frame pairs Reviewed 26,029 45,631
Accepted 21,070 (81%) 36,827 (81%)

Table 1: Dataset statistics of ImageNet-Vid-Robust and YTBB-Robust. For YTBB-Robust,
we updated the labels from for 41% (834) of the accepted anchors due to incomplete labels in
Youtube-BB.

Next, we curate the dataset with the help of four expert human annotators. The goal of the curation
step is to ensure that each anchor frame and its nearby frames are correctly labeled with the same
ground truth class, and that the anchor frame and the nearby frames are visually similar.

Denser labels for Youtube-BB. As Youtube-BB contains only a single category label per frame
at 1 frame per second, annotators first inspected each anchor frame individually and added any
missing labels. In total, annotators corrected the labels for 834 frames, adding an average of 0.5
labels per anchor frame. These labels are then propagated to nearby, unlabeled frames at the native
frame rate and verified in the next step. ImageNet-Vid densely labels all classes per frame, so we
skipped this step for this dataset.

Frame pairs review. Next, for each pair of anchor and nearby frames, a human annotates (i)
whether the pair is correctly labeled in the dataset, and (ii) whether the pair is similar. We took
several steps to mitigate the subjectivity of this task and ensure high annotation quality. First,
we trained reviewers to mark frames as dissimilar if the scene undergoes any of the following
transformations: significant motion, significant background change, or significant blur change. We
asked reviewers to mark each dissimilar frame with one of these transformations, or “other”, and to
mark a pair of images as dissimilar if a distinctive feature of the object is only visible in one of the
two frames (such as the face of a dog). If an annotator was unsure about the correct label, she could
mark the pair as “unsure”. Second, we present only a single pair of frames at a time to reviewers
because presenting videos or groups of frames could cause them to miss large changes due to the
phenomenon of change blindness [23].

Verification. In the previous stage, all annotators were given identical labeling instructions and
individually reviewed a total of 71,660 image pairs. To increase consistency in annotation, annotators
jointly reviewed all frames marked as dissimilar, incorrectly labeled, or “unsure”. A frame was only
considered similar to its anchor if a strict majority of the annotators marked the pair as such.

After the reviewing was complete, we discarded all anchor frames and candidate perturbations that
annotators marked as dissimilar or incorrectly labeled. The final datasets contain a combined total
of 3,139 anchor frames with a median of 20 similar frames each.
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2.2 The pm-k evaluation metric

Given the datasets introduced above, we propose a metric to measure a model’s robustness to natural
perturbations. In particular, let A = {a1, ..., an} be the set of valid anchor frames in our dataset.
Let Y = {y1, ..., yn} be the set of labels for A. We let Nk(ai) be the set of frames marked as similar
to anchor frame ai. In our setting, Nk is a subset of the 2k temporally adjacent frames (plus/minus
k frames from the anchor).

Classification. The standard classification accuracy on the anchor frame is accorig = 1− 1
N

∑N
i=1 L0/1(f(ai), yi),

where L0/1 is the standard 0-1 loss function. We define the pm-k analog of accuracy as

accpmk = 1− 1

N

N∑
i=1

max
b∈Nk(ai)

L0/1(f(b), yi) , (1)

which corresponds to picking the worst frame from each set Nk(ai) before computing accuracy. We
note the similarity of the pm-k metric to standard `p adversarial robustness. If we let Nk(ai) be
the set of all images within an `p ball of radius ε around ai, then the two notions of robustness are
identical.

Detection. The standard metric for detection is mean average precision (mAP) of the predictions
at a fixed intersection-over-union (IoU) threshold [20]. We define the pm-k metric analogous to that
for classification: We replace each anchor frame with the nearest frame that minimizes the average
precision (AP, averaged over recall thresholds) of the predictions, and compute pm-k as the mAP
on these worst-case neighboring frames.

3 Main results

We evaluate a testbed of 45 classification and three detection models on ImageNet-Vid-Robust
and YTBB-Robust. We first discuss the various types of classification models evaluated with
the pm-k classification metric. Second, we evaluate the performance of detection models on
ImageNet-Vid-Robust using use the bounding box annotations inherited from ImageNet-Vid
and using a variant of the pm-k metric for detection. We then analyze the errors made on the
detection adversarial examples to isolate the effects of localization errors vs. classification errors.

3.1 Classification

The classification robustness metric is accpmk defined in Equation (1). For frames with multiple
labels, we count a prediction as correct if the model predicts any of the correct classes for a
frame. In Figure 3, we plot the benign accuracy, accorig, versus the robust accuracy, accpmk, for
all classification models in our test bed and find that the relationship between accorig and accpmk
is approximately linear. This relationship indicates that improvements in the benign accuracy do
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result in improvements in the worst-case accuracy, but do not suffice to resolve the accuracy drop
due to natural perturbations.

Our test bed consists of five model types with increasing levels of supervision. We present results for
representative models from each model type in Table 2 and defer the full classification results table
to Appendix B.

ILSVRC Trained The WordNet hierarchy enables us to repurpose models trained for the 1,000
class ILSVRC-2012 dataset on ImageNet-Vid-Robust and YTBB-Robust (see Appendix A.1).
We evaluate a wide array of ILSVRC-2012 models (available from [4]) against our natural perturba-
tions. Since these datasets present a substantial distribution shift from the original ILSVRC-2012
validation set, we expect the benign accuracy accorig to be lower than the comparable accuracy on
the ILSVRC-2012 validation set. However, our main interest here is in the difference between the
original and perturbed accuracies accorig - accpmk. A small drop in accuracy would indicate that the
model is robust to small changes that occur naturally in videos. Instead, we find significant median
drops of 15.0% and 13.2% in accuracy on our two datasets, indicating sensitivity to such changes.

Noise augmentation One hypothesis for the accuracy drop from original to perturbed accuracy
is that subtle artifacts and corruptions introduced by video compression schemes could degrade
performance when evaluating on these corrupted frames. The worst-case nature of the pm-k
metric could then be focusing on these corrupted frames. One model for these corruptions are the
perturbations introduced in [14]. To test this hypothesis, we evaluate models augmented with a
subset of the perturbations (exactly one of: Gaussian noise, Gaussian blur, shot noise, contrast
change, impulse noise, or JPEG compression). We found that these augmentation schemes did not
improve robustness against our perturbations substantially, and still result in a median accuracy
drop of 15.6% and 16.6% on the two datasets.
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YTBB-Robust

No Accuracy Drop
Linear fit
ILSVRC

ILSVRC + noise augmentation
ILSVRC + l2 adversarial training
ILSVRC + finetuned on ILSVRC-VID

ILSVRC + finetuned on ILSVRC-VID-DET
ILSVRC + finetuned on YTBB

Figure 3: Model accuracy on original vs. perturbed images. Each data point corresponds to one
model in our testbed (shown with 95% Clopper-Pearson confidence intervals). Each perturbed frame
was taken from a ten frame neighborhood of the original frame (approximately 0.3 seconds). All
frames were reviewed by humans to confirm visual similarity to the original frames.
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Table 2: Accuracies of five different model types and the best performing model (shown with 95%
Clopper-Pearson confidence intervals). ∆ denotes accuracy drop between evaluation on anchor frame
(pm-0) and worst frame in similarity set (pm-10). The model architecture is ResNet-50 unless noted
otherwise. ‘FT’ denotes ‘fine-tuning.’ See Section 3.1 for details.

Model Type Accuracy
Original

Accuracy
Perturbed ∆

ImageNet-Vid-Robust
Trained on ILSVRC 67.5 [64.7, 70.3] 52.5 [49.5, 55.5] 15.0
+ Noise Augmentation 68.8 [66.0, 71.5] 53.2 [50.2, 56.2] 15.6
+ `∞ robustness (ResNext-101) 54.3 [51.3, 57.2] 40.8 [39.0, 43.7] 12.4
+ FT on ImageNet-Vid 80.8 [78.3, 83.1] 65.7 [62.9, 68.5] 15.1
+ FT on ImageNet-Vid (ResNet-152) 84.8 [82.5, 86.8] 70.2 [67.4, 72.8] 14.6
+ FT on ImageNet-Vid-Det 77.6 [75.1, 80.0] 65.4 [62.5, 68.1] 12.3

YTBB-Robust
Trained on ILSVRC 57.0 [54.9, 59.2] 43.8 [41.7, 46.0] 13.2
+ Noise Augmentation 62.3 [60.2, 64.4] 45.7 [43.5, 47.9] 16.6
+ `∞ robustness (ResNext-101) 53.6 [51.4, 55.8] 43.2 [41.0, 45.3] 10.4
+ FT on Youtube-BB 91.4 [90.1, 92.6] 82.0 [80.3, 83.7] 9.4
+ FT on Youtube-BB (ResNet-152) 92.9 [91.6, 93.9] 84.7 [83.0, 86.2] 8.2

`∞-robustness. We evaluate the model from [30], which currently performs best against `∞-attacks
on ImageNet. We find that this model has a smaller accuracy drop than the two aforementioned
model types on both datasets. However, the robust model achieves substantially lower original and
perturbed accuracy than either of the two model types above, and the robustness gain is modest
(3% compared to models of similar benign accuracy).

Fine-tuning on video frames. To adapt to the new class vocabulary and the video domain, we
fine-tune several network architectures on the ImageNet-Vid and Youtube-BB training sets. For
Youtube-BB, we train on the anchor frames used for training in [12], and for ImageNet-Vid we use
all frames in the training set. We provide hyperparameters for all models in Appendix K.
The resulting models significantly improve in accuracy over their ILSVRC pre-trained counterparts
(e.g., 13% on ImageNet-Vid-Robust and 34% on YTBB-Robust for ResNet-50). This improve-
ment in accuracy results in a modest improvement in the accuracy drop for YTBB-Robust, but a
finetuned ResNet-50 still suffers from a substantial 9.4% drop. On ImageNet-Vid-Robust, there
is almost no change in the accuracy drop from 15.0% to 15.1%.

Fine-tuning for detection on video frames. We further analyze whether additional supervision
in the form of bounding box annotations improves robustness. To this end, we train the Faster
R-CNN detection model [26] with a ResNet-50 backbone on ImageNet-Vid. Following standard
practice, the detection backbone is pre-trained on ILSVRC-2012. To evaluate this detector for
classification, we assign the class with the most confident bounding box as label to the image. We find
that this transformation reduces accuracy compared to the model trained for classification (77.6%
vs. 80.8%). While there is a slight reduction in the accuracy drop caused by natural perturbations,
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Table 3: Detection and localization mAP for two Faster R-CNN backbones. Both detection and
localization suffer from significant drops in mAP due to the perturbations. (* indicates that the
model has trained on the ILSVRC Det and VID 2015 datasets and evaluated on the 2015 subset of
ILSVRC-VID 2017.)

Task Model mAP
Original

mAP
Perturbed

mAP
∆

FRCNN, ResNet 50 62.8 48.8 14.0
FRCNN, ResNet 101 63.1 50.6 12.5Detection
R-FCN, ResNet 101 [29]* 79.4* 63.7* 15.7*
FRCNN, ResNet 50 76.6 64.2 12.4
FRCNN, ResNet 101 77.8 66.3 11.5Localization
R-FCN, ResNet 101* 80.9* 70.3* 10.6*

the reduction is well within the error bars for this test set. We leave an in-depth investigation of
additional supervision to induce robustness for future work.

3.2 Detection

We further study the impact of natural perturbations on object detection. Specifically, we report
results for two related tasks: object localization and detection. Object detection is the standard
computer vision task of correctly classifying an object and finding the coordinates of a tight bounding
box containing the object. “Object localization”, meanwhile, refers to only the subtask of finding the
bounding box, without attempting to correctly classify the object.
We provide our results on ImageNet-Vid-Robust, which contains dense bounding box labels
unlike Youtube-BB, which only labels boxes at 1 frame per second. We use the popular Faster
R-CNN [26] and R-FCN [5, 29] architectures for object detection and localization and report results
in Table 3. For the R-FCN architecture, we use the model from [29]5. We first note the significant
drop in mAP of 12 to 15 points for object detection due to perturbed frames for both the Faster
R-CNN and R-FCN architectures. Next, we show that localization is indeed easier than detection,
as the mAP is higher for localization than for detection (e.g., 76.6 vs 62.8 for Faster R-CNN with a
ResNet-50 backbone). Perhaps surprisingly, however, switching to the localization task does not
improve the drop between original and perturbed frames, indicating that natural perturbations
induce both classification and localization errors. We show examples of detection failures in Figure 4.

3.3 Impact of dataset review

We analyze the impact of our human review, described in Section 2.1, on the classifiers in our testbed.
First, we compare the original and perturbed accuracies of a representative classifier (ResNet-152
finetuned) with and without review in Table 4. Our review improves the original accuracy by 3
to 4% by discarding mislabeled or blurry anchor frames, and improves perturbed accuracy by 5

5This model was originally trained on the 2015 subset of ImageNet-Vid. We evaluated this model on the 2015
validation set because the method requires access to pre-computed bounding box proposals which are available only
for the 2015 subset of ImageNet-Vid.
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Figure 4: Naturally perturbed examples for detection. Red boxes indicate false positives; green boxes
indicate true positives; white boxes are ground truth. Classification errors are common failures, such
as the fox on the left, which is classified correctly in the anchor frame, and misclassified as a sheep in
a nearby frame. However, detection models also have localization errors, where the object of interest
is not correctly localized in addition to being misclassified, such as the airplane (middle) and the
motorcycle (right). All visualizations show predictions with confidence greater than 0.5.

to 6% by discarding pairs of dissimilar frames. Our review reduces the accuracy drop by 1.8% on
ImageNet-Vid-Robust and 1.1% on YTBB-Robust. These results indicate that the changes in
model predictions are indeed due to a lack of robustness, rather than due to significant differences
between adjacent frames.
To further analyze the impact of our review on model errors, we plot how frequently each offset
distance from the anchor frame results in a model error across all model types in Figure 5. For both
datasets, larger offsets (indicating pairs of frames further apart in time) lead to more frequent model
errors. Our review reduces the fraction of errors across offsets, especially for large offsets, which are
more likely to display large changes from the anchor frame.

Table 4: Impact of human review on original and perturbed accuracies for ImageNet-Vid-Robust
and YTBB-Robust, numbers come from a ResNet-152 fine-tuned on ImageNet-Vid and Youtube-BB,
respectively.

Accuracy
Reviewed Original Perturbed ∆

ImageNet-Vid-Robust
7 80.3 64.1 16.2
3 84.8 70.2 14.4

YTBB-Robust
7 88.1 78.1 10.0
3 92.9 84.7 8.9
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Figure 5: We plot the fraction of times each offset caused an error, across all evaluated models, for
frames with and without review. Frames further away more frequently cause classifiers to misfire.
Our review process reduces the number of errors, especially for frames further in time, by removing
dissimilar frames.

4 Related work

Adversarial examples. Various forms of adversarial examples have been studied, the majority of
research focuses on `p robustness [3, 11]. However, it is unclear whether adversarial examples pose a
problem for robustness outside of a truly worst case context. It is an open question whether perfect
robustness against a `p adversary will induce robustness to realistic image distortions such as those
studied in this paper. Recent work has proposed less adversarial image modifications such as small
rotations & translations [1, 6, 7, 17], hue and color changes [15], image stylization [9] and synthetic
image corruptions such as Gaussian blur and JPEG compression [10, 14]. Even though the above
examples are more realistic than the `p model, they still synthetically modify the input images to
generate perturbed versions. In contrast, our work performs no synthetic modification and instead
uses images that naturally occur in videos.

Utilizing videos to study robustness. In work concurrent to ours, Gu et al. [12] exploit the
temporal structure in videos to study robustness. However, their experiments suggest a substantially
smaller drop in classification accuracy. The primary reason for this is a less stringent metric
used in [12]. By contrast, our PM-k metric is inspired by the “worst-of-k” metric used in prior
work [6], highlighting the sensitivity of models to natural perturbations. In Appendix E we study
the differences between the two metrics in more detail. Furthermore, the lack of human review and
the high label error-rate we discovered in Youtube-BB(Table 1) presents a potentially troubling
confounding factor that we resolve in our work.

Distribution shift. Small, benign changes in the test distribution are often referred to as distri-
bution shift. Recht et al. [25] explore this phenomenon by constructing new test sets for CIFAR-10
and ImageNet and observe substantial performance drops for a large suite of models on the newly
constructed test sets. Similar to our Figure 3, the relationship between their original and new test
set accuracies is also approximately linear. However, the images in their test set bear little visual
similarity to images in the original test set, while all of our failure cases in ImageNet-Vid-Robust
and YTBB-Robust are on perceptually similar images. In a similar vein of study, [28] studies
distribution shift across different computer vision data sets such as Caltech-101, PASCAL, and
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ImageNet.

Temporal Consistency in Computer Vision A common issue when applying image based
models to videos is flickering, where object detectors spuriously produce false-positives or false-
negatives in isolated frames or groups of frames. [16] explicitly identify such failures and use a
technique reminiscent of adversarially robust training to improve image-based models. A similar line
of work focuses on improving object detection in videos as objects become occluded or move quickly
[8, 18, 29, 32]. The focus in this line of work has generally been on improving object detection when
objects transform in a way that makes recognition difficult from a single frame, such as fast motion
or occlusion. In this work, we document a broader set of failure cases for image-based classifiers and
detectors and show that failures occur when the neighboring frames are imperceptibly different.

5 Conclusion

Our study quantifies the sensitivity of image classifiers to naturally occuring temporal perturbations.
These perturbations cause significant drops in accuracy for a wide range of models in both classification
and detection. Our work on analyzing this failure mode opens multiple avenues for future research:

Building more robust models. Our ImageNet-Vid-Robust and YTBB-Robust datasets
provide a standard measure for robustness that can be used to evaluate to any classification or
detection model. In Table 2, we evaluated several commonly used models and found that all of
them suffer from substantial accuracy drops due to natural perturbations. In particular, we found
that model improvements with respect to artificial perturbations (such as image corruptions or `∞
adversaries) induce at best modest improvements in robustness. We hope that our standardized
datasets and evaluation metric will enable future work to quantify improvements in natural robustness
directly.

Further natural perturbations. Videos provide a straightforward method for collecting natural
perturbations of images, enabling the study of realistic forms of robustness for machine learning
methods. Other methods for generating these natural perturbations are likely to provide additional
insights into model robustness. As an example, photo sharing websites contain a large number of
near-duplicate images: pairs of images of the same scene captured at different times, viewpoints,
or from a different camera [25]. More generally, devising similar, domain-specific strategies to
collect, verify, and measure robustness to natural perturbations in domains such as natural language
processing or speech recognition is a promising direction for future work.
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A Source Dataset Overview

A.1 ImageNet-Vid

The 2015 ImageNet-Vid dataset is widely used for training video object detectors [13] as well as
trackers [2]. We chose to work with the 2017 ImageNet-Vid dataset because it is a superset of the
2015 dataset. In total, the 2017 ImageNet-Vid dataset consists of 1,181,113 training frames from
4,000 videos and 512,360 validation frames from 1,314 videos. The videos have frame rates ranging
from 9 to 59 frames per second (fps), with a median fps of 29. The videos range from 0.44 to 96
seconds in duration with a median duration of 12 seconds. Each frame is annotated with labels
indicating the presence or absence of 30 object classes and corresponding bounding boxes for any
label present in the frame. The 30 classes are ancestors of 293 of the 1,000 ILSVRC-2012 classes.

A.2 Youtube-BB

The 2017 Youtube-BB is a a large scale dataset with 8,146,143 annotated training frames 253,569
unique videos and with 1,013,246 validation frames from 31,829 videos. The video segments are
approximately 19 seconds long on average. Each frame is annotated with exactly one label indicating
the presence of 22 object classes, all of which are ancestors of 229 out of the ILSVRC-2012 classes.

B Full Original vs Perturbed Accuracies

B.1 ImageNet-Vid-Robust

Model Accuracy
Original

Accuracy
Perturbed ∆

resnet152_finetuned 84.8 [82.5, 86.8] 70.2 [67.4, 72.8] 14.6
resnet50_finetuned 80.8 [78.3, 83.1] 65.7 [62.9, 68.5] 15.1
vgg16bn_finetuned 78.0 [75.4, 80.4] 61.0 [58.1, 63.9] 17.0
nasnetalarge_imagenet_pretrained 77.6 [75.1, 80.1] 62.1 [59.2, 65.0] 15.5
resnet50_detection 77.6 [75.1, 80.1] 65.0 [62.1, 67.8] 12.6
inceptionresnetv2_imagenet_pretrained 75.7 [73.1, 78.2] 58.7 [55.7, 61.6] 17.0
dpn107_imagenet_pretrained 75.6 [72.9, 78.1] 59.1 [56.1, 62.0] 16.5
inceptionv4_imagenet_pretrained 75.3 [72.6, 77.8] 59.0 [56.0, 61.9] 16.3
dpn92_imagenet_pretrained 74.4 [71.7, 76.9] 56.8 [53.8, 59.7] 17.6
dpn131_imagenet_pretrained 74.0 [71.3, 76.6] 59.9 [56.9, 62.8] 14.1
dpn68b_imagenet_pretrained 73.7 [71.0, 76.2] 54.0 [51.0, 57.0] 19.7
resnext101_32x4d_imagenet_pretrained 73.3 [70.6, 75.9] 57.2 [54.2, 60.1] 16.1
resnext101_64x4d_imagenet_pretrained 72.9 [70.1, 75.5] 56.6 [53.7, 59.6] 16.3
resnet152_imagenet_pretrained 72.8 [70.0, 75.4] 57.0 [54.0, 59.9] 15.8
resnet101_imagenet_pretrained 71.5 [68.7, 74.1] 53.7 [50.8, 56.7] 17.8
fbresnet152_imagenet_pretrained 71.5 [68.7, 74.1] 54.5 [51.5, 57.4] 17.0
densenet161_imagenet_pretrained 71.4 [68.7, 74.1] 55.1 [52.1, 58.1] 16.3
densenet169_imagenet_pretrained 70.2 [67.5, 72.9] 53.1 [50.1, 56.1] 17.1
densenet201_imagenet_pretrained 70.2 [67.5, 72.9] 53.4 [50.4, 56.4] 16.8
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dpn68_imagenet_pretrained 69.4 [66.6, 72.1] 53.3 [50.3, 56.3] 16.1
bninception_imagenet_pretrained 69.0 [66.2, 71.7] 49.0 [46.0, 51.9] 20.0
densenet121_imagenet_pretrained 69.0 [66.2, 71.7] 50.9 [47.9, 53.8] 18.1
nasnetamobile_imagenet_pretrained 68.8 [66.0, 71.5] 48.4 [45.4, 51.4] 20.4
resnet50_augment___jpeg_compression 68.8 [66.0, 71.5] 53.2 [50.2, 56.2] 15.6
resnet34_imagenet_pretrained 68.0 [65.2, 70.7] 48.0 [45.0, 51.0] 20.0
resnet50_augment___impulse_noise 67.7 [64.9, 70.5] 50.2 [47.2, 53.2] 17.5
resnet50_augment__gaussian_blur 67.7 [64.9, 70.5] 52.5 [49.5, 55.5] 15.2
resnet50_imagenet_pretrained 67.5 [64.7, 70.3] 52.5 [49.5, 55.5] 15.0
resnet50_augment___gaussian_noise 67.4 [64.5, 70.1] 50.6 [47.6, 53.6] 16.8
resnet50_augment___shot_noise 66.5 [63.6, 69.2] 51.1 [48.1, 54.1] 15.4
vgg16_bn_imagenet_pretrained 66.4 [63.5, 69.1] 47.4 [44.5, 50.4] 19.0
resnet50_augment___defocus_blur 66.3 [63.4, 69.1] 47.6 [44.6, 50.6] 18.7
vgg19_bn_imagenet_pretrained 65.6 [62.7, 68.4] 46.6 [43.6, 49.6] 19.0
vgg19_imagenet_pretrained 63.2 [60.3, 66.1] 45.4 [42.4, 48.3] 17.8
resnet18_imagenet_pretrained 61.9 [59.0, 64.8] 41.5 [38.6, 44.4] 20.4
vgg13_bn_imagenet_pretrained 61.9 [59.0, 64.8] 43.3 [40.3, 46.3] 18.6
vgg16_imagenet_pretrained 61.4 [58.5, 64.3] 43.1 [40.2, 46.1] 18.3
vgg11_bn_imagenet_pretrained 60.9 [57.9, 63.8] 43.2 [40.3, 46.2] 17.7
vgg13_imagenet_pretrained 59.6 [56.6, 62.5] 41.1 [38.2, 44.1] 18.5
vgg11_imagenet_pretrained 57.3 [54.4, 60.3] 41.3 [38.4, 44.3] 16.0
alexnet_finetuned 57.3 [54.3, 60.2] 43.6 [40.7, 46.6] 13.7
ResNeXtDenoiseAll-101_robust_pgd 54.3 [51.3, 57.2] 40.8 [37.8, 43.7] 13.5
squeezenet1_1_imagenet_pretrained 49.8 [46.8, 52.8] 31.7 [28.9, 34.5] 18.1
alexnet_imagenet_pretrained 49.4 [46.4, 52.4] 32.0 [29.3, 34.8] 17.4
resnet50_augment___contrast_change 38.3 [35.5, 41.3] 23.3 [20.8, 25.9] 15.0

Table 5: Classification model perturbed and original accuracies for all models in our test bed
evaluated on the ImageNet-Vid-Robust dataset.

B.2 YTBB-Robust

Model Accuracy
Original

Accuracy
Perturbed ∆

resnet152_finetuned 92.9 [91.2, 94.3] 84.7 [82.4, 86.8] 8.2
resnet50_finetuned 91.4 [89.6, 93.0] 82.0 [79.6, 84.2] 9.4
inceptionresnetv2_finetuned 91.3 [89.5, 92.9] 79.0 [76.4, 81.3] 12.3
vgg19_finetuned 90.5 [88.6, 92.2] 79.1 [76.5, 81.4] 11.4
vgg16_finetuned 89.1 [87.1, 90.8] 78.0 [75.4, 80.4] 11.1
inceptionv4_finetuned 88.5 [86.5, 90.3] 76.3 [73.6, 78.7] 12.2
resnet18_finetuned 88.0 [85.9, 89.8] 76.2 [73.6, 78.7] 11.8
alexnet_finetuned 80.6 [78.2, 82.9] 64.4 [61.5, 67.3] 16.2
pnasnet5large_imagenet_pretrained 65.2 [62.3, 68.0] 51.0 [48.0, 54.0] 14.2
nasnetalarge_imagenet_pretrained 64.9 [62.0, 67.7] 51.4 [48.4, 54.4] 13.5
inceptionresnetv2_imagenet_pretrained 64.5 [61.6, 67.4] 50.4 [47.5, 53.4] 14.1
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dpn98_imagenet_pretrained 64.1 [61.2, 66.9] 49.0 [46.0, 52.0] 15.1
dpn107_imagenet_pretrained 64.1 [61.2, 66.9] 50.1 [47.2, 53.1] 14.0
dpn131_imagenet_pretrained 64.0 [61.1, 66.8] 49.9 [46.9, 52.9] 14.1
inceptionv4_imagenet_pretrained 63.6 [60.7, 66.4] 48.8 [45.8, 51.8] 14.8
xception_imagenet_pretrained 63.2 [60.2, 66.0] 47.6 [44.6, 50.6] 15.6
dpn92_imagenet_pretrained 62.3 [59.3, 65.1] 47.7 [44.8, 50.7] 14.6
resnet50_augment__jpeg_compressioon 62.3 [59.4, 65.2] 45.7 [42.8, 48.7] 16.6
polynet_imagenet_pretrained 61.4 [58.4, 64.3] 47.3 [44.4, 50.3] 14.1
nasnetamobile_imagenet_pretrained 61.4 [58.4, 64.3] 43.0 [40.1, 46.0] 18.4
resnet50_augment__shot_noise 61.3 [58.3, 64.2] 46.4 [43.4, 49.3] 14.9
dpn68_imagenet_pretrained 61.2 [58.3, 64.1] 44.2 [41.2, 47.2] 17.0
fbresnet152_imagenet_pretrained 61.1 [58.1, 64.0] 45.9 [42.9, 48.8] 15.2
resnet152_imagenet_pretrained 60.8 [57.8, 63.7] 46.5 [43.5, 49.5] 14.3
resnet101_imagenet_pretrained 60.8 [57.8, 63.7] 45.2 [42.2, 48.2] 15.6
senet154_imagenet_pretrained 60.7 [57.7, 63.6] 47.2 [44.3, 50.2] 13.5
resnet50_augment__impulse_noise 60.6 [57.7, 63.5] 45.5 [42.6, 48.5] 15.1
se_resnet101_imagenet_pretrained 60.5 [57.6, 63.4] 45.6 [42.6, 48.6] 14.9
bninception_imagenet_pretrained 60.4 [57.4, 63.3] 41.8 [38.9, 44.7] 18.6
densenet161_imagenet_pretrained 60.2 [57.3, 63.1] 46.4 [43.4, 49.4] 13.8
resnet50_augment__gaussian_noise 60.2 [57.3, 63.1] 45.7 [42.8, 48.7] 14.5
se_resnext50_32x4d_imagenet_pretrained 59.9 [56.9, 62.8] 45.7 [42.7, 48.6] 14.2
dpn68b_imagenet_pretrained 59.7 [56.7, 62.6] 45.9 [42.9, 48.8] 13.8
inceptionv3_imagenet_pretrained 59.6 [56.6, 62.5] 43.8 [40.8, 46.8] 15.8
densenet121_imagenet_pretrained 59.5 [56.5, 62.4] 43.1 [40.1, 46.0] 16.4
se_resnext101_32x4d_imagenet_pretrained 59.2 [56.3, 62.1] 45.2 [42.3, 48.2] 14.0
densenet201_imagenet_pretrained 59.2 [56.2, 62.1] 44.8 [41.8, 47.8] 14.4
densenet169_imagenet_pretrained 59.2 [56.2, 62.1] 44.6 [41.7, 47.6] 14.6
resnet50_augment__brightness_change 58.9 [56.0, 61.8] 42.6 [39.6, 45.5] 16.3
se_resnet50_imagenet_pretrained 58.8 [55.9, 61.7] 44.1 [41.1, 47.1] 14.7
se_resnet152_imagenet_pretrained 58.8 [55.9, 61.7] 44.8 [41.9, 47.8] 14.0
cafferesnet101_imagenet_pretrained 58.2 [55.2, 61.1] 44.3 [41.3, 47.3] 13.9
resnet50_augment__regular 58.0 [55.1, 61.0] 42.9 [39.9, 45.8] 15.1
resnet34_imagenet_pretrained 57.9 [55.0, 60.9] 42.8 [39.8, 45.7] 15.1
vgg19_imagenet_pretrained 57.5 [54.6, 60.5] 40.1 [37.2, 43.1] 17.4
resnet50_augment__gaussian_blur 57.5 [54.5, 60.4] 41.8 [38.9, 44.7] 15.7
vgg16_bn_imagenet_pretrained 57.2 [54.2, 60.1] 39.6 [36.7, 42.6] 17.6
resnet50_imagenet_pretrained 57.0 [54.1, 60.0] 43.8 [40.9, 46.8] 13.2
vgg19_bn_imagenet_pretrained 56.8 [53.9, 59.8] 40.6 [37.7, 43.5] 16.2
vgg16_imagenet_pretrained 55.4 [52.4, 58.4] 40.1 [37.2, 43.1] 15.3
vgg13_bn_imagenet_pretrained 54.8 [51.8, 57.7] 38.6 [35.7, 41.6] 16.2
vgg11_bn_imagenet_pretrained 54.8 [51.8, 57.7] 38.8 [35.9, 41.8] 16.0
vgg11_imagenet_pretrained 54.7 [51.7, 57.6] 38.4 [35.5, 41.3] 16.3
resnet18_imagenet_pretrained 54.4 [51.4, 57.4] 38.1 [35.2, 41.0] 16.3
vgg13_imagenet_pretrained 54.2 [51.3, 57.2] 37.7 [34.9, 40.7] 16.5
ResNeXtDenoiseAll-101_robust_pgd 53.6 [50.7, 56.6] 43.2 [40.2, 46.1] 10.4

17



squeezenet1_0_imagenet_pretrained 51.1 [48.1, 54.1] 33.1 [30.3, 36.0] 18.0
squeezenet1_1_imagenet_pretrained 48.6 [45.6, 51.6] 31.3 [28.6, 34.2] 17.3
resnet50_augment__defocus_blur 48.4 [45.4, 51.4] 29.1 [26.4, 31.8] 19.3
alexnet_imagenet_pretrained 45.3 [42.4, 48.3] 30.5 [27.8, 33.3] 14.8

Table 6: Classification model perturbed and original accuracies for all models in our test bed
evaluated on the YTBB-robust dataset..

C Model independent distribution shift

Though the distribution shift we induced in our study were model dependent because we found the
worst neighbor frame for each model, we could study the same problem but impose a static set of
perturbed frames across all models. In Figure 6 we study this static set of perturbations across
all models and see a substantial (but smaller) drop in accuracy for both models. The static set of
perturbations were chosen by choosing the neighbor frame that the largest number of models got
incorrectly.
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Figure 6: Model accuracy on original vs. perturbed images for a static set of perturbed frames across
all models. The grey points and grey linear fit correspond to the perturbed accuracies of models
evaluated on per model perturbations studied in Figure 3

D Per class analysis

We study the effect of our perturbations on the 30 classes in ImageNet-Vid-Robust and
YTBB-Robust to determine whether the performance drop was concentrated in a few “hard” classes.
Figure 7 shows the original and perturbed accuracies across classes for our best performing model (a
fine-tuned ResNet-152). Although there are a few particularly difficult classes for perturbed accuracy
(e.g., lion or monkey on ImageNet-Vid-Robust), the accuracy drop is spread across most classes.
On ImageNet-Vid-Robust, this model saw a total drop of 14.4% between original and perturbed
images and a median drop of 14.0% in per-class accuracy. On YTBB-Robust, the total drop was
8.9% and the median drop was 6.7%.
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Figure 7: Per-class accuracy statistics for our best performing classification model (fine-tuned
ResNet152) on ImageNet-Vid-Robust and YTBB-Robust. For Youtube-BB, note that ‘zebra’
is the least common label, present in only 24 anchor frames sampled by [12], of which 4 are included
in our dataset.

E Per-frame conditional robustness metric introduced in [12]
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Figure 8: Conditional robustness metric from [12] on perturbed frames as a function of perturbation
distance on ImageNet-Vid-Robust and YTBB-Robust. Model accuracies from five different
model types and the best performing model are shown. The model architecture is ResNet-50 unless
otherwise mentioned.

In concurrent work, the authors of [12] considered a different metric of robustness. In this section,
we compute this metric on all models in our test bed to compare our findings to [12]. There are two
main differences between PM-k and the robustness metric in [12].

1. For two visually similar “neighbor” frames I0 and I1 with true label Y and classifier f , [12]
studies the conditional probability P (f(I1) = y|f(I0) = y)

2. While PM-k looks for errors in all neighbor frames in a neighborhood of k frames away from
the anchor frame (so this would include frames 1, 2, . . . , k frames away), [12] only considers
errors from exactly k frames away.

In Fig. 9 we illustrate simple example where two videos can have the same behavior for the metric
introduced by [12] but drastically different behavior for the PM-kmetric.
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Figure 9: For the two example videos above the score from [12] metric (Accuracy @ K) is identical,
but the PM-k metric behaves substantially differently when the errors are spread across many
independent videos, as shown in the right example

F `∞ distance vs PM-k Accuracy

`∞ adversarial examples are well studied in the robustness community, yet the connection between
`∞ and other forms of more “natural” robustness is unclear. Here, we plot the cumulative distribution
of the `∞ distance between pairs of nearby frames in our datasets. In Figure 10, we show the CDF
of `∞ distance for all pairs, all reviewed pairs, and mistakes made by 3 indicative models. Note the
fbrobust model is trained specifically to be robust to `∞ adversaries.
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Figure 10: CDF showing the `∞ distance between pairs of frames from different distributions.
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G PM-k Accuracy with varying k

G.1 ImageNet-Vid-Robust
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Figure 11: Model classification accuracy on perturbed frames as a function of perturbation distance
(shown with 95% Clopper-Pearson confidence intervals). Model accuracies from five different model
types and the best performing model are shown. The model architecture is ResNet-50 unless
otherwise mentioned.

In Figure 11, we plot the relationship between accpmk and perturbation distance (i.e., the k in the
pm-k metric). The entire x-axis in Figure 11 corresponds to a temporal distance of at most 0.3
seconds between the original and perturbed frames.

H I-frames and P-Frames

H.1 ImageNet-Vid-Robust

One possible concern with analyzing performance on video frames is the impact of video compression
on model robustness. In particular, the videos in ImageNet-Vid-Robust contain 3 different frame
types: ‘i-frames’, ‘p-frames’, and ‘b-frames’. ‘p-frames’ are compressed by referencing pixel content
from previous frames, while ‘b-frames’ are compressed via references to previous and future frames.
‘i-frames’ are stored without references to other frames.
We compute the original and perturbed accuracies, and the drop in accuracy for a subset of the
dataset without ‘i-frames’, a subset without ‘p-frames’, and a subset without ‘b-frames’ in Table 7.
While there are modest differences in accuracy due to compression, this analysis suggests that the
sensitivity of models is not significantly due to the differences in quality of frames due to video
compression.
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Table 7: Analyzing results based on frame-type in video compression. See Appendix H.1 for details.

Original Acc. Perturbed Acc. ∆ # anchor frames
All frames 84.8 70.2 14.6 1109
w/o ‘i-frames’ 84.7 70.3 14.4 1104
w/o ‘p-frames’ 83.9 73.7 10.2 415
w/o ‘b-frames’ 85.4 73.2 12.2 699

I FPS analysis

I.1 ImageNet-Vid-Robust

To analyze the impact of frame-rate on accuracy, we show results on subsets of videos with fixed fps
(25, 29, and 30, which cover 89% of the dataset) using a fine-tuned ResNet-152 model in Table 8.
The accuracy drop is similar across the subsets, and similar to the drop for the whole dataset.

FPS Acc. Orig. Acc. Perturbed Drop # Videos
25 87.3 [83.0, 90.9] 73.3 [67.8, 78.3] 14.0 292
29 87.7 [84.0, 90.8] 74.9 [70.3, 79.2] 12.8 383
30 78.3 [73.3, 82.7] 61.7 [56.0, 67.1] 16.6 313

Table 8: Results on subsets of ImageNet-Vid-Robust with fixed FPS.

J ILSVRC training with ImageNet-Vid-Robust classes

We trained ResNet-50 from scratch on ILSVRC using the 30 ImageNet-Vid classes. We also fine-tuned
the model on ImageNet-Vid. In Table 9, we show the accuracy drops are consistent with models in
our submission. We hypothesize that the lower accuracy is due to coarser supervision on ILSVRC.

Model Acc. Orig. Acc. Perturbed Drop
ILSVRC-30 61.0 44.9 15.1
ILSVRC-30 + FT 77.8 59.9 17.9

Table 9: Results of training ResNet-50 on ILSVRC with 30 classes from ImageNet-Vid-Robust.

K Experimental Details & Hyperparameters

All classification experiments were carried out using PyTorch version 1.0.1 on an AWS p3.2xlarge
with the NVIDIA V100 GPU. All pretrained models were downloaded from [4] at commit hash
021d97897c9aa76ec759deff43d341c4fd45d7ba. Evaluations in Tables B.1 and B.2 all use
the default settings for evaluation. The hyperparameters for the fine-tuned models are presented in
Table 10. We searched for learning rates between 10−3 and 10−5 for all models.
We additionally detail hyperparameters for detection models in Table 11. Detection experiments
were conducted with PyTorch version 1.0.1 on a machine with 4 Titan X GPUs, using the Mask
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R-CNN benchmark repository[21]. We used the default learning rate provided in [21]. For R-FCN,
we used the model trained by [29].

Table 10: Hyperparameters for models finetuned on ImageNet-Vid,

Model Base Learning Rate Learning Rate Schedule Batch Size Epochs

resnet152 10−4 Reduce LR On Plateau 32 10
resnet50 10−4 Reduce LR On Plateau 32 10
alexnet 10−5 Reduce LR On Plateau 32 10
vgg16 10−5 Reduce LR On Plateau 32 10

Table 11: Hyperparameters for detection models.

Model Base Learning Rate Learning Rate Schedule Batch Size Iterations

F-RCNN ResNet-50 10−2 Step 20k, 30k 8 40k
F-RCNN ResNet-101 10−2 Step 20k, 30k 8 40k

L Detection pm-k

We briefly introduce the mAP metric for detection here and refer the reader to [19] for further details.
The standard detection metric proceeds by first determining whether each predicted bounding box in
an image is a true or false positive, based on the intersection over union (IoU) of the predicted and
ground truth bounding boxes. The metric then computes the per-category average precision (AP,
averaged over recall thresholds) of the predictions across all images. The final metric is reported as
the mean of these per-category APs (mAP).
We define the pm-k analog of mAP by replacing each anchor frame in the dataset with a nearby
frame that minimizes the per-image average precision. Since the category-specific average precision is
undefined for categories not present in an image, we minimize the average precision across categories
present in each frame rather than the mAP.
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