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Abstract

Recent advances in attention-based networks have
shown that Vision Transformers can achieve state-of-the-art
or near state-of-the-art results on many image classification
tasks. This puts transformers in the unique position of being
a promising alternative to traditional convolutional neural
networks (CNNs). While CNNs have been carefully stud-
ied with respect to adversarial attacks, the same cannot be
said of Vision Transformers. In this paper, we study the
robustness of Vision Transformers to adversarial examples.
Our analyses of transformer security is divided into three
parts. First, we test the transformer under standard white-
box and black-box attacks. Second, we study the transfer-
ability of adversarial examples between CNNs and trans-
formers. We show that adversarial examples do not readily
transfer between CNNs and transformers. Based on this
finding, we analyze the security of a simple ensemble de-
fense of CNNs and transformers. By creating a new attack,
the self-attention blended gradient attack, we show that
such an ensemble is not secure under a white-box adver-
sary. However, under a black-box adversary, we show that
an ensemble can achieve unprecedented robustness without
sacrificing clean accuracy. Our analysis for this work is
done using six types of white-box attacks and two types of
black-box attacks. Our study encompasses multiple Vision
Transformers, Big Transfer Models and CNN architectures
trained on CIFAR-10, CIFAR-100 and ImageNet.

1. Introduction
For vision tasks, convolutional neural networks

(CNNs) [20] are the de facto architecture [37, 19]. On
the other hand, in natural language processing (NLP),
attention-based transformers are one of the most commonly
used models [35]. Based on the success of transformers in
NLP, various works have attempted to apply self-attention

(both with and without CNNs) to image processing
tasks [4, 36]. In particular, in [12], the training of
self-attention transformers is achieved by processing the
image in patches. The training in [12] is unique in that the
transformer is first trained on the dataset ImageNet-21K
(or JFT) before training on a smaller dataset, to achieve
near state-of-the-art results on ImageNet, CIFAR-10 and
CIFAR-100. These types of transformers are referred
to as Vision Transformers (ViT) [12]. It is important to
note that the same kind of training regime can be applied
to CNNs. In [19], they also propose training on a large
dataset (ImageNet-21K or JFT) and fine tuning on a
smaller dataset. Using this approach, CNNs are also able
to achieve state-of-the-art results on ImageNet, CIFAR-10
and CIFAR-100. CNNs trained in this manner are referred
to as Big Transfer Models (BiT-M) [19].

While CNNs are popular for vision tasks, they are not
without deficiencies. It has been widely documented that
CNNs are vulnerable to adversarial examples [33, 14]. Ad-
versarial examples are benign input images to which small
perturbations are added. This perturbation causes the CNN
to misclassify the image with high confidence. Broadly
speaking, an attacker creates an adversarial example using
one of two threat models. Under a white-box adversary [5],
the attacker has access to the CNN’s parameters (architec-
ture and trained weights). The adversary can directly obtain
gradient information from the model to create an adversarial
example. The other type of threat is a black-box adversary.
In this scenario, the attacker does not know the CNN’s pa-
rameters or architecture but can repeatedly query the CNN,
or build their own synthetic CNN to estimate gradient infor-
mation and generate adversarial examples.

It has also been shown that adversarial examples gener-
ated using CNNs exhibit transferability [28, 21, 29]. Here,
transferability refers to the fact that adversarial examples
crafted to fool one CNN are often misclassified by other
CNNs as well. Overall, CNNs have an expansive body of
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literature related to adversarial attacks [6, 11, 10] and de-
fenses [23, 5, 34]. In contrast, Vision Transformers have
not been closely studied in the adversarial context. In this
work, we investigate how the advent of Vision Transformers
advance the field of adversarial machine learning. Here we
specifically focus on image based adversarial attacks. Our
paper is organized as follows: In section 2 we first discuss
some related NLP work. We then break our analysis of Vi-
sion Transformers into several related questions:

Do Vision Transformers provide any improvement in se-
curity over CNNs under a white-box adversary? We explore
this question in section 3 by attacking Vision Transform-
ers, Big Transfer Models and conventional CNNs (ResNets)
with six standard white-box adversarial machine learning
attacks. We show that under a white-box adversary, Vision
Transformers are just as vulnerable (insecure) as other mod-
els. In section 4, we further delve into white-box attacks
and ask: How transferable are adversarial examples be-
tween Visions Transformers and other models? We perform
a transferability study with eight CIFAR-10 and CIFAR-
100 models (this includes four Vision Transformers, two
Big Transfer Models, and two ResNets). We also study
the transferability of ImageNet Vision Transformers using
seven models (three Vision Transformers, two Big Trans-
fer Models, and two ResNets). From our experiments we
observe an interesting phenomenon. The transferability be-
tween Vision Transformers and other non-transformer mod-
els is unexpectedly low.

How can the transferability phenomena be leveraged to
provide security? This is the topic of our final question
in sections 5 and 6. We further break this question down
into white-box and black-box analyses. First, we consider
a white-box adversary. We develop a new white-box attack
called the Self-Attention blended Gradient Attack (SAGA).
Using SAGA, we show it is not possible to leverage the
transferability phenomena to achieve white-box security.
However, achieving black-box security is still possible. To
demonstrate this, we consider a black-box attacker that can
leverage transfer style [29] and query-based attacks [8]. We
show under this threat model, a simple ensemble of Vision
Transformers and Big Transfer Models can achieve an un-
precedent level of robustness, without sacrificing clean ac-
curacy. Finally, in section 7, we offer concluding remarks.

2. Related Work
The transformer has been well studied from an adversar-

ial perspective for NLP applications e.g., [18, 31, 17, 15].
The work in [18] analyzes two popular self-attentive archi-
tectures: (a) Transformer for neural machine translation,
and (b) BERT for sentiment and entailment classification,
and proposes algorithms to generate more natural adversar-
ial examples that preserve the semantics. Theoretical expla-
nations are also provided in [18] to support the claim that

self-attentive structures are more robust to small adversarial
perturbations in NLP as compared to LSTM based architec-
tures. The work in [31] analyzes the complex relationship
between self-attention layers including cross-non-linearity
and cross-position, and develops a robustness verification
algorithm for Transformers. The authors do not use large-
scale pre-trained models such as BERT because they are too
challenging to be tightly verified with their approach. The
work in [17] studies large pre-trained Transformer models
in NLP such as BERT. One of the conjectures drawn by the
authors of [17] is that since Transformer models are pre-
trained with large amounts of data (e.g., BERT is trained on
3 billion tokens), this may aid robustness. It is also men-
tioned that perhaps the self-supervised training may also
contribute to this robustness. The work in [15] proposes a
self-attention attribution method to interpret the information
interactions inside a transformer. The authors use BERT as
an example to conduct experiments to identify the important
attention heads, and extract the most salient dependencies
in each layer to construct an attribution tree. This infor-
mation is used to extract adversarial patterns to implement
non-targeted attacks towards BERT.

Thus, as stated above a good body of work has been de-
voted to the adversarial exploration of the Transformer for
NLP applications. To our best knowledge, we are the first
to provide an in-depth analysis of the adversarial properties
of a Transformer from a vision perspective.

3. White-Box Attacks on Vision Transformers
Do Vision Transformers provide any improvement in se-

curity over CNNs under a white-box adversary? We exper-
imentally analyze Vision Transformers to answer this ques-
tion. It may seem unorthodox to start with experiments.
However, the most expedient way to directly determine the
security of the transformer is through attacks and analyses
of those attacks. We start with a white-box adversary be-
cause it represents the strongest possible adversary.

3.1. Adversarial Model, Considered Classifiers and
White-Box Attack Selection

Adversarial Model: In this section, our adversary has
knowledge of the model architecture and trained parame-
ters of the model. We assume the adversary can perturb the
original input x to create xadv within a certain amount ε
according to ‖x−xadv‖∞ ≤ ε. For CIFAR-10 and CIFAR-
100, the ε = 0.031 and for ImageNet ε = 0.062, where x
is an n × m color image such that x ∈ [0, 1]

n×m×3. The
adversary succeeds if they are able to create an input xadv
within this bound ε that is misclassified by the classifier (un-
targeted attack). When we measure security, we do so by
taking a set of clean test examples that are correctly identi-
fied by the classifier. Using this set of clean examples we
generate adversarial examples using one of the six attacks.



We then measure what percent of examples the classifier
still correctly identifies. As Vision Transformers are rela-
tively new, we experiment with a wide range of attacks and
models. Below, we list the attacks and models we use. We
also give our justification for including them in this paper.

White-Box Attacks: We run six different types of
white-box attacks on our models. We begin with one of the
most basic, the Fast Gradient Sign Method (FGSM) [13]
as an initial test of robustness. We further build upon this
by testing stronger multi-step attacks, the Momentum Iter-
ative Method (MIM) [11], and Projected Gradient Descent
(PGD) [24]. We also test the newest iterative attack which
uses a variable step size in each iteration, Auto Projected
Gradient Descent (APGD) [10]. Aside from the previously
mentioned attacks, there are two other possible attack di-
rections. To craft an extremely small, almost imperceptible
adversarial noise, the Carlini and Wagner (C & W) attack is
often of interest [6].

Lastly, it is possible for some white-box attacks to fail
if gradient masking or an obfuscation of the gradient oc-
curs [2]. It is important to note this does not actually mean
the classifier is secure, it merely means the gradient for the
classifier was not estimated properly. There are attacks de-
signed to overcome gradient masking, such as the Back-
ward Pass Differentiable Approximation (BPDA) [2]. We
use BPDA here to ensure gradient masking is not occur-
ring in the self-attention layers, or any other part of the
Vision Transformer. Due to the limited space, we cannot
give detailed descriptions of each white-box attack here. We
urge interested readers to examine the supplemental mate-
rial where we provide descriptions of each attack.

Classifier Models: When considering Vision Trans-
formers, there are several different types of model variants.
To begin, the patch size of the transformer needs to be cho-
sen. To test different patch sizes, in our study we include
both patch size 32 (ViT-B-32) and patch size 16 (ViT-B-
16). The ”B” in the model refers to the model complex-
ity [12]. ”B” models contain 12 layers and ”L” models con-
tain 24 layers. Since model complexity is another factor
that can affect security [24], we also test across model com-
plexity (ViT-B-16 and ViT-L-16). It is also possible to use
the self-attention layers first and then use a conventional
CNN (ResNet) on top. This configuration is denoted as
ViT-R50. Experimenting across patch size, model complex-
ity and with the hybrid configuration gives us four Vision
Transformer models.

For the Big Transfer Models [19], we vary across model
complexity (BiT-M-R50 and BiT-M-R101x3). We do the
same for conventional ResNets (ResNet-56 and ResNet-
164 [16]). Overall for CIFAR-10 and CIFAR-100, this gives
us a total of 8 models to attack: ViT-B-32, ViT-B-16, ViT-L-
16, ViT-R50, BiT-M-R50, BiT-M-R101x3, ResNet-56 and
ResNet-164. For ImageNet, we run a slight variation of the

above set, attacking 7 models: ViT-B-16, ViT-L-16 (image
size 224), ViT-L-16 (image size 512), BiT-M-R50, BiT-M-
R152x4, ResNet-50 and ResNet-152. For ImageNet, we
mainly focus on more complex models (e.g., testing two
types of ViT-L-16 instead of ViT-B-32). We do this because
the more complex Vision Transformers are better indicative
of state-of-the-art performance on ImageNet. We provide
full descriptions of the architectures and training parame-
ters for our models in the supplemental material.

3.2. White-Box Attack Analysis

We report the results of our six white-box attacks for
CIFAR-10 and ImageNet in Table 3.1. The robust accu-
racy (percent of samples correctly identified by the classi-
fier) is reported in Table 3.1 using 1000 examples for each
attack. For this set of attacks, CIFAR-10 and CIFAR-100
follow extremely similar trends. As a result, for brevity, we
provide our CIFAR-100 white-box attack results in the sup-
plementary material.

Overall, based on the results in Table 3.1, we can defini-
tively answer the original question posed at the start of the
this section. Vision Transformers do not provide any ad-
ditional security over Big Transfer Models or conventional
CNNs. We can clearly see this across all datasets, indicat-
ing Vision Transformers have no robustness (i.e. 0%) for
the C&W and APGD attacks. Likewise, Vision Transform-
ers have less than 6% robustness across all the datasets for
the PGD and MIM attacks. While this result may seem ex-
pected, it is an important step in understanding the complete
security picture of Vision Transformers. Now that we know
Vision Transformers are not robust to white-box attacks, we
can consider the next important question on transferability.

4. Vision Transformers Transferability Study
How transferable are the adversarial examples created

by Vision Transformers? It was shown in Section 3 that
white-box attacks are extremely effective at creating exam-
ples that fool Vision Transformers. We further expand on
the previous analyses and now examine the transferability
of adversarial examples misclassified by Vision Transform-
ers. Here, transferability refers to the occurrence of adver-
sarial examples that are misclassified by multiple (i.e., more
than one) classifier. The transferability of adversarial exam-
ples has been well documented for different CNN architec-
tures. In the literature, the transferability of adversarial ex-
amples was first observed in [33]. Consequent studies have
shown the transferability of adversarial examples between
CNNs on the MNIST dataset in [30] and on the ImageNet
dataset in [22]. However, to the best of our knowledge,
there have been no large-scale studies on the transferabil-
ity between CNNs and Visions Transformers at this time.
We provide detailed evaluation and analyses on this aspect
in this section.



Table 1. White-box attacks on Vision Transformers, Big Transfer Models and ResNets. The attacks are done using the l∞ norm with
ε = 0.031 for CIFAR-10 and ε = 0.062 for ImageNet. The white-box attack results for CIFAR-100 follow an extremely similar trend
to CIFAR-10. Hence for brevity, CIFAR-100 white-box attack results are given in the supplementary material. In this Table the robust
accuracy is given for each corresponding attack. The last column ”Acc” refers to the clean accuracy of the model.

CIFAR-10
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-32 37.9% 1.8% 17.6% 4.4% 0.0% 0.0% 98.6%
ViT-B-16 39.5% 0.0% 20.3% 0.3% 0.0% 0.0% 98.9%
ViT-L-16 56.3% 1.2% 28.7% 5.9% 0.0% 0.0% 99.1%
ViT-R50 40.8% 0.1% 13.4% 0.2% 0.0% 0.0% 98.6%
BiT-M-R50x1 66.0% 0.0% 14.9% 0.0% 0.0% 0.0% 97.5%
BiT-M-R101x3 85.2% 0.0% 17.1% 0.0% 0.0% 0.0% 98.7%
ResNet-56 23.0% 0.0% 5.0% 0.0% 0.0% 0.0% 92.8%
ResNet-164 29.0% 0.0% 5.4% 0.0% 0.0% 0.0% 93.8%

ImageNet
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-16 23.1% 0.0% 7.3% 0.0% 0.0% 0.0% 80.3%
ViT-L-16 (224) 27.9% 0.0% 8.4% 0.0% 0.0% 0.0% 82.0%
ViT-L-16 (512) 29.8% 0.0% 8.4% 0.0% 0.0% 0.0% 85.4%
BiT-M-R50x1 28.7% 0.0% 3.5% 0.0% 0.0% 0.0% 79.9%
BiT-M-R152x4 60.9% 0.0% 15.2% 0.0% 0.0% 0.0% 85.3%
ResNet-50 11.8% 0.0% 1.4% 0.0% 0.0% 0.0% 74.5%
ResNet-152 18.1% 0.0% 2.7% 0.0% 0.0% 0.0% 77.0%

4.1. Measuring Transferability

Formally, we can define non-targeted transferability as
follows: We start with a classifierCi and correctly identified
input/label pair (x, y). An attack ACi

is used to generate an
adversarial example xadv with respect to classifier Ci:

xadv = ACi
(x, y) (1)

The adversarial example xadv is then said to transfer from
classifier to Ci to n− 1 other classifiers if and only if:

∀nj=1 [{Cj(x) = y} ∧ {Cj(xadv) 6= y}] (2)

Equation 2 states that each classifier Cj must correctly clas-
sify x and must misclassify xadv . Assuming two classifiers
(n = 2) and a set ofm examples that are correctly classified
by both, we can define the transferability from Ci to Cj as
follows:

ti,j =
1

m

m∑
k=1

{
1 if Cj(ACi(xk, yk)) 6= yk,
0 otherwise. (3)

A high transferability between classifiers indicates that
they have a shared vulnerability to the same set of adver-
sarial examples. On the other hand, a low transferability
may indicate a possible avenue for security. This is due to
the fact that the same set of adversarial examples are not
misclassified by both classifiers.

4.2. Transferability Study Setup

To properly study the transferability between Vision
Transformers, Big Transfer Models and conventional

CNNs, we use the same 8 models for CIFAR-10 and
CIFAR-100 as mentioned in Section 3.1. For ImageNet,
we also use the same 7 models listed in Section 3.1. For
our transferability study, we consider all possible pairs of
classifiers. For each pair of classifiers (i, j), we find a set
of m = 1000 examples that both classifiers correctly iden-
tify. We then measure the transferability between the pair of
classifiers using Equation 3. It is important to note that the
transferability measurement will be affected by the choice
of white-box attack ACi

used to generate the adversarial
examples. It has been shown that MIM, PGD and FGSM
are good candidates for creating highly transferable exam-
ples [25]. As a result, for every pair of classifiers (i, j), we
test all three attacks and report the highest transferability
result. For these attacks, we use the same ε and l∞ norm
as described in Section 3.1. Additional experimental details
are provided in our supplementary material.

In Table 2, we show the transferability results for
CIFAR-10, CIFAR-100 and ImageNet. The top row of the
table corresponds to the model which was used to generate
the adversarial examples, Ci in Equation 3. The first col-
umn in the table corresponds to the model which was used
to predict the labels of the adversarial examples. The model
in the first column is Cj in Equation 3. In the special case
when i = j, we train an independent copy of model i to
generate adversarial examples for CIFAR-10 and CIFAR-
100. For ImageNet, due to the high computational cost of
model training, we forgo the i = j measurement. It can
clearly be seen from the other datasets we study and in the
literature [22] that copies of the same model (i = j) already



have high transferability. We also graphically represent the
results of Table 2 in Figure 1 for the CIFAR-10 dataset.

4.3. Analysis of Transferability Study

From Table 2 and Figure 1, we can see a very interest-
ing phenomenon. The transferability between Vision Trans-
formers and Big Transfer Models is extremely low. For
example, consider ViT-L-16 and BiT-M-50x1. Adversar-
ial examples generated using BiT-50x1 are misclassified
by ViT-L-16 less than 16% of the time across all datasets
(5.7%, 15.5% and 11.8% for CIFAR-10, CIFAR-100 and
ImageNet respectively). Likewise, less than half the time
BiT-M-50x1 is fooled by adversarial examples generated
using ViT-L-16 (42.5%, 47.6% and 34.3% for CIFAR-10,
CIFAR-100 and ImageNet).

Broadly speaking, we can consider the ViT models, BiT
models and ResNets each as a model genus. In general, the
phenomenon of low transferability mostly occurs between
model genusus, but not within model genusus. That is to
say, adversarial examples generated by one BiT model will
likely transfer to a different BiT model, but not to a ViT
model or ResNet. Visually, we can see this result repre-
sented for CIFAR-10 in Figure 1. The x-axis represents dif-
ferent models used to generate the adversarial examples and
the y-axis represents the model used to evaluate those ad-
versarial examples. The z-axis is used to measure the trans-
ferability. For clarity, the bars in the plot are color coded.
Green, blue and light blue bars represent the transferability
measurements between models of different genusus (green
is ViT/ResNet transferability, blue is ViT/BiT transferabil-
ity and light blue is BiT/ResNet transferability). Pink, red,
and orange bars represent the transferability between mod-
els of the same genus. Pink is the transferability between
ViT models, red is the transferability between BiT models
and orange is the transferability between ResNet models.

It is important to note while the low transferability phe-
nomenon is a generally observed trend, it is not an absolute
rule. For example, the transferability between Big Transfer
models (BiT-M-R50x1 and BiT-M-152x4) for ImageNet is
also relatively low (28% and 24.9%). However, the most
important factor is that the low transferability phenomenon
does happen across multiple datasets and for multiple dif-
ferent pairs of models. The usefulness of these observations
may not be apparent immediately. Nevertheless, they have
serious security implications which we elaborate on subse-
quently.

5. White-Box Security and Transferability
How can the transferability phenomena be leveraged to

provide security? From section 4, we know that the trans-
ferability of adversarial examples between different model
genusus is generally low. Therefore, we propose testing an
ensemble of different models as a defense. To further clarify

Figure 1. Visual representation of Table 2 for CIFAR-10. The x-
axis corresponds to the model used to generate the adversarial ex-
amples. The y-axis corresponds to the model used to evaluate the
adversarial examples. The z-axis measures transferability between
the two models. The bars are color coded based on the two models.
Pink, red, and orange bars represent the transferability between
models of the same genus. Green, blue and light blue bars repre-
sent the transferability measurements between models of different
genusus.

the original question, we break it down into two parts: Can
an ensemble defense provide security against a white-box
adversary, and can an ensemble provide security against a
black-box adversary? In this section we answer the white-
box question by proposing a novel attack that simultane-
ously breaks both Transformers and CNNs. In Section 6,
we investigate the black-box question.

We first define our base case ensemble defense.
Ensemble Models: In this paper, we have already ex-

amined multiple Vision Transformers, Big Transfer Models
and ResNets. The simplest ensemble would be to choose
two types of classifiers from this group. Therefore, as a base
case we use the most complex BiT model and ViT model.
For CIFAR-10 and CIFAR-100 datasets, the ensemble is
comprised of ViT-L-16 and BiT-M-101x3. For ImageNet,
this ensemble is made up of ViT-L-16 (image size 512) and
BiT-M-152x4. Here, we do not consider ResNets as they
have significantly less clean accuracy and we do not want
to pay such a security cost. In the supplementary material,
we do provide some ResNet ensemble experiments for the
sake of completeness.

Ensemble Output: In our ensemble defense, there are
several possible ways to combine the output of the models.
Here we consider three ways commonly found in the lit-
erature, majority voting [27], absolute consensus [26] and
random selection [32]. Majority voting is a weak method
of evaluating adversarial examples because not every clas-
sifier must be fooled, resulting in diminishing returns as the
number of classifiers increases. The alternative to major-
ity voting is absolute consensus [26]. In this setup, if ev-



Table 2. Transferability results for CIFAR-10, CIFAR-100 and ImageNet. The first column in each table represents the model used to
generate the adversarial examples, Ci. The top row in each table represents the model used to evaluate the adversarial examples, Cj . Each
entry is the maximum transferability computed using Ci and Cj over three different attacks, FGSM, PGD and MIM using Equation 3.

CIFAR-10
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT BiT-50x1 BiT-101x3 ResNet-56 ResNet-164

ViT-B-32 95.8% 84.1% 75.5% 34.9% 60.8% 62.0% 18.6% 19.9%
ViT-B-16 57.1% 99.6% 88.9% 22.6% 43.4% 45.0% 13.9% 14.0%
ViT-L-16 55.6% 78.4% 89.6% 30.3% 42.5% 44.7% 13.0% 14.8%
R50-ViT 39.6% 58.1% 51.5% 98.3% 61.0% 58.0% 26.7% 29.0%
BiT-50x1 4.5% 10.9% 5.7% 4.7% 100.0% 51.4% 7.0% 9.0%
BiT-101x3 8.6% 20.3% 13.7% 7.2% 75.9% 100.0% 7.8% 9.3%
ResNet-56 6.6% 9.0% 5.3% 9.7% 22.5% 11.8% 85.9% 87.2%
ResNet-164 6.8% 8.1% 5.0% 9.7% 22.3% 11.2% 83.6% 85.7%

CIFAR-100
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT BiT-50x1 BiT-101x3 ResNet-56 ResNet-164

ViT-B-32 96.2% 88.5% 83.6% 52.2% 60.5% 61.1% 14.9% 14.0%
ViT-B-16 71.3% 99.3% 93.2% 38.6% 44.5% 47.9% 9.0% 7.5%
ViT-L-16 67.8% 88.3% 94.2% 48.1% 47.6% 50.0% 9.9% 9.5%
R50-ViT 51.6% 65.0% 62.3% 98.9% 64.1% 61.2% 11.0% 9.9%
BiT-50x1 17.7% 25.0% 15.5% 18.2% 100.0% 56.5% 4.9% 5.2%
BiT-101x3 24.9% 39.0% 26.3% 23.5% 74.0% 99.0% 5.7% 3.2%
ResNet-56 20.1% 22.2% 15.3% 22.7% 31.4% 21.9% 70.8% 68.9%
ResNet-164 22.1% 24.5% 15.5% 24.2% 35.9% 26.5% 74.5% 79.2%

ImageNet
ViT-B-16 ViT-L-16 ViT-L-16 (512) BiT-50x1 BiT-152x4 ResNet-50 ResNet-152

ViT-B-16 + 89.1% 39.6% 40.8% 27.4% 44.0% 40.1%
ViT-L-16 90.9% + 64.5% 40.0% 26.9% 43.7% 40.8%
ViT-L-16 (512) 28.0% 43.4% + 34.3% 26.3% 28.4% 23.2%
BiT-50x1 9.8% 8.4% 11.8% + 24.9% 24.7% 18.7%
BiT-152x4 8.2% 7.6% 13.5% 28.0% + 15.1% 12.0%
ResNet-50 23.8% 18.8% 24.7% 55.3% 24.4% + 86.7%
ResNet-152 25.9% 22.1% 26.6% 54.1% 26.8% 89.4% +

ery classifier does not agree on the same class label then
the sample is marked as adversarial. Absolute consensus
removes the diminishing returns disadvantage of majority
voting, though at the cost of clean accuracy. In absolute
consensus, it is typical that many clean samples are marked
as adversarial [26]. Due to this, we use random selection in
all our ensemble defenses for the remainder of the paper. In
random selection, a single model is selected randomly and
used to evaluate the input at run time.

5.1. The Self-Attention Gradient Attack

Attack Motivation: A naı̈ve approach would be to
assume that an ensemble defense would provide security
against a white-box adversary if only the low transferabil-
ity results in Section 3 and Section 4 were taken into ac-
count. Consider the following analysis: Let us focus on
the ImageNet models ViT-L-16 (image size 512) and BiT-
M-152x4. From Section 4, we know a white-box MIM at-
tack has a 100% attack success rate (0% robust accuracy)
on ViT-L-16 (see Table 2). Now let us introduce an addi-
tional model, BiT-M-152x4 into the ensemble with ViT-L-
16. From Section 4 Table 2, we know the adversarial exam-

ples generated from ViT-L-16 will be misclassified by BiT-
M-152x4 only 26.3% of the time. If we make an ensem-
ble of ViT-L-16 and BiT-M-152x4 with random selection,
this means the attack success rate on average would drop to
63.15%. It seems as if we went from 0% robust accuracy
using only ViT-L-16 to 36.85% robust accuracy just by us-
ing an ensemble with random selection. However, this is not
the case as the adversarial examples we are using only come
from attacking one model. We demonstrate the flaws in this
type of analysis by proposing a new attack which generates
adversarial examples that are simultaneously misclassifed
by both Vision Transformers and CNNs. We call this new
attack, the Self-Attention Gradient Attack (SAGA).

Mathematical Description: To derive SAGA, we as-
sume the same white-box adversary we detailed in Sec-
tion 3. Such an adversary has knowledge of the models
and trained parameters in an ensemble defense. Instead of
focusing completely on optimizing over one of the models,
SAGA focuses on breaking multiple models at once. As-
sume we are given an ensemble with a set of Vision Trans-
formers V and a set of CNNs K. The goal of the attacker is
to craft an adversarial example xadv from xwithin perturba-



tion bounds ε that is misclassifed by all members v ∈ V and
k ∈ K. We can iteratively compute the adversarial example
as follows:

x
(i+1)
adv = x

(i)
adv + εs ∗ sign(Gblend(x(i)adv)) (4)

where x(1)adv = x and εs is the step size for the attack. Fur-
ther, we define Gblend(x

(i)
adv) as follows:

Gblend(x
(i)
adv) =

∑
k∈K

αk
∂Lk

∂x
(i)
adv

+
∑
v∈V

αvφv �
∂Lv

∂x
(i)
adv

(5)

In Equation 5, the first summation is for the models in setK
which are CNNs. ∂Lk/∂x

(i)
adv is the partial derivative of the

loss function of the kth CNN with respect to the adversarial
input x(i)adv . Each model k has an associated weighting fac-
tor αk. In a more refined approach, αk could be optimized
over as well, but here we simply leave αk as a hyperparam-
eter in the attack. Note that PGD [24] without randomized
start is a special case of our attack when V = ∅, K has ex-
actly one element and a1 = 1. However, when attacking an
ensemble, V 6= ∅ and hence we have a second term.

In Equation 5, the second term1 αvφv � ∂Lv/∂x(i)adv is
used to craft adversarial examples that are misclassified by
the Vision Transformers in the ensemble. Here ∂Lv/∂x

(i)
adv

is the loss function of the transformer with respect to the ad-
versarial input. Likewise, αv is a weighting factor selected
by the attacker to balance the emphasis on different models.
We also bring in one additional term which is specific to
Vision Transformers, φv . The term φv is the self-attention
map associated with the vth transformer in the ensemble.

The self-attention φv is computed using attention roll-
out [1] and is defined as:

φv =

(
nl∏
l=1

[
nh∑
i=1

(0.5W
(att)
l,i + 0.5I)

])
� x. (6)

where nh is the number of attention heads per layer, nl is the
number of attention layers, W (att)

l,i is the attention weight
matrix in each attention head, I is the identity matrix and
x is the input image. This technique takes into account the
attention flow from each layer of the transformer to the next
layer, including the effect of skip connections. The attention
values from the different attention heads within the same
layer are averaged, and the attention values are recursively
multiplied between different layers.

Experimental Results: We demonstrate the SAGA re-
sults by attacking a simple ensemble of Vision Transform-
ers and Big Transfer Models for CIFAR-10, CIFAR-100 and
ImageNet. We use 1000 clean correctly identified examples
with the same attack parameters as described in Section 3.

1� is the element wise Hadamard product; x in (5) and (6) is an image
matrix and the partial derivative w.r.t x in (5) is represented as a matix.

ImageNet CIFAR-100 CIFAR-10

SAGA 91.8% 84.4% 74.0%

Single MIM 63.2% 75.0% 72.4%

Basic 71.6% 73.7% 52.5%

0.0%

20.0%

40.0%
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Figure 2. Attack success rate of the Self-Attention Gradient Attack
(SAGA), the Single MIM attack and Basic attack on an ensemble
containing one ViT-L-16 model and one BiT-M-R101x3 model (or
BiT-M-R152x4 for ImageNet). For full descriptions of each attack
see Section 5.1.

For CIFAR-10 and CIFAR-100, we use Bit-M-R101x3 and
ViT-L-16. For ImageNet, we use Bit-M-R152x4 and ViT-L-
16. We also test two other simple attacks which are denoted
in Figure 2 as ’Basic’ and ’Single MIM’. The basic attack
is a combination of the model gradients without weighted
coefficients and self-attention included. The single MIM
attack is the best transfer attack on the ensemble as reported
from Table 2. Here we use MIM as opposed to FGSM
or PGD in the ’Single MIM’ attack as we experimentally
found MIM samples to transfer better.

The main contribution of this attack is to demonstrate
that Vision Transformer/Big Transfer type of ensembles are
not secure under a white-box adversary. This is precisely
what is shown in Figure 2. SAGA has an attack success rate
of 74.0%, 84.4% and 91.8% on the ensemble for CIFAR-
10, CIFAR-100 and ImageNet, respectively. In Figure 2,
we also show SAGA outperforms the two other white-box
multi-model attacks across all datasets. For brevity, many
details are omitted here such as the hyperparameter selec-
tion for SAGA and attacks on Transformer/ResNet ensem-
bles. We provide this information fully in the supplemen-
tary material.

6. Black-Box Security and Transferability
In this section, we consider the transferability phenom-

ena and its security implications under a black-box adver-
sarial model. We once again use an ensemble of classi-
fiers with random selection as described in Section 5. From
Section 5.1, we know that such an ensemble is not secure
against white-box adversaries. Using attacks like SAGA,
an adversary can blend the gradients of different models
and the self-attention of Transformers. This results in a high
percentage of adversarial examples that are misclassified by
all the classifiers. However, this type of attack relies heav-



ily on the white-box capabilities of the adversary. Without
knowledge of the models in the ensemble and their trained
parameters, this type of attack would not work. This brings
up a new possibility. Can transferability (through an en-
semble) provide security when individual model gradients
are not available to the attacker?

6.1. Black-Box Attack Parameters and Adversarial
Model

Adversarial Model: In this section we consider two of
the main types of black-box adversaries, query-based [3]
and transfer-based adversaries [29]. For the query based
adversary, we test one of the most recent attacks, the RayS
attack [8]. In this attack, the adversary generates an ad-
versarial example by repeatedly querying the defense and
adjusting the noise accordingly. For the transfer attack, we
implement the Adaptive Black-Box Attack [26]. This attack
is a stronger version of the Papernot attack originally pro-
posed in [29]. Here the attacker has access to a percentage
of the original training data, query access to the defense and
the ability to train a synthetic model to generate adversarial
examples. In this attack, the adversary queries the defense
to obtain labels for the training data. It then uses the data la-
beled by the defense to train an independent classifier (syn-
thetic model). A white-box attack is then performed on the
trained synthetic model. The resulting adversarial examples
are then tested on the defense.

Attack Parameters: For all black-box attacks, we use
the same basic set of constraints as described in section 3.1.
The noise the adversary can generate is bounded by the
l∞ norm with ε = 0.031 for CIFAR-10/CIFAR-100 and
ε = 0.062 for ImageNet. For the RayS attack, we give the
adversary a budget of 10, 000 queries per sample. For the
Adaptive attack, we give the adversary 100% of the training
data. For the synthetic model in this attack, we used ViT-
B-32 pre-trained on ImageNet-21K. We also experimented
with CNN based synthetic models, however these did not
perform as well on our ensemble defense. It should also
be noted the 100% strength attack requires a huge amount
of computation. Due to this we only show the results for
CIFAR-10 for the Adaptive attack. For RayS, we show re-
sults for all three datasets.

6.2. Black-Box Attack Analysis

In Figure 3, we show the results graphically for the RayS
and Adaptive attack. We consider three different model
configurations. We test an ensemble of one Vision Trans-
former (ViT-L-16) and one Big Transfer Model (BiT-M-
101x3 for CIFAR-10/CIFAR-100 and BiT-M-152x4 for Im-
ageNet). We also test a single ViT-L model and a single
CNN (ResNet-56 for CIFAR-10/CIFAR-100 and ResNet-
50 for ImageNet). While slightly redundant, we do test
other ensemble configurations (and individual Big Transfer

RayS CIFAR-10 RayS CIFAR-100 RayS ImageNet
Adaptive
CIFAR-10

ViT/BiT 81.0% 82.0% 58.0% 57.0%

ViT-L-16 14.5% 9.0% 25.9% 30.8%

ResNet 0.8% 0.3% 3.1% 3.6%
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60.0%

80.0%

100.0%

Figure 3. Robust accuracy (higher is better) of different model con-
figurations under black-box attacks. Here ViT/BiT is an ensem-
ble containing a Vision Transformer (ViT-L-16) and a Big Trans-
fer Model (BiT-M-101x3 for CIFAR-10/CIFAR-100 and Bit-M-
R152x4 for ImageNet.

Models) in the supplementary material for those interested.
The robust accuracy (percent of adversarial samples cor-

rectly identified by the defense) are shown in Figure 3 for
each attack. Here we observe the most significant result
of our paper: a simple ensemble including a Vision Trans-
former and Big Transfer model drastically improves secu-
rity. For RayS, we observe an increase of 66.5%, 73%
and 32.1% in robust accuracy for CIFAR-10, CIFAR-100
and ImageNet respectively. For the CIFAR-10 Adaptive at-
tack, even when the adversary has 100% of the training data,
query access and a synthetic model pre-trained on the same
dataset as the defense (ImageNet-21K), we can still achieve
a robust accuracy of 57%. For the Adaptive attack that rep-
resents an improvement of 26.2% over a single model.

We also stress that this improvement does not come at
the cost of clean accuracy. The average clean accuracy of
the ensemble is 98.2%, 92.83% and 85.37% for CIFAR-10,
CIFAR-100 and ImageNet respectively. By leveraging the
low transferability phenomena we previously studied, we
are able to create a defense that achieves near state-of-the-
art performance on clean data and gives significant black-
box robustness.

7. Conclusion

The introduction of Vision Transformers represents new
opportunities for the field of adversarial machine learning.
By analyzing these new models, we are the first to uncover
several intriguing properties: First, using six different at-
tacks, we showed individual Vision Transformers are just as
vulnerable as their CNN counterparts to white-box adver-
saries. Second, we studied the transferability of adversar-
ial examples between Vision Transformers and other model
genusus using eight different models for CIFAR-10/CIFAR-
100 and seven different models for ImageNet.

We demonstrated that the transferability between differ-



ent model genusus are in general, remarkably low. We then
showed this phenomena does not yield white-box security
by developing a new white-box attack, the Self-Attention
Gradient Attack (SAGA). Finally, we showed that under
a black-box adversary, the transferability phenomena can
be used to achieve robustness. Using a two model ensem-
ble, we demonstrated robustness to black-box adversarial
attacks. This included improving the robust accuracy by
as much as 60% in some cases, all while maintaining near
state-of-the-art clean accuracy on CIFAR-10, CIFAR-100
and ImageNet. Through our comprehensive experiments
and analyses, we show how Vision Transformers advance
security in the field of adversarial machine learning.
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ON THE ROBUSTNESS OF VISION
TRANSFORMERS TO ADVERSARIAL

EXAMPLES SUPPLEMENTAL
MATERIAL

A. Supplementary Material Organization

In this section, we briefly describe the organization of
our supplementary material so that readers can find perti-
nent material with ease. Overall our supplementary material
provides more white-box experiments, more black-box ex-
periments, results for adversarial training of Vision Trans-
formers and further investigation of the transferability phe-
nomena observed in the main paper.

White-Box and Black-Box Attacks: We start with full
descriptions of the white-box attack used in this paper and
their corresponding parameters in section B. In this section,
we also provide the CIFAR-100 white-box attack results
not given in the main paper (due to brevity as well as re-
dundancy). Aside from the conventional white-box attacks,
we also give more details for the Self-Attention Gradient
Attack (SAGA) in section C. We follow up our white-box
type of attack sections with a full description of the black-
box adversarial model and attack parameters in section D.
In this section we also include black-box attack experimen-
tal results on individual models (Vision Transformers, Big
Transfer Models and ResNets) for RayS. In addition, we
further provide a series of hyperparameter experiments used
to fine-tune the transfer based black-box attack (also known
as the adaptive black-box attack). The results of these hy-
perparameter experiments reveal some very interesting im-
plications for the design of future black-box attacks.

Decision Region Graphs and Transferability: In sec-
tion E we delve further into the transferability phenomena.
We start by discussing recent work that mathematical shows
the equivalence between Transformers and CNNs. We then
empirical show how the conditions under which this equiva-
lence happens does not likely occur for Vision Transformers
and other CNNs. We demonstrate this empirical by graph-
ing the decision regions for different Vision Transformers
and CNNs for CIFAR-10, CIFAR-100 and ImageNet.

Adversarial Trained Vision Transformers: One topic
that is a major part of the field of adversarial machine learn-
ing, but we didn’t have space to cover is adversarial training.
Can Vision Transformers be adversarial trained as well as
CNNs? We answer this question by experimenting with dif-
ferent adversarial training techniques on Vision Transform-
ers and CNNs for CIFAR-10 and CIFAR-100 in section F.
Lastly in section G we provide some additional numerical
tables for our results that are not of extreme importance, but
may assist anyone wishing to replicate our results.

B. White-Box Attacks
In this section, we mathematically define the white-box

adversarial model. We also give detailed descriptions of the
white-box attacks tested in this paper. Along with the attack
descriptions, we also list the parameters we choose for each
white-box attack.

B.1. White-Box Adversarial Model

Mathematical Description: Formally, we can mathe-
matically describe our adversarial model follows: We start
with a classifier C with (trained) parameters θ. Given input
x, the classifier outputs label y such that C(x, θ) = y. The
goal of the adversary is to create an adversarial sample xadv
from x such that:

C(xadv, θ) 6= y (7)

where xadv is created from x using attackA. That is xadv ,
A(x) and xadv is subject to the following constraint:

‖x− xadv‖p ≤ ε (8)

where p is the type of norm used to measure the distance
between x and xadv and ε is the maximum allowed distance
between x and xadv . Finally, there is one additional con-
straint. The image must be within a valid pixel range:

x ∈ [pmin, pmax]
n×m×r (9)

where in equation 9, pmin and pmax refer to the minimum
and maximum pixel values of a valid image, n and m refer
to the size of the image and r represents the number of color
channels in the image.

Adversarial Capabilities: In the white-box adversarial
model the adversary has knowledge of C, θ, x and y. Here
C represents the type of classifier (e.g. CNN) and classifier
architecture (e.g. ResNet-56). They also know the trained
parameters of the classifier θ. For a CNN or Transformer
this would be the weights and biases of the classifier model.
Lastly, the adversary has a clean example x and correspond-
ing class label y. In this paper, we focus on the untargeted
attack model. This means the adversary succeeds if and
only if equation 7, equation 8 and equation 9 all hold true.

B.2. Types of White-Box Attacks

In a white-box attack, the adversary crafts xadv from x
using technique A. The choice of A can heavily affect the
success rate of the attack (the percent of samples that are
misclassified by C). From the literature, there are many
different techniques to craft white-box attacks. Below we
describe each of the attacks we test in this paper:

1. Fast Gradient Sign Method - The Fast Gradient Sign
Method (FGSM) [13] creates adversarial examples



through the addition of non-random noise in the di-
rection of the gradients of the loss function:

xadv = x+ ε ∗ sign(∇xL(x, y; θ)) (10)

where L is the loss function of the classifier C. Note
that in Equation 10, only the sign of the loss function
is used and the magnitude of the second term is dic-
tated by ε, which is a small perturbation added to the
image x. It is also important to note that this is a single
step attack. The adversary only backpropagates on the
model once to obtain the gradient of the loss function
and then applies this directly to x.

2. Projected Gradient Descent - Projected Gradient
Descent (PGD) [24] is a multi-step variant of the
FGSM algorithm. It attempts to find the minimum
bounded perturbation that maximizes the loss of a
model through initializing a random perturbation in a
ball of radius d with center x. A gradient step is taken
in the direction of the greatest loss and the perturbation
is then projected back into this ball. The k-step PGD
algorithm initializes x0 = x and the perturbed image
xi in the ith step is computed as:

xi = P (xi−1 + α ∗ sign(∇xL(xi−1; y; θ))) (11)

where P is the projection function that projects the ad-
versarial data back into the ε-ball centered at xi−1 if
necessary, and α is the step size. The bounds on the
projection are defined by the lp norm.

3. Backward Pass Differentiable Approximation
- Backward Pass Differentiable Approximation
(BPDA) [2] is an attack designed to overcome non-
differentiable functions that would ordinarily prevent
the use of backpropagation to generate adversarial
examples. BPDA is capable of creating effective
adversarial examples for those cases in which the de-
fense employs gradient masking or another technique
in which the gradient is obfuscated. The gradient can
be obfuscated in one of three ways: shattered gradi-
ents, stochastic gradients, and exploding/vanishing
gradients. Shattered gradients in a defense either in-
troduce numerical instability or cause a gradient to be
nonexistent or incorrect [2]. Stochastic gradients are
generally a result of randomized defenses. Exploding
and vanishing gradients generally occur in recurrent
neural networks.

For a neural network f(·) = f1...j with a non-
differentiable layer f i(·), the first step of BPDA is to
find a differentiable function g(x) that approximates f i.
The gradient of the network f,∇xf(x), is then approx-
imated by performing a forward pass through f(·), and
then only on the backward pass replacing f i(x) by

g(x). Adversarial examples are generated using a sim-
ilar approach to PGD [24].

4. Momentum Iterative Method - A subset of gradient
descent approaches, the Momentum Iterative Method
(MIM) [11] applies a velocity vector in the direction
of the gradient of the loss function across iterations.
Momentum is used to create the gradient:

x′i = clipx,ε(x
′
i−1 +

ε

r
∗ sign(g(i))) (12)

Since MIM takes into account previous gradients, it
is able to overcome narrow valleys, small bumps, and
local minima and maxima. Specifically, the momen-
tum algorithm gathers the gradients of t iterations with
a decay factor µ. The adversarial example x∗t is per-
turbed in the direction of the accumulated gradient
with a step size of α. Note that if µ = 0, the MIM
algorithm degenerates to iterative FGSM.
For targeted attacks, the aim of finding an adversarial
example misclassified as a target class y∗ is to min-
imize the loss function J(x∗, y∗). The accumulated
gradient is derived as follows:

gt+1 = µ ∗ gt +
J(x∗t , y

∗)

||∇xJ(x∗t , y∗)||1
(13)

For a targeted attack with an L∞ norm bound, the ad-
versarial computation becomes:

x∗t+1 = x∗t − α ∗ sign(gt+1) (14)

5. Carlini and Wagner Attack - The aim of the Carlini
and Wagner (C&W ) attack [7] is to perturb an image
by a minimal delta such that the image will be misclas-
sified. The following objective function is used to find
the adversarial noise:

min ||1
2
(tanh(ω) + 1)− x||22 + c · f(1

2
(tanh(ω) + 1))

(15)

f(x′) = max(max{Z(x′)i : i 6= t} − Z(x′)t,−κ)
(16)

where f is the best objective function, ω is the pertur-
bation, t is the chosen target class, κ is a constant that
controls the confidence with which the sample is mis-
classified, Z(x′) is the output from the logits layer, and
c is a constant chosen through binary search. C&W is
an iterative attack because the objective of the C&W
attack is formulated as an optimization problem, as
given by Equation 15.

6. Auto Projected Gradient Descent - Auto Projected
Gradient Descent (APGD) [10] is an automated ver-
sion of PGD in which the step size is not fixed, but



instead changes adaptatively. In APGD, the total iter-
ations are divided into an exploration phase and an ex-
ploitation phase. A larger step size is used in the for-
mer phase, allowing for quicker exploration, while a
smaller step size is used in the latter phase to fine-tune
the maximization of the loss function. The choice of
step size in APGD is determined by a budget of Niter
iterations and the cumulative progress of optimization,
as defined by two conditions in equations 17 and 18:

wj−1∑
i=wj−1

1f(x(i+1))>f(x(i)) < ρ ∗ (wj − wj−1), (17)

η(wj−1) ≡ η(wj) ∧ f (wj−1)
max ≡ f (wj)

max (18)

where wj are the checkpoints at which the algorithm
can reduce the step size by a factor of 2 and fkmax is the
highest objective value reached in the first k iterations.
If one of the above two conditions is met, then the step
size at iteration k = wj is halved and η(k) := η(wj)/2
for every k = wj+1, ..., wj+1. A version of the Auto-
PGD which uses cross-entropy is referred to as APGD-
CE. This attack was shown to be the best performing
attack of the different APGD variatons [10]. There-
fore, we use APGD-CE in our white-box attacks.

C. Self-Attention Gradient Attack (SAGA)
In the main paper we introduced the Self-Attention Gra-

dient Attack (SAGA). Here, we provide some additional ex-
perimental results and parameters related to our attack.

SAGA Adversarial Images: In figure 4 and figure 5
we show some examples of the adversarial images gener-
ated by SAGA for CIFAR-10 and ImageNet. We generate
these images from a defense comprised of ViT-L-16 and
BiT-M-R101x3 for CIFAR-10 and ViT-L-16 and BiT-M-
R152x4 for ImageNet. In the attack we use the l∞ norm
and ε = 0.031 for CIFAR-10 and ε = 0.062 for ImageNet.
From these figures, it is clear that just like other white-box
attacks, SAGA is capable of creating adversarial examples
with minimal visual perturbations.

SAGA Hyperparameters: In the main paper we men-
tioned that the scaling factors αk must be chosen carefully
for each model when running SAGA. In table 6 we give
the α values and the corresponding robust accuracies for
each attack. From the table, it can clearly be seen that sim-
ple averaging (α1 = 0.5α2 = 0.5) does not yield a high
attack success rate (low robust accuracy). For example,
for the Bit/ViT defense for CIFAR-10 the robust accuracy
with simple averaging yields an average robust accuracy of
47.5%. However, when each α is fine-tuned properly, it
yields a robust accuracy of only 26% (an attack success rate
of 74%).

It is also worth noting that some α values are very dif-
ferent in value. For example, α1 = 0.998 for ViT-L-16 but
only 2e − 4 for BiT-M-R101x3 for SAGA for CIFAR-10.
A natural question would be, why do we even need to take
into account the gradient for BiT-M-R101x3, couldn’t it be
0? The simple answer to this question is even though some-
times the α values are small, they are critical to crafting ad-
versarial examples that are misclassified by BOTH models.
For empirical proof that a single gradient does not suffice,
one needs only to look again at the transferability results in
table 2 in the main paper.

ResNet SAGA Results: In the main paper we tested Vi-
sion Transformer/Big Transfer Model combinations. SAGA
can also can work on other Vision Transformer/CNN com-
binations as well. In table 6 we demonstrate a proof of con-
cept of this by attacking a ViT-L-16/ResNet-164 pair for
CIFAR-10. Here we can see that just like that ViT/BiT com-
bination, the ViT/ResNet combination is not secure against
SAGA as the robust accuracy is only 15%.

D. Black-Box Attacks

In this section, we mathematically define the black-box
adversarial model. We also give detailed descriptions of the
black-box attacks tested in this paper. Along with the attack
descriptions, we also list the parameters we choose for each
attack. Unlike section B where a single adversarial model
suffices, here we break the black-box adversarial model into
two distinct types: query based and transfer based models.

Before we discuss the differences, it is important to note
the basic commonality between the two threat models. A
successful attack is still defined the same for all threat mod-
els. Specifically, the three conditions we previously defined
must hold. First, the adversarial sample must be misclas-
sified (equation 7). Second, the adversarial sample xadv
must be within a certain distance of the original sample x
(equation 8). Third, the adversarial sample must have pix-
els within a valid range (equation 9).

The other commonality between the two black-box ad-
versarial models are the components that make up the de-
fense: a classifier C with trained parameters θ. In contrast
to the white-box adversary, we will also explicitly define ad-
ditional training components. We define the training sam-
ples that C was trained on to obtain θ as the set (X,Y ). Let
us also define the pre-training dataset as (X

′
, Y
′
). Here the

pre-training dataset is only applicable to Vision Transform-
ers and Big Transfer Models where the pre-training dataset
(X
′
, Y
′
) is ImageNet-21K and the training dataset (X,Y )

is either CIFAR-10, CIFAR-100 or ImageNet.

D.1. Query Based Adversarial Model

Adversarial Capabilities: For the query based adver-
sarial model the attacker lacks knowledge of θ, the specific



Table 3. White-box attacks on Vision Transformers, Big Transfer Models and ResNets. The attacks are done using the l∞ norm with
ε = 0.031 for CIFAR-10 and ε = 0.062 for ImageNet. In this table the robust accuracy is given for each corresponding attack. The last
column ”Acc” refers to the clean accuracy of the model. In the main paper part of this table was also presented (see table 3.1) but without
CIFAR-100 results for brevity. The table here represents the full white-box attack results.

CIFAR-10
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-32 37.9% 1.8% 17.6% 4.4% 0.0% 0.0% 98.6%
ViT-B-16 39.5% 0.0% 20.3% 0.3% 0.0% 0.0% 98.9%
ViT-L-16 56.3% 1.2% 28.7% 5.9% 0.0% 0.0% 99.1%
ViT-R50 40.8% 0.1% 13.4% 0.2% 0.0% 0.0% 98.6%
BiT-M-R50x1 66.0% 0.0% 14.9% 0.0% 0.0% 0.0% 97.5%
BiT-M-R101x3 85.2% 0.0% 17.1% 0.0% 0.0% 0.0% 98.7%
ResNet-56 23.0% 0.0% 5.0% 0.0% 0.0% 0.0% 92.8%
ResNet-164 29.0% 0.0% 5.4% 0.0% 0.0% 0.0% 93.8%

CIFAR-100
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-32 20.8% 1.9% 13.4% 3.1% 0.0% 0.0% 91.7%
ViT-B-16 20.4% 0.0% 11.9% 0.5% 0.0% 0.0% 92.8%
ViT-L-16 33.0% 1.6% 15.1% 4.7% 0.0% 0.0% 94.0%
ViT-R50 22.0% 0.2% 9.7% 0.4% 0.0% 0.0% 91.8%
BiT-M-R50x1 36.0% 0.0% 7.0% 0.0% 0.0% 0.0% 87.4%
BiT-M-R101x3 1.2% 0.0% 0.4% 0.0% 0.0% 0.0% 91.8%
ResNet-56 6.0% 0.2% 3.3% 0.4% 0.0% 0.0% 71.6%
ResNet-164 7.6% 0.3% 3.7% 0.9% 0.0% 0.0% 74.2%

ImageNet
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-16 23.1% 0.0% 7.3% 0.0% 0.0% 0.0% 80.3%
ViT-L-16 (224) 27.9% 0.0% 8.4% 0.0% 0.0% 0.0% 82.0%
ViT-L-16 (512) 29.8% 0.0% 8.4% 0.0% 0.0% 0.0% 85.4%
BiT-M-R50x1 28.7% 0.0% 3.5% 0.0% 0.0% 0.0% 79.9%
BiT-M-R152x4 60.9% 0.0% 15.2% 0.0% 0.0% 0.0% 85.3%
ResNet-50 11.8% 0.0% 1.4% 0.0% 0.0% 0.0% 74.5%
ResNet-152 18.1% 0.0% 2.7% 0.0% 0.0% 0.0% 77.0%

Table 4. White-box attack parameters for CIFAR-10.
Attack Parameters
FGSM ε = 0.031
PGD ε = 0.031, εstep = 0.00155, steps = 20
BPDA ε = 0.031, steps = 100, max iterations = 100, learning rate = 0.5
MIM ε = 0.031, εstep = 0.00155, decay factor = 1.0
CW confidence = 50, step size = 0.00155, steps = 30
APGD ε = 0.031, number of restarts = 1, ρ = 0.75, n2 queries = 5000

classifier architectureC, the training set (X,Y ) and the pre-
training set (X

′
, Y
′
). The adversary starts with a clean ex-

ample x and is able to query the classifier C, with differ-
ent perturbations (e.g. x + ε).The adversarial model here
is constrained by the fact that for each example x, only a
fixed number of queries q can be done on C. In this threat
model the type of response from the classifier C also mat-
ters. When the adversary queries C, the defense can return
either the hard label (class label only) or the corresponding
probability vector. To narrow our scope of study, in this pa-
per we consider the adversary which only has access to the
hard label.

Attack Setup and Discussion: To test query based ad-
versaries we use the RayS attack [8]. We use 1000 clean
examples for CIFAR-10 and ImageNet. In our attacks we
set the query budget q to be 10, 000 for each sample. We
use ε = 0.031 for CIFAR-10 and ε = 0.062 for ImageNet
in conjunction with the l∞ norm. Due to the high compu-
tational complexity of the attack, we only test single mod-
els for CIFAR-10 and ImageNet. We omit CIFAR-100 and
BiT-M-R152x4. Our attack results are shown in table 7. In
general, it can be seen single models are not robust to the
RayS attack as no model has more than 30% robust accu-
racy.



Table 5. White-box attack parameters for ImageNet.
Attack Parameters
FGSM ε = 0.062
PGD ε = 0.062, εstep = 0.0031, steps = 20
BPDA ε = 0.062, steps = 100, max iterations = 100, learning rate = 0.5
MIM ε = 0.062, εstep = 0.0031, decay factor = 1.0
CW confidence = 50, step size = 0.0031, steps = 30
APGD ε = 0.062, number of restarts = 1, ρ = 0.75, n2 queries = 5000

Figure 4. Adversarial images generated using SAGA on CIFAR-10. The top row of images are the the clean images generated from the
CIFAR-10 test set. The bottom row of images are the adversarial images generated using SAGA with the l∞ norm and ε = 0.031.
These images correspond to SAGA when the models are ViT-L-16 and BiT-M-R101x3. Visually, there is very little perceivable difference
between the clean and adversarial images generated by SAGA.

D.2. Transfer Based Adversarial Model

Adversarial Capabilities: The transfer based adversary
is granted a wide range of abilities. Specifically, a transfer
based adversary may know part or all of the original train-
ing data (X,Y ) for C. They may also have access to the
pre-training data (X

′
, Y
′
). Unlike query based adversaries,

the transfer based adversary is not restricted in terms of the
number of queries made to C. The only thing not given
to the adversary is the architecture classifier for C and the
trained parameters θ. The general strategy for the trans-
fer based adversary is as follows: the attacker starts with an
untrained classifier S. Note S is often referred to as the syn-
thetic model. If the adversary has access to the pre-training
data, they start by training S with (X

′
, Y
′
). The adversary

then queries C to label the training set X . They then trains
S on (X, Ŷ ), where Ŷ are the hard class labels obtained
from C. Once S has been trained, a white-box attack A can
be run on S to generate adversarial examples. These exam-
ples are then applied to C in the hopes that the adversarial
samples are able to ”transfer” from S to C.

Attack Setup and Discussion: For a transfer attack sev-
eral components must be selected. These components in-
clude the synthetic architecture S, the percent of training
data (X,Y ) visible to the adversary, and the type of white-
box attack A that will be used on S to generate adversarial
examples. Ideally, we want to test under the strongest pos-
sible adversary. This means a careful choice of S and using
100% of the training data. However, as these experiments
are time consuming (each attack requires training a syn-
thetic model from scratch) we first conduct several smaller
scale experiments to help us choose the hyperparameters for

the main attack. These results are show in table D.2 and fig-
ure 6. ForAwe use MIM attack to generate samples with S.
We set the maximum perturbation ε = 0.031 for CIFAR-10
and experiment with a range of different synthetic models
S.

From the hyperparameter experiments we can notice a
few interesting results. First of all when attacking a Vision
Transformer like ViT-L-16, the choice of synthetic model
greatly effects the robust accuracy. Even when only 10%
of the data is available if S is a Vision Transformer (ViT-B-
32) and it is pre-trained on ImageNet-21K, the robust accu-
racy is only of ViT-L-16 is only 53%. If the attacker uses
a synthetic model that is NOT pre-trained (but still ViT-B-
32) the robust accuracy is 92.4%. Now this brings up a new
dilemma for the attacker. Originally, in attacks on CNNs the
architecture of the synthetic model did not greatly effect the
performance of the attack [29]. Likely this is in part do the
fact that these attacks were transferring samples from CNNs
to other CNNs. However, the same result doesn’t hold for
Vision Transformers. Using a CNN (like VGG-16) does not
give a very high attack success rate. We can see that when
we do a 100% strength attack on ViT-L-16 using VGG-16,
the robust accuracy is still 46.8%. Compare this result to
the same attack with ResNet-56 and it can be seen that the
robust accuracy is only 4.8%.

In our hyperparameter experiments our main goal was to
find a good set of parameters for attacking Vision Trans-
former based defenses. In that respect, our experiments
accomplish this. We can see using a pre-trained ViT-B-32
with even just 10% of the training data gives good attack re-
sults. However, our experiments also uncover a much more



Figure 5. Adversarial images generated using SAGA on ImageNet. The top row of images are the the clean images generated from the
ImageNet validation set. The bottom row of images are the adversarial images generated using SAGA with the l∞ norm and ε = 0.062.
These images correspond to SAGA when the models are ViT-L-16 and BiT-M-R152x4. Visually, there is very little perceivable difference
between the clean and adversarial images generated by SAGA.

Table 6. Self-Attention Gradient Attack (SAGA) results for CIFAR-10, CIFAR-100 and ImageNet. In the table α1 represents the coefficient
used to scale the gradient of the ViT model and α2 represents the coefficient used to scale the gradient of the respective CNN. In the table
ViT corresponds to ViT-L-16 and BiT corresponds to BiT-M-R101x3 for CIFAR-10 and CIFAR-100 and BiT-M-R152x4 for ImageNet.
ResNet corresponds to ResNet-164.

CIFAR-10
α1 α2 Robust Acc ViT Robust Acc CNN Average Robust Acc

ViT/BiT 0.5 0.5 94.9% 0.1% 47.5%
ViT/BiT 0.9998 2.00E-04 27.3% 24.7% 26.0%
ViT/ResNet 0.5 0.5 7.3% 38.3% 22.8%
ViT/ResNet 0.01 0.99 15.1% 14.8% 15.0%

CIFAR-100
α1 α2 Robust Acc ViT Robust Acc CNN Average Robust Acc

ViT/BiT 0.5 0.5 3.7% 48.9% 26.3%
ViT/BiT 0.9985 0.0015 16.7% 14.5% 15.6%

ImageNet
α1 α2 Robust Acc ViT Robust Acc CNN Average Robust Acc

ViT/BiT 0.5 0.5 56.7% 0.2% 28.5%
ViT/BiT 0.99 0.01 13.3% 12.0% 12.7%

interesting concept. Unlike with CNNs where the choice
of architecture was not critical in the transfer attack, initial
experiments show Vision Transformers mandate a careful
choice of synthetic model S. By merely using Vision Trans-
formers in a defense, the transfer based attacker is put at a
new disadvantage. While it is beyond the scope of this work
to explore this notion further, it does pose an interesting new
challenge for black-box attack designers.

E. Discussion on White-Box and Transfer At-
tacks on the Vision Transformer

The Vision transformer as reported in [12] is an encoder-
based architecture. This architecture is an adaptation of the
Transformer architecture popular in Natural Language Pro-
cessing applications. While the original Transformer from
Vaswani et al. [35] used both encoders and decoders for

sequence-to-sequence applications, the Vision transformer
is only Encoder-based. The input image to be fed to the
transformer is divided into equal-size patches. Then the se-
quence of these patches passes through an embedding layer.
Positional encoding is added to the embedding vector feed-
ing to a layer of encoders. The output dimension of each
encoder matches the input dimension, which makes it easy
to stack these encoders. The output from the last encoder is
fed to a linear network layer acting as a classifier.

The building blocks of an encoder are the “Attention”
network, followed by Batch Normalization with skip con-
nections. Many attention blocks are used in parallel (simi-
lar to feature maps in CNNs), which are referred to as the
“multi-headed self-attention network”. The self-attention
block uses three linear networks of query, key and value
parametrized by Wk, Wq , and Wv matrices. The query and
the key correspond to the positions of the input patches in



Table 7. RayS attack on single classifiers for CIFAR-10 and ImageNet. The robust accuracy for each model is reported in the table.
RayS CIFAR-10

ResNet-56 0.8%
ResNet-164 0.0%
ViT-B-16 8.2%
ViT-B-32 11.1%
ViT-L-16 14.5%
R50-ViT-B-16 22.9%
BiT-M-R50x1 0.9%
BiT-M-R101x3 3.7%

RayS ImageNet
ResNet-50 3.1%
ResNet-152 2.7%
ViT-B-16-224 1.6%
ViT-L-16 25.9%
ViT-L-16-224 3.3%
BiT-M-R50x1 3.1%

Table 8. Results of CIFAR-10 hyperparameter experiments for transfer attacks using different strength attacks and different synthetic
models.

Defense Model Synthetic Model Attack Strength Robust Acc
ViT-B-16 VGG-16 10.0% 79.9%
ViT-B-16 VGG-16 100.0% 46.8%
ViT-L-16 VGG-16 10.0% 84.4%
ViT-L-16 ViT-B-32 10.0% 92.4%
ViT-L-16 ViT-B-32 (ImageNet-21K) 10.0% 53.0%
ResNet-56 VGG-16 10.0% 22.6%
ResNet-56 VGG-16 100.0% 4.8%
BiT-M-R101x3 VGG-16 10.0% 66.1%

imageX for which we are interested in computing the atten-
tion with respect to each other. Once we have computed the
self-attention of the entire input set, we turn it into a proba-
bility distribution by the Softmax function. An encoder uses
multiple attention computations in parallel, where each at-
tention block is referred to as an attention head. Let N be
the number of p x p patches in an n x m image, and e be
the embedding size for each patch, then the positionally en-
coded input to the encoder is:

Xp = X + P (19)

where X , P ∈ RN×e, and P is the positional encoding for
the image patches. The computation for each attention head
i in terms of key, query and value networks can be described
as:

Ki = XpWk,i (20)
Qi = XpWq,i (21)
Vi = XpWv,i (22)

The self-attention Ai in an attention head i with nh number
of heads is computed as:

Ai = [softmax(QiK
T
i )/nh]Vi (23)

The output from all attention heads is concatenated and
passed through a linear layer parameterized by Wo, as
shown below:

MA = [concati∈nh
[Ai]]Wo + bo (24)

In a transformer, the multi-headed self-attention passes
through a batch normalization layer with the input being
added to the output of batch normalization in a ResNet-like
manner. Then, it further passes through a linear, and an-
other batch normalization layer. Thus, the output of the first
encoder Enc as a function of the position encoded input,
Xp , can be described as:

Enc(Xp) = batchnorm([[batchnorm(MA)+

Xp]Wl + bl]) + [batchnorm(MA) +Xp] (25)

where Wl and bl are the parameters of the linear network
of the encoder. After passing the input through a series of
encoders, a classifier is connected to the last output of the
final encoder, as:

y = Classifier(Enc(. . . Enc(Xp) . . .)) (26)
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Figure 6. Black-box transfer attack hyperparameter experimental results for CIFAR-10. The text in red on top of the bars indicates the
strength of the attack (what percent of the training data is available to the adversary). The bars themselves represent the robust accuracy
of the model under attack. The horizontal text represents the type of synthetic model S, used in the attack. The vertical text represents the
model being attacked. This experiment is important because it indicates which type of synthetic model works best when doing the actual
attack.

For any differentiable loss function L, operating on the
output of the transformer as given by equation 26, the com-
putation of ∂L/∂x = ∇x(L) requires that all components
of equation 26 be differentiable with respect to the input
x. Since equations 20 - 25 that contribute to equation 26
including the batch normalization are all closed-form dif-
ferentiable with respect to position encoded input Xp, and
sinceXp is a simple function of x,∇x(L) can be computed.
Thus an adversarial image can be efficiently created using a
white-box attack formulation. We confirm this empirically,
as all white-box attacks successfully compromise the clas-
sifier accuracies, resulting in zero robust accuracy for many
white-box attacks.

E.1. Transfer Attacks

From a black box adversarial robustness point of view,
one category of attacks is referred to as transfer attacks.
Here a new network model is created (referred to as the syn-
thetic model) and trained either on the same dataset as the
model under attack, or creating training data from querying
the input-output behavior of the target model. One funda-
mental question to ask is how the transformer-based mod-
els behave with respect to transfer attacks from a CNN-
based synthetic model and vice versa. An equivalency of
the Transformer model with the CNN based models un-
der some simplified assumptions was presented in [9]. The
multi-headed attention at pixel q for attention head h is ex-
pressed as (this is similar to our development in equation
24):

MA(X)q,: =
∑

h∈[Nh]

(
∑
k

softmax(Ahq,:)kXk,:)W
(h)+bout

(27)

For the h-th attention head, the attention probability is one
when k = q − f(h) and zero otherwise. The layer’s output
at pixel q is then shown to be equal to:

MA(X)q =
∑

h∈[Nh]

Xq−f(h),:W
(h) + bout (28)

The above can be seen to be equivalent to the convolution
operation. The development in [9] as shown above demon-
strates an equivalence in the Transformer and the CNN.
Here we mean equivalence in the sense that the transformer
can equivalently perform a k×k convolution if an appropri-
ate value matrixWv is chosen in an attention head. Whether
a transformer actually learns the appropriate Wv to perform
the equivalent convolution can only be answered empiri-
cally. Part of this empirical answer is given in the following
subsection where we study the decision regions created by
Transformers and CNNs.

E.2. Decision Region Graphs

One way to visually comprehend the transferability be-
tween different models is to examine their decision region
graphs. A decision region graph can be a visual representa-
tion of the different classification regions of a model using
a color coded 2-D graph. Decision region graphs for CNNs
trained on ImageNet were originally shown in [22].

For every dataset and model in this paper, we construct
the decision region graph. Formally, we can describe the
generation of the graph as follows: Each graph is con-
structed with respect to a single image I . For every model,
we use the same image I to build the graph (i.e. we use
sample 49443 from the validation set of ImageNet). Every
point on the graph corresponds to a class label for the given



image. The origin (x = 0, y = 0) corresponds to the orig-
inal (unperturbed) image. Outside the origin, the image is
perturbed according to the following equation:

I ′ = I + x · g + y · r (29)

where I ′ represents the new perturbed image, I represents
the original image, g represents the gradient of the image
with respect to the loss function of the model, and r rep-
resents a random noise orthogonal to g. In equation 29, x
and y represent coordinates on the graph which control the
magnitude of the adversarial noise g and random noise r.

The decision region graphs may be slightly difficult to
grasp at first but it comes with a natural intuitive explana-
tion. The origin of the graph represents the unperturbed
image I with the correct class label. As we move in the
x direction on the graph, we increase the magnitude of the
adversarial noise g that is added to I . This is analogous
to an FGSM attack using I in which we keep increasing
the size of the step (ε in equation 10). As we move in the
y direction on the graph, this represents adding more and
more random noise to I . When we move in both the x and
y directions, it represents a combination of adding random
noise and adversarial noise to the image. The last compo-
nent of the graph, color, represents the class label that the
model produces based on the perturbed input I ′. Essen-
tially, a decision region graph gives intuition about how the
model classifies images that are noisy and adversarial. The
decision region graphs for CIFAR-10, CIFAR-100 and Im-
ageNet are shown in figures 7, 8 and 9.

Decision Region Graph Analysis: In figure 7, the cor-
rect class label is represented by the color red. As we can
see at the origin, all models correctly classify the sample. It
can be noted that for the ResNets (ResNet-56 and ResNet-
164), their robustness is quite limited. We can see for both
these models there is only a small red sphere around the ori-
gin. As we move to larger and larger perturbations, the im-
age quickly becomes misclassified (the blue regions). For
the Vision Transformers and Big Transfer Models, we can
see that they are much more tolerant of noise. For exam-
ple, if we consider moving along the y axis (adding random
noise), none of the Vision Transformers misclassify the im-
age.

For figures 8 and 9, we can see a similar trend applies. In
figure 8, light blue represents the correct class label and in
figure 9, dark blue represents the correct class label. In gen-
eral, for both these figures we see the Vision Transformers
tend to handle random noise well (see along the y axis) and
the ResNets are very sensitive to perturbations. It should
also be noted in figure 9, the graph for BiT-M-R152x4 is
completely dark blue. This means that despite large per-
turbations, the model never fails to correctly classify the
image I . This should not be completely surprising as BiT-
M-R152x4 is one of the most complex models (in terms

of number of parameters) that we experiment with. We
mention complexity because it has been previously noted
that model complexity alone helps thwart adversarial at-
tacks [24].

There is one other important take away, the landscape of
the decision regions themselves are very different between
model genuses. In figure 7, for the ResNet models we can
see a small sphere of red surrounded by blue, for the Vi-
sion Transformers we can see large red regions around the
y axis and large light blue regions as we move in the x direc-
tion. While we cannot directly make conjectures based on
visualizations, the graphs do tend to support our main find-
ings. Specifically, we know from the results in table 2 that
the transferability between different models genuses is low.
The decision region graphs lend credence to this claim by
visually showing that the decisions regions between Vision
Transformers, ResNets and Big Transfer Models do indeed
look very different. Thus, we conjecture that even though
a Vision Transformer is capable of implementing convolu-
tions as described in [9], in practice we observe that this
may not be the case due to differing patterns of decision
boundaries.

F. Friendly Adversarial Training Defense for
Vision Transformers

Friendly Adversarial Training (FAT) [38] was recently
proposed to improve the adversarial defense of deep net-
works. It is a simple training technique that uses less strong
adversarial examples by employing an early stopping of the
PGD algorithm. By incorporating another parameter, τ , in
the PGD k-step algorithm (referred to as PGD-K-τ ), the
step amount τ by which the adversarial example crosses
the decision boundary can be easily controlled. The pseu-
docode for the FAT algorithm [38] is described below:

while K > 0 do

if arg maxi f(x̃) 6= y and τ = 0 then

break

else if arg maxi f(x̃) 6= y then

τ ←− τ − 1

end if

x̃←− P (α sign(∇x̃l(f(x̃), y)) + x̃)

K ←− K − 1

end while

As can be easily seen from the pseudocode, if K = τ ,
the PGD-K-τ algorithm becomes equivalent to the standard
PGD k-step algorithm. The application of FAT for creating
adversarial defense for ResNets had a slightly better robust
accuracy than e.g., Madry training, and a relatively lower
drop in clean accuracy [38]. For example, with FAT on the



Figure 7. Vision Transformer, Big Transfer Model and ResNet decision regions for CIFAR-10.

Figure 8. Vision Transformer, Big Transfer Model and ResNet decision regions for CIFAR-100.

WRN-30-10, the clean accuracy dropped from around 95%
to around 89%, resulting in a robust accuracy of around
46% when the PGD-20 attack was used.

We evaluate the performance of different Transformer-
based networks for different values of τ . The results are
presented in Table 9. From Table 9, it can be seen that the

adversarial robustness of the Vision Transformers with re-
spect to FAT is similar to the ResNet-based architectures.
For example, for ViT-L-16 with τ = 1, the clean accuracy
drops from 99.1% to 94.2%. The adversarial robustness in
this case is approximately 47%.



Table 9. FAT defense accuracy for ViT-B-32, ViT-B-16, ViT-L-16, and ResNet-164 architectures on CIFAR-10 and CIFAR-100. The
leftmost column in the table lists the model being tested; each model includes a subset of τ parameters for τ = 0, 1, 2, 10. The top row in
the table lists the attacks run, from FGSM to APGD. The last column in the table lists the clean accuracy of the tested model.

CIFAR-10
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-32 37.9% 1.8% 17.6% 4.4% 0.0% 0.0% 98.6%
τ = 0 30.8% 17.5% 14.5% 17.3% 1.5% 1.5% 95.5%
τ = 1 33.9% 32.2% 16.4% 23.6% 9.7% 5.9% 93.2%
τ = 2 37.8% 40.3% 23.6% 31.4% 20.8% 13.9% 90.8%
τ = 10 42.6% 51.1% 33.3% 38.8% 34.1% 29.4% 78.9%

ViT-B-16 39.5% 0.0% 20.3% 0.3% 0.0% 0.0% 98.9%
τ = 0 42.3% 34.0% 19.2% 29.0% 9.4% 4.1% 95.9%
τ = 1 43.2% 41.1% 26.3% 33.7% 19.3% 13.7% 93.8%
τ = 2 62.3% 25.4% 33.9% 25.1% 6.7% 5.4% 93.8%
τ = 10 43.1% 52.3% 36.8% 40.2% 35.0% 33.7% 73.3%

ViT-L-16 56.3% 1.2% 28.70% 5.9% 0.0% 0.0% 99.1%
τ = 0 51.7% 43.6% 29.2% 39.3% 20.6% 15.4% 95.7%
τ = 1 49.1% 47.0% 31.9% 39.4% 26.8% 19.6% 94.2%
τ = 2 57.4% 48.8% 33.5% 40.2% 29.4% 21.8% 92.4%
τ = 10 49.5% 55.4% 33.7% 45.8% 37.7% 33.6% 85.3%

ResNet-164 14.4% 3.0% 9.0% 2.2% 0.1% 0.0% 93.2%
τ = 0 47.7% 50.8% 39.5% 42.5% 34.6% 27.0% 90.3%
τ = 1 53.0% 56.2% 47.2% 49.0% 42.7% 34.4% 88.0%
τ = 2 56.2% 61.3% 50.0% 51.9% 46.9% 37.8% 86.4%
τ = 10 60.4% 64.8% 55.6% 57.6% 51.9% 44.5% 79.9%

CIFAR-100
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-32 20.8% 1.9% 13.4% 3.1% 0.0% 0.0% 91.7%
τ = 0 16.2% 6.9% 9.7% 7.6% 0.7% 1.2% 87.6%
τ = 1 21.6% 16.5% 9.3% 12.8% 5.2% 2.9% 81.3%
τ = 2 24.4% 23.0% 12.3% 17.5% 10.1% 5.4% 76.1%
τ = 10 26.4% 31.9% 20.5% 24.3% 20.1% 18.3% 58.6%

ViT-B-16 20.4% 0.0% 11.9% 0.5% 0.0% 0.0% 92.8%
τ = 0 16.6% 8.0% 7.6% 7.5% 0.5% 0.3% 87.5%
τ = 1 23.9% 20.0% 9.3% 15.7% 8.5% 4.8% 82.0%
τ = 2 26.0% 25.0% 12.8% 18.4% 13.3% 8.4% 77.0%
τ = 10 25.1% 29.0% 20.4% 22.7% 16.5% 16.1% 54.2%

ViT-L-16 33.0% 1.6% 15.1% 4.7% 0.0% 0.0% 94.0%
τ = 0 28.6% 19.1% 13.1% 17.7% 5.3% 5.2% 87.7%
τ = 1 27.7% 22.6% 14.3% 18.1% 11.4% 6.7% 83.0%
τ = 2 30.2% 26.5% 16.7% 22.0% 16.0% 9.7% 80.0%
τ = 10 31.4% 32.0% 23.0% 24.0% 20.2% 15.3% 64.1%

ResNet-164 7.6% 0.3% 3.7% 0.9% 0.0% 0.0% 74.2%
τ = 0 18.2% 16.1% 13.5% 12.2% 9.7% 6.8% 70.8%
τ = 1 23.5% 24.4% 19.3% 18.4% 17.3% 10.7% 66.8%
τ = 2 35.3% 32.3% 25.2% 26.3% 24.7% 17.6% 61.8%
τ = 10 45.6% 43.2% 34.5% 35.7% 28.9% 27.2% 55.0%



Figure 9. Vision Transformer, Big Transfer Model and ResNet decision regions for ImageNet.

G. Additional Tables And Codes
In this section we provide full numerical tables for some

of the charts and figures presented in our paper. Each table
is captioned with a description of which part of the main
paper that it corresponds to.

We also provide code to replicate our results. Code
for the ViT/BiT defense, the RayS attack, Adaptive at-
tack and SAGA for CIFAR-10 can be found on Github:
https://github.com/MetaMain/ViTRobust.

https://github.com/MetaMain/ViTRobust


Table 10. Full transferability results for CIFAR-10. The first column in each table represents the model used to generate the adversarial
examples, Ci. The top row in each table represents the model used to evaluate the adversarial examples, Cj . Each entry represents 1− ti,j
(the robust accuracy) computed using equation 3 with Ci, Cj and either FGSM, PGD or MIM. For PGD and MIM we use only 10 steps to
avoid overfitting the example to a paticular model. Based on these results we take the maximum transferability across all attacks and report
the result in table 2. We also visually show the maximum transerability ti,j in figure 1.

FGSM
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT-B-16 BiT-M-R50x1 BiT-M-R101x3 ResNet-56 ResNet-164

ViT-B-32 43.4% 55.3% 61.1% 76.6% 67.7% 68.9% 83.3% 83.3%
ViT-B-16 68.7% 41.3% 56.9% 80.3% 73.0% 73.7% 86.1% 86.0%
ViT-L-16 74.8% 61.6% 59.5% 82.7% 78.5% 80.1% 88.5% 88.5%
R50-ViT-B-16 82.6% 75.9% 79.9% 51.4% 72.2% 74.1% 81.9% 82.0%
BiT-M-R50x1 96.0% 94.0% 95.9% 95.6% 69.5% 86.0% 94.0% 93.8%
BiT-M-R101x3 97.4% 94.4% 86.3% 96.2% 86.1% 88.0% 95.5% 94.7%
ResNet-56 93.4% 92.4% 94.7% 91.2% 82.0% 91.2% 41.9% 43.0%
ResNet-164 93.2% 92.4% 95.3% 90.9% 82.9% 91.7% 45.1% 47.1%

PGD
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT-B-16 BiT-M-R50x1 BiT-M-R101x3 ResNet-56 ResNet-164

ViT-B-32 4.2% 49.1% 72.2% 93.4% 70.4% 74.3% 93.0% 92.9%
ViT-B-16 90.4% 0.4% 53.9% 97.1% 83.3% 85.1% 96.1% 95.9%
ViT-L-16 85.9% 32.4% 10.4% 94.4% 82.1% 81.7% 95.7% 95.5%
R50-ViT-B-16 93.7% 84.5% 91.3% 6.6% 69.7% 75.3% 90.3% 88.9%
BiT-M-R101x3 99.6% 97.5% 86.3% 98.7% 58.0% 0.0% 97.3% 96.8%
BiT-M-R50x1 99.9% 98.5% 99.4% 99.5% 0.0% 85.9% 98.2% 97.8%
ResNet-56 99.0% 97.9% 98.6% 98.4% 93.9% 96.9% 28.0% 28.7%
ResNet-164 98.7% 98.3% 99.1% 98.1% 92.6% 96.1% 28.7% 32.5%

MIM
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT-B-16 BiT-M-R50x1 BiT-M-R101x3 ResNet-56 ResNet-164

ViT-B-32 4.9% 15.9% 24.5% 65.1% 39.2% 38.0% 81.4% 80.1%
ViT-B-16 42.9% 0.9% 11.1% 77.4% 56.6% 55.0% 86.9% 86.0%
ViT-L-16 44.4% 21.6% 13.4% 69.7% 57.5% 55.3% 87.0% 85.2%
R50-ViT-B-16 60.4% 41.9% 48.5% 1.7% 39.0% 42.0% 73.3% 71.0%
BiT-M-R50x1 95.5% 89.1% 94.3% 95.3% 0.0% 48.6% 93.0% 91.0%
BiT-M-R101x3 91.4% 79.7% 88.0% 92.8% 24.1% 0.1% 92.2% 90.7%
ResNet-56 94.2% 91.0% 94.8% 90.3% 77.5% 88.2% 14.1% 12.8%
ResNet-164 94.2% 91.9% 95.0% 90.3% 77.7% 88.8% 16.4% 14.3%



Table 11. Full transferability results for CIFAR-100. The first column in each table represents the model used to generate the adversarial
examples, Ci. The top row in each table represents the model used to evaluate the adversarial examples, Cj . Each entry represents 1− ti,j
(the robust accuracy) computed using equation 3 with Ci, Cj and either FGSM, PGD or MIM. For PGD and MIM we use only 10 steps to
avoid overfitting the example to a paticular model. Based on these results we take the maximum transferability across all attacks and report
the result in table 2.

FGSM
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT-B-16 BiT-M-R50x1 BiT-M-R101x3 ResNet-56 ResNet-164

ViT-B-32 27.9% 40.2% 41.7% 59.2% 55.8% 57.4% 85.1% 86.0%
ViT-B-16 50.7% 25.3% 36.7% 64.9% 61.4% 59.9% 91.0% 92.5%
ViT-L-16 57.0% 41.7% 37.8% 65.7% 64.7% 65.1% 90.1% 90.5%
R50-ViT-B-16 66.3% 60.6% 64.3% 30.8% 56.1% 61.2% 90.8% 91.4%
BiT-M-R50x1 87.3% 83.1% 87.2% 86.0% 44.5% 68.8% 96.3% 96.6%
BiT-M-R101x3 85.5% 83.3% 85.8% 86.4% 70.4% 67.0% 96.2% 97.8%
ResNet-56 79.9% 77.8% 84.7% 77.3% 68.6% 78.1% 38.0% 40.8%
ResNet-164 77.9% 75.5% 84.5% 75.8% 64.9% 75.7% 36.1% 33.2%

PGD
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT-B-16 BiT-M-R50x1 BiT-M-R101x3 ResNet-56 ResNet-164

ViT-B-32 3.8% 36.4% 53.5% 80.9% 67.7% 68.5% 93.3% 95.0%
ViT-B-16 78.6% 0.7% 36.1% 90.3% 78.9% 80.2% 97.2% 97.6%
ViT-L-16 72.2% 17.9% 5.8% 85.0% 76.6% 75.2% 96.1% 96.2%
R50-ViT-B-16 85.6% 75.5% 82.3% 2.2% 62.7% 68.5% 94.3% 95.3%
BiT-M-R50x1 96.1% 94.7% 97.8% 96.1% 0.0% 76.9% 97.5% 98.7%
BiT-M-R101x3 94.8% 91.7% 95.2% 94.1% 52.3% 1.0% 97.9% 97.9%
ResNet-56 91.6% 91.0% 94.5% 89.4% 82.0% 89.9% 51.2% 56.6%
ResNet-164 89.2% 89.0% 92.8% 88.5% 78.4% 85.7% 43.6% 39.4%

MIM
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT-B-16 BiT-M-R50x1 BiT-M-R101x3 ResNet-56 ResNet-164

ViT-B-32 4.4% 11.5% 16.4% 47.8% 39.5% 38.9% 86.1% 87.4%
ViT-B-16 28.7% 0.9% 6.8% 61.4% 55.5% 52.1% 91.4% 93.3%
ViT-L-16 32.2% 11.7% 7.5% 51.9% 52.4% 50.0% 91.3% 90.5%
R50-ViT-B-16 48.4% 35.0% 37.7% 1.1% 35.9% 38.8% 89.0% 90.1%
BiT-M-R50x1 82.3% 75.0% 84.5% 81.8% 0.1% 43.5% 95.1% 94.8%
BiT-M-R101x3 75.1% 61.0% 73.7% 76.5% 26.0% 1.2% 94.3% 96.8%
ResNet-56 81.4% 80.5% 86.4% 78.9% 69.3% 79.5% 29.2% 31.1%
ResNet-164 78.3% 77.2% 84.8% 76.5% 64.1% 73.5% 25.5% 20.8%



Table 12. Full transferability results for ImageNet. The first column in each table represents the model used to generate the adversarial
examples, Ci. The top row in each table represents the model used to evaluate the adversarial examples, Cj . Each entry represents 1− ti,j
(the robust accuracy) computed using equation 3 with Ci, Cj and either FGSM, PGD or MIM. For PGD and MIM we use only 10 steps to
avoid overfitting the example to a paticular model. Based on these results we take the maximum transferability across all attacks and report
the result in table 2. Note due to the complexity of training ImageNet models we do not train independent copies of the model to measure
self-transferability (when i = j).

FGSM
ViT-B-16 ViT-L-16 (224) ViT-L-16 (512) BiT-M-R50x1 BiT-M-R152x4 ResNet-50 ResNet-152

ViT-B-16 + 40.8% 67.3% 63.2% 73.2% 56.0% 63.6%
ViT-L-16 (224) 40.1% + 59.6% 63.7% 75.4% 57.6% 61.7%
ViT-L-16 (512) 77.8% 69.3% + 74.6% 77.7% 74.5% 78.4%
BiT-M-R50x1 90.6% 91.6% 89.4% + 83.3% 81.2% 83.5%
BiT-M-R152x4 93.0% 93.9% 89.8% 83.4% + 86.8% 90.1%
ResNet-50 77.8% 82.3% 79.1% 61.6% 79.2% + 46.7%
ResNet-152 75.6% 78.8% 77.9% 61.0% 78.1% 40.7% +

PGD
ViT-B-16 ViT-L-16 (224) ViT-L-16 (512) BiT-M-R50x1 BiT-M-R152x4 ResNet-50 ResNet-152

ViT-B-16 + 36.1% 81.1% 83.1% 89.7% 79.0% 81.7%
ViT-L-16 (224) 22.7% + 62.6% 83.2% 88.8% 80.4% 80.6%
ViT-L-16 (512) 89.6% 83.5% + 84.3% 87.6% 87.6% 89.9%
BiT-M-R50x1 96.5% 96.8% 95.8% + 90.6% 89.2% 91.4%
BiT-M-R152x4 91.8% 97.3% 94.2% 85.4% + 93.0% 95.2%
ResNet-50 92.7% 94.2% 91.8% 77.8% 92.7% + 42.2%
ResNet-152 91.1% 93.3% 90.5% 77.4% 90.9% 30.1% +

MIM
ViT-B-16 ViT-L-16 (224) ViT-L-16 (512) BiT-M-R50x1 BiT-M-R152x4 ResNet-50 ResNet-152

ViT-B-16 + 10.9% 60.4% 59.2% 72.6% 56.6% 59.9%
ViT-L-16 (224) 9.1% + 35.5% 60.0% 73.1% 56.3% 59.2%
ViT-L-16 (512) 72.0% 56.6% + 65.7% 73.7% 71.6% 76.8%
BiT-M-R50x1 90.2% 91.6% 88.2% + 75.1% 75.3% 81.3%
BiT-M-R152x4 96.2% 92.4% 86.5% 72.0% + 84.9% 88.0%
ResNet-50 76.2% 81.2% 75.3% 44.7% 75.6% + 13.3%
ResNet-152 74.1% 77.9% 73.4% 45.9% 73.2% 10.6% +


