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Abstract

People are inherently social. Social interaction plays an important and natural role in human 

behavior. Most computational methods focus on individuals alone rather than in social context. 

They also require labelled training data. We present an unsupervised approach to discover 

interpersonal synchrony, referred as to two or more persons preforming common actions in 

overlapping video frames or segments. For computational efficiency, we develop a branch-and-

bound (B&B) approach that affords exhaustive search while guaranteeing a globally optimal 

solution. The proposed method is entirely general. It takes from two or more videos any multi-

dimensional signal that can be represented as a histogram. We derive three novel bounding 

functions and provide efficient extensions, including multi-synchrony detection and accelerated 

search, using a warm-start strategy and parallelism. We evaluate the effectiveness of our approach 

in multiple databases, including human actions using the CMU Mocap dataset [1], spontaneous 

facial behaviors using group-formation task dataset [37] and parent-infant interaction dataset [28].

 1. Introduction

Humans are inherently social. Accessing human social interaction, especially synchrony, 

provides a better understanding of human behavior. Synchrony refers to the temporal 

structure of behaviors among interactive partners [13]. The close connection between 

synchrony and interaction provides researchers promising perspectives to build social 

interfaces [34], robots [6] or conversational agents [18]. However, a lack of automatic tools 

for synchrony discovery limits the exploration in interactive abilities.

Most prior art emphasizes on learning individual behaviors, and thus requires adequate 

labeled training data. Successful instances encompass a number of applications, such as 

action recognition [15, 21, 35], facial expression analysis [12, 14, 24, 26, 40] and sign 

language interpretation [10]. However, these methods focus on single individuals without 

considering social behaviors that can be triggered by the perception of actions in others. 

E.g., during face-to-face interaction between mothers and their infants, they tend to match 

each other's affective states within lags of seconds. This synchrony improves the infant's 

experience of social connection during early development. Studying human interaction is 
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crucial, but currently, to the best of our knowledge, no commonly accepted method exists for 

discovering synchrony among interactive partners.

This paper presents an unsupervised approach to discover interpersonal synchrony that 

requires no training data. We term it unsupervised synchrony discovery (USD). Fig. 1 

illustrates our main idea in a scenario of mother-infant interaction: Given a two 

synchronized videos represented as multi-dimensional signals, we aim to find their 

synchrony within a temporal window. For each behavior produced by one partner, the 

synchrony is defined as overlapped video frames or segments for the other partner(s) to 

produce a common behavior. As can be seen, two synchronies were discovered by our 

approach, where the mother and infant exhibits mutual engagement of smiles.

In specific, USD models the coordination among individuals as a global optimization 

problem. Unlike a naive approach that exhaustively evaluates temporal regions with different 

lengths and locations, USD exploits a branch and bound (B&B) algorithm that allows an 

efficient search of a large collection of temporal windows. Along with two ways to 

accelerate the B&B search, USD guarantees to converge to a globally optimal solution with 

potentially fewer evaluations than exhaustive search. We showed the effectiveness of USD in 

discovering synchronies of human actions, group-formation tasks, and mother infant 

interaction.

In summary, our contributions are two-fold: (1) We present a new unsupervised technique 

for discovering synchrony in human interaction. To the best of our knowledge, our work is 

the first to match activity among individuals, providing an automatic tool to discover mutual 

engagement. (2) The proposed algorithm is general in two ways: it takes any signals 

represented as histograms, which can be bounded with standard metrics or three newly 

derived ones in this paper; it naturally generalizes to discover synchrony among more than 

two sequences. The algorithm is optimized to find an exact global solution, and can be 

further accelerated using a warm-start strategy and parallelism, showing an ability to handle 

large videos that are computationally prohibitive in exhaustive approaches.

 2. Related Work

Synchrony discovery closely relates to human behavior analysis. Below we categorize prior 

art into supervised and unsupervised approaches, and discuss each in turn.

 Supervised behavior analysis

Many techniques in computer vision for individual behavior analysis can be found in the 

literature, including facial expression recognition [14, 24, 26, 36, 40], surveillance system 

[16], activity recognition [15, 21, 35], and sign language interpretation [10]. Other works 

concern about the recognition of behaviors that involve more than one subject interacting in 

the scene. Brand et al. [5] introduced coupled hidden Markov models (CHMMs) to model 

dynamic interaction between multiple processes. Following up, Oliver and Pentland [33] 

proposed to recognize interaction between two people using HMMs and CHMMs, and 

concluded that CHMMs perform better in this task. Hongeng and Nevatia [20] proposed a 

hierarchical activity representation along with a temporal logic network for modeling and 
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recognizing interaction. More recently, Liu et al. [25] proposed to recognize group behavior 

in AAL environment (nursing homes). A switch control module was performed to alternate 

between two HMM-based approaches according to the number of individual present in the 

scene. Messinger et al. [27] focused on specific annotated social signals, i.e., smiling and 

gaze, and characterized the transition between behavior states by a maximum likelihood 

approach. Interested readers are referred to [7] for a review. These techniques, however, 

require adequate labeled training data, which can be time-consuming to collect and not 

applicable to our scenario.

 Unsupervised behavior analysis

The closest to our study is unsupervised approaches that require no training data. Zheng et 
al. [43] presented a coordinated motion model to detect motion synchrony in a group of 

individuals such as fish schools and bird flocks. Zhou et al. [44] proposed Aligned Cluster 

Analysis that extends spectral clustering to cluster time series. [44] applied the technique to 

discover facial events in unsupervised manner. Chu et al. [9] proposed a B&B approach to 

find time boundaries of common events happening in two videos. On the other hand, time 

series motifs, defined as the closest pair of subsequences in one time series stream, can be 

discovered with a tractable exact algorithm [29], or an approximated algorithm that is 

capable of tackling never-ending streams [4]. Some attempts on measuring interactional 

synchrony include using face tracking and expressions [42], and rater-coding and pixel 

changes between adjacent frames [38]. Nayak et al. [32] presented iterated conditional 

modes (ICM) to find most recurrent sign in all occurrences of sign language sentences. 

Recall that a synchrony is defined within a temporal window; it can contain subsequences 

from different videos that involve a temporal offset and sequence lengths different from each 

other. Given this structure, it remains unclear how a synchrony can be efficiently discovered 

using the above approaches.

 3. Unsupervised Synchrony Discovery (USD)

 3.1. USD for dyadic synchrony

 Segment-level feature mapping—To describe the static and dynamic information of 

a video segment, we extract two types of features as the segment-level feature mapping [8, 

19]: observation features extracted from a single frame, and interaction features extracted 

from two consecutive frames. Suppose the jth frame is described as a feature vector xj. We 

perform k-means to find k centroids  as the hidden states. The observation feature 

ϕobs(xj) describes the pseudo-probability of xj belonging to a state, and the interaction 

feature ϕint(xj) describes transition probability of states between two consecutive frames. As 

a result, we represent a video segment Xi
 = {xbi, ..., xei} between the  and the  frames 

by normalizing the sum of the concatenation of the two features, resulting in a feature vector 

. See [8,19] for details about the feature mapping.

 Problem formulation—To establish notion, we begin with two synchronized videos 

and  with n frames each. The problem of Unsupervised Synchrony Discovery (USD) 

consists on searching over all possible subsequence pairs and find the one that shows similar 
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patterns of change or movement. These pairwise patterns are known as dyadic synchrony. 

We formulate USD as an integer programming over two intervals [b1, e1]⊆[1, n] and [b2, e2]

⊆[1, n]:

(1)

where f(·, ·) is a similarity measure between two feature vectors (see details in Sec. 3.2), and 

ℓ controls the minimal length for each subsequence to avoid a trivial solution. T is a 

synchrony offset that allows USD to discover commonalities within a T-frame temporal 

distance, e.g., in mother-infant interaction, the infant could start smiling after the mother 

smiles for a few seconds. Problem (1) is non-convex and non-differentiable, and thus 

standard convex optimization methods can not be applied. A naive solution is an exhaustive 

search with complexity , which is computationally prohibitive for regular videos of 

several minutes.

 Algorithm—We adapt a Branch and Bound (B&B) approach that guarantees a globally 

optimal solution in Problem (1). B&B has shown success in many computer vision 

problems, e.g., object detection [22, 23], temporal commonality analysis [9], pose estimation 

[39] and optimal landmark detection [2]. For an event to be considered synchronous, they 

have to occur within a temporal neighborhood between two videos. For this reason, we only 

need to search within close regions in the temporal search space. Specifically, we constrain 

the space before the search begins, instead of exhaustively pruning the search space to a 

unique discovery (e.g., [9,22]).

Let r = [b1, e1, b2, e2] represent a rectangle in the 2-D search space. A rectangle set R = B1 × 

E1 × B2 × E2 in the search space indicates a set of parameter intervals, where 

and  are tuples of parameters ranging from frame lo to frame hi. We 

denote |R| as the number of possible rectangles in R. See Fig. 2(f) for an illustration of the 

notation. Let L=T + ℓ be the largest possible period to search, we initialize a priority queue 

Q with rectangle sets 

and their associated bounds (see details in Sec. 3.2). These rectangle sets lie sparsely along 

the diagonal in the 2-D search space, and thus prune a large portion during the search. Once 

all rectangle sets are settled, we adapt the Branch-and-Bound (B&B) strategy [9, 22] to find 

the exact optimum. Algo. 1 summarizes the proposed USD algorithm.

 3.2. Measures with bounds

For the sake of using the B&B framework, we need a proper measure for similarity (or 

distance) between two sequences. This section constructs novel bounding functions for three 

measures: cosine similarity, symmetrized KL divergence and symmetrized cross entropy. 
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Note that any measure with proper bounds (e.g., ℓ1, intersection, and χ2 in [9]) can be 

directly applied.

Let  denote the i-th sequence and can be represented as an unnormalized histogram hi or a 

normalized histogram ĥi. Let  and  be the k-th bin of hi and ĥi, respectively. The 

normalized histogram is defined as , where .  is 

the Euclidean norm of histogram of .  denotes the subsequence of  that starts from 

the b-th frame and ends in the e-th frame. Given a rectangle set R=B1 × E1 × B2 × E2, we 

denote the longest (shortest) possible subsequence as , as illustrated in Fig. 2(f). 

Let r = [b1, e1, b2, e2] ∈ R be a rectangle,  and , we observe the facts 

similar to [9]:

Given these facts, below we construct the bounds for similarity (or distance) measures with 

normalized histograms (ĥi and ĥj whereas those for unnormalized histograms can be 

likewise obtained.

 Cosine similarity—Treating two normalized histograms ĥi and ĥj as two vectors in the 

inner product space, we can measure the similarity as their included cosine angle:

(2)

Using facts (a) and (b), we obtain the bounds:

 Symmetrized KL Divergence—As ĥi and ĥj are non-negative and sum to one, they 

can be interpreted as two discrete probability distributions and measured using the 

symmetrized KL divergence:
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(3)

where DKL(ĥi∥ĥj) is the KL divergence of ĥj from ĥi. From fact (c) and that 

, we have . 

Then, we obtain the bounds for (3):

where (·)+ = max(0, ·) is a non-negative operator to avoid both terms in (3) being negative.

 Symmetrized cross Entropy—The symmetrized cross entropy [30] measures the 

average number of bins needed to identify an event by treating each other as the true 

distribution. Similar to KL divergence that treats ĥi and ĥj as two discrete probability 

distributions, the entropy function is written as:

(4)

Recall the fact (c) and that , , we obtain the bounds:

To compute the bounds, we used an implementation of integral image [41] that takes an 

 operation per evaluation. We refer interested readers to the supplementary material for 

detailed derivation of the above bounds. Fig. 2 shows a synthetic example of 1-D sequences 

with two pairwise synchronies, denoted as red dotted and green triangle segments, where 

one is a random permutation of another. USD discovered 3 dyads with the convergence 

curve in (b), and histograms of each dyad in (c)~(e). Note that the interaction feature 

distinguishes the temporal consistency for the first and second discovery, maintaining a 

much smaller distance than the third discovery.

 3.3. USD for triadic synchrony and more

We have described above how USD can discover dyadic synchrony with several bounding 

functions. In this section, we show that the main USD algorithm can be directly generalized 

and extended to capture mutual attention among a group (i.e., multiple sequences). 
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Specifically, we formulate the discovery among N sequences  by rewriting Eq. (1) 

as:

(5)

where F(·) is a similarity measure for a set of sequences and defined as the sum of pairwise 

similarities:

(6)

Given a particular rectangle set R and sequence pair ( , ), we rewrite their pairwise 

bounds in Sec. 3.2 as  and . The bounds for F(·, ·) can be defined as:

(7)

Given this bound, Algorithm 1 can be directly applied to discover multiple synchronies.

 Comparison with TCD [9]—Although Temporal Commonality Discovery (TCD) also 

performs unsupervised temporal discovery, this paper bears several technical differences. (1) 

New bounding functions: we introduce new bounds for cosine similarity, symmetrized KL 

divergence, and symmetrized cross entropy. These bounds enable applications of the B&B 

framework to domains where any of the metrics could be applicable. (2) Speed-up strategies: 

owing to the nature of the proposed problem, this paper introduces a warm-start and a 

parallelism approach for acceleration. TCD is sequential and thus can be very slow in 

practice. (3) Discover among >2 sequences: We offer a natural extension of USD for 

multiple sequences, whose effectiveness is shown in experiments. (4) TCD does not perform 

synchrony discovery.

 4. Extensions of USD

Given the USD algorithm described above, this section describes its extensions to discover 

multiple synchronies and two accelerate approaches with with warm start (USDΔ) and 

parallelism (USD#).

 Discover multiple synchronies

Multiple synchronies often occur in realistic videos, while the USD algorithm only outputs 

one synchrony at a time. To discover multiple synchronies, a trivial approach is to repeat 
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USD many times by passing the priority queue Q from the previous USD to the next. 

However, each branching step splits a rectangle set R into two, resulting in an exponentially 

growing Q and inefficient search. Here we adapt a pruning strategy to safely discard 

undesired branches before starting the next USD. Given a previously discovered rectangle r 

and Q from the previous USD, we update every R using pruning rules that avoids 

overlapping detection with r. Without loss of generality, Fig. 3(a) illustrates the pruning rules 

for updating E1 when overlapped with r, while the same rule applies for updating B1. For 

axes of both  and , all R overlapped with r is updated according to the illustrated cases, 

and otherwise discarded. The updated rectangle sets, along with their bounds, are then 

pushed back to Q for the next USD.

This strategy is simple yet very effective. The bounds remain valid because each updated set 

is a subset of R. In practice, it dramatically reduces the number of states for searching the 

next synchrony. For example, in the example of Fig. 2, the size of Q is reduced 19% for the 

second USD, and 25% for the third USD.

 USD with warm start (USDΔ)

Due to the B&B nature, USD exhibits poor worst-case behavior, leading to a complexity as 

high as that of exhaustive search [31]. On the other hand, B&B search can quickly identify 

the exact solution when a local neighborhood contains a clear optimum [22]. Given this 

motivation, we explore a “warm start” strategy that estimates an initial solution with high 

quality, and then initializes USD around the solution. Estimating an initial solution costs 

only few percentage of total iterations, and thus can effectively prune branches in the main 

USD algorithm. Fig. 3(b) illustrates the idea. Specifically, we run a sampled sliding window 

with stepsize=10, sort the visited windows according their distances, and then determine a 

warm start region around the windows within the lowest one percentile. Then the main USD 

algorithm is performed only within an expanded neighborhood around the warm start region.

 Parallelized USD (USD#)

The use of parallelism to speed up B&B algorithms has emerged as a way to solve larger 

problems [17]. Based on the block-diagonal structure in the search space, this section 

describes an parallelized approach USD# to scale up USD for larger sequences. Note that the 

parallelism was not shown possible in previous sequential method [9]. In specific, we divide 

USD into subproblems, and perform the USD algorithm solve each in parallel. Because each 

subproblem is smaller than the original one, the number of required iterations can be 

potentially reduced. As illustrated in Fig. 3(c), the original search space is divided into 

overlapping regions, where each can be solved using independent jobs on a cluster. The 

results are obtained as the top k rectangles collected from each subproblem. Due to the 

diagonal nature of USD in the search space, the final result is guaranteed to be a global 

solution. The proposed structure enables static overload distribution, leading to an easily 

programmable and efficient algorithm.
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 5. Experiments

We evaluated our method on discovering synchronies in a variety of video sources: human 

actions from CMU motion capture (Mocap) dataset [1], social group interaction from GFT 

dataset [37] and parent-infant interaction [28].

 5.1. Comparison and evaluation metric

To our best knowledge, there is no commonly accepted method that explicitly tackle the 

USD problem. Instead, we compare USD with a baseline sliding window (SW) approach, 

i.e., evaluate subsequently rectangles in the search space and take the maximal similarity (or 

minimal distance) as indicators for the existence of a synchrony. In particular, we 

implemented SW with an initialization of an ℓ × ℓ window, and gradually increment the 

window size along each dimension using a fixed step size s, i.e., multiple window scales 

were allowed. The window was moved every s frames among the same search region as 

USD. We compared SW and USD by their discovery speed and quality.

Evaluation of speed was computed by the number of function evaluations, to exclude factors 

in different hardware and implementation. For datasets for which labels are available (i.e., 

CMU Mocap [1] and GFT [37]), evaluation of quality was carried out using the recurrence 

analysis [13], which was originally designed to analyze a coupled dynamical system based 

on signal consistency. Let  be a collection of sequences with n frames each, 

 be a pairwise index set of { }, r be a discovered 

synchrony with ni frames along sequence , and  be the ground truth labels of 

, where each column represents labels of C classes.  denote the c-th class labels 

corresponding to the p-th frame in . For a given r, we define the recurrent consistency:

(8)

where I(X) is an indicator function returning 1 if the statement X is true and 0 otherwise. 

The quality measures the mutual agreement between each pair of the discovered 

subsequences, resulting in a score in [0,1]. The score reaches 1 when the discovered 

synchrony agrees completely on each other's label, and 0 when they completely disagree.

 5.2. Synchrony in human actions

This section examines the ability of USD to discover synchronies in human actions on the 

CMU Mocap dataset [1]. Mocap data provides high-degree reliability in measurement and 

serves as an ideal target for an initial test of our method. We used the Subject 86 data that 

contains 14 sequences labeled with action boundaries [3]. To remove the redundancy in 

action labels, we merged similar actions into 24 categories, e.g., {arm rotating, right arm 

rotation, raise arms, both arm rotation} were categorized as arm raise. Each action was 

represented by root position, orientation and relative joint angles, resulting in a 30-D feature 

vector. The segment-level feature was used as described in Sec. 3.1. To mimic a scenario for 
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USD, we grouped the sequences into 7 pairs as the ones containing similar number of 

actions, and trimmed each action to up to 200 frames. USD was performed using ℓ = 120 

and T = 50.

Table 1 summarizes the USD results compared with the baseline sliding window (SW). 

Results are reported using χ2-distance and the recurrent consistency described in (8). A 

threshold of 0.012 was manually set to discard discovery with large distance. We ran SW 

with step sizes 5 and 10, and marked the windows with the minimal distance as  and 

, respectively. Among all, USD discovers all results found by SW. To understand how 

well a prediction by chance can be, all windows were collected to report average μ and 

standard deviation σ. As can be seen, on average, a randomly selected synchrony can result 

in large distance over 100 and low quality below 0.3. USD maintained an exact minimal 

distance with good qualities as the ones found by exhaustive SW. Note that, because USD is 

totally unsupervised, the synchrony with minimal distance may not necessarily guarantee the 

highest quality.

Fig. 4 shows the qualitative results on all 7 pairs, annotated with ground truth and the 

discovered synchronies. As can be seen, USD allows to discover multiple synchronies with 

varying lengths. Although some discovered synchronies contain disagreed action labels, one 

can observe that the discoveries share reasonable visual similarity, e.g., in pair (9,10), the 

“look around” action in sequence 9 was performed when the subject was seated, sharing the 

similarity with the “sit” action in sequence 10.

Fig. 5 shows the speed up of USD against exhaustive SW. USD and its extensions 

demonstrated an improved efficiency over SW. In some cases, USDΔ improved search speed 

by a large margin, e.g., in (01,11) with χ2-distance reached a speed boost over 200 times. 

Across all metrics, the speed up of USDΔ was less obvious with symmetrized KL 

divergence. USD# was implemented on a 4-core machine; an extension to larger clusters is 

possible yet beyond the scope of this study. On average, USD# consistently performed faster 

across different metrics than the original USD due to parallelism.

 5.3. Synchrony in social group interaction

This section describes the discovery of synchronies in social group interaction. We used the 

GFT dataset [37] that consists of 720 participants recorded during group-formation tasks. 

Previously unacquainted participants sat together in groups of 3 at a round table for 30 

minutes while getting to know each other. We used 2 minutes of videos from 48 participants, 

containing 6 groups of two subjects and 12 groups of three subjects. USD was performed to 

discover dyads among groups of two, and triads among groups of three. Each video was 

tracked with 49 facial landmarks using IntraFace [11]. We represented each face by 

concatenating appearance features (SIFT) and shape features (49 landmarks). For evaluating 

the discovered results, we computed the recurrence quality using the action unit (AU) labels 

provided in the dataset. In particular, we used AUs (10,12,14,15,17,23,24) that appear most 

frequently.

As the minimal length ℓ is an empirical parameter to determine, we examined USD with ℓ ∈ 

{30, 60, 120}, resulting in synchronies that last at least 1, 2 and 4 seconds; we set the 
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synchrony offset T = 30 (1 second). Similar to Sec. 5.2, baseline SW was performed using 

step sizes 5 and 10. Symmetrized KL divergence was used as the distance function. We 

evaluated the distance and quality among the optimal window discovered, as well as the 

average and standard deviation among all windows to tell a discovery by chance. Fig. 6 

shows the averaged KL divergence and quality among top 10 discovered dyadic and triadic 

synchronies. As can be seen, USD always guarantees the lowest divergence because of its 

nature to find the exact optimum. The recurrence quality decreases while ℓ grows, showing 

that finding a synchrony with longer period while maintaining good quality is harder than 

finding one with shorter period. Note that, although the discover quality is not guaranteed in 

an unsupervised discovery, USD consistently maintained the best discovery quality across 

various lengths. This result illustrates the power of our unsupervised method that agrees with 

that of supervised labels.

 5.4. Synchrony in parent-infant interaction

Parent-infant interaction is critical for children in early development and social connections. 

This section attempts to characterize their affective engagement by exploring the moments 

where the behavior of both the parent and the infant are correlated. We performed this 

experiment on the mother-infant interaction dataset [28]. Participants were 6 ethnically 

diverse 6-month-old infants and their parents (5 mothers, 1 father). Infants were positioned 

in an infant-seat facing their parent who was seated in front of them. We used 3 minutes of 

normal interaction where the parent plays with the infant as they might do at home. Because 

this dataset does not provide ground truth annotations, we only evaluate the results 

quantitatively. Similar to Sec. 5.3, we tracked and extracted features on each face. Because 

the appearance of parents and infants are quite different, we used only the shape feature in 

this experiment. Throughout this experiment, we set ℓ = 80 and T = 40.

Fig. 8 illustrates three discovered synchronies among all 6 parent-infant pairs. As can be 

seen, many synchronies were discovered as the moments when both infants and parents 

exhibit strong smiles, serving as a building block of early interaction [28]. Besides smiles, a 

few synchronies showed strong engagement in their mutual attention, such as the second 

synchrony of group ① where the infant cried after the mother showed a sad face, and the 

second synchrony of the second group where the mother stuck her tongue out after the infant 

did so. These interactive patterns offered another solid evidence of a positive association 

between infants and their parents.

 6. Conclusion

We presented unsupervised synchrony discovery (USD), a relatively unexplored problem 

that discovers synchrony in human interaction. We formulated USD as a searching problem 

in time series, and proposed an efficient B&B algorithm, optimized to find the global 

solution with potentially fewer evaluations than exhaustive search. In addition, we extended 

our approach to multi-synchrony detection, and two accelerated search—a warm-start 

strategy and parallelism. Our method can be naturally generalized to discover synchrony 

among more than two sequences. Our results in discovering synchronies of human actions 

and interaction illustrate the power of USD that agrees with supervised labels. Moving 
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forward, we plan to extend USD to discover causal-effect synchronies (e.g., question-asking 

and hand-raising in teacher-student interaction).
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Figure 1. 
An illustration of unsupervised synchrony discovery in mother-infant interaction. Our 

method automatically discovers dyadic synchronies from multi-dimensional signals. Red 

bold boxes indicate the engagement in mutual smiles between the infant and the mother. The 

gray thin box indicate a randomly picked moment, showing an event without synchrony.
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Figure 2. 
An example of USD on two 1-D time series using ℓ = 13 and T = 5: (a) Top 3 discovered 

synchronies at different iterations; exhaustive search takes 39151 iterations. (b) The 

convergence curve w.r.t. bounding value and #iter. (c)~(e) Discovered synchronies and their 

histograms, where blue and green bars indicate the segment features ϕobs and ϕint, 

respectively. ϕint is 10X magnified for display purpose. The ℓ1 distances between the three 

histogram pairs are 6.3e-8, 1.5e-7, and 5.8e-2, respectively. (f) An illustration of notation.
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Figure 3. 
Illustration of USD extensions: (a) pruning rules applied to multi-synchrony discovery, (b) 

USD with warm start (USDΔ), and (c) parallelized USD (USD#).

Chu et al. Page 16

Proc IEEE Int Conf Comput Vis. Author manuscript; available in PMC 2016 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Discovered synchronies on 7 pairs of Subject 86 in CMU-Mocap dataset. Each pair is 

annotated with ground truth (colorful bars, each represents an action), and synchronies 

discovered by our method (shaded numbers). Synchronies with disagreed action labels are 

visualized.
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Figure 5. 
Speedup of our methods against sliding window (SW) in the CMU-Mocap dataset. All 7 

pairs of sequences from subject 86 were evaluated. The speedup was computed as the 

relative number of evaluations NSW/NUSD using ℓ1, χ2 and symmetrized KL divergence.
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Figure 6. 
Analysis on top 10 discovered dyadic and triadic synchronies of the GFT dataset. SW 

denoted with ⋆ indicates the optimal windows discovered, and without ⋆ indicates the 

average and standard deviation over all visited windows.
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Figure 7. 
Top 10 discovered synchronies from groups 113 and 128 in the GFT dataset. Each column 

indicates a discovered synchrony and its frame number. The algorithm correctly discovered 

smiling, talking and silent moments as different synchrony events.
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Figure 8. 
Discovered sychronies from 6 groups of parent-infant interaction. Each column indicates a 

discovered synchrony and its #frame.
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Algorithm 1

Unsupervised Synchrony Discovery

input : A synchronized video pair A, B; minimal discovery length ℓ; commonality period T

output: Optimal intervals r* = [b1, e1, b2, e2]

1 L T + ℓ; // The largest possible searching period

2 Q ← empty priority queue; // Initialize Q

3 for t ← 1 to (n–T–L+1) do

4         R t, t + T × t + ℓ − 1, t + T + L − 1 × t − T , t + T × t − T + ℓ − 1, t + T + L − 1
5     Q.push(bound(R), R); // Fill in Q

6 end

7 R ← Q.pop(); // Initialize R

8 while |R| ≠ 1 do

9     R R1 ∪ R2; // Split into 2 disjoint sets

10     Q.push(bound(R1), R1); // Push R1 and its bound

11     Q.push(bound(R2), R2); // Push R2 and its bound

12     R ← Q.pop(); // Pop top state from Q

13 end

14 r* ← rect(R); // Retrieve the optimal rectangle
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Table 1

Distance and quality analysis on CMU Mocap dataset: (top) χ2 distance using 1e-3 as unit, (bottom) recurrent 

consistency.  indicates the optimal window found by SWs with step size s = 5,10;  and  indicate 

average and standard deviation among all windows. The best discovery are marked in bold.

Pair (1,11) (2,4) (3,13) (5,7) (6,8) (9,10) (12,14) Avg.

χ2-distance

USD 6.3 1.2 4.7 2.6 0.1 0.2 11.9 3.9

SW5
⋆ 6.5 1.3 6.7 5.4 0.1 0.4 12.0 4.6

SW10
⋆ 6.7 2.7 6.7 10.1 0.2 0.7 14.3 5.9

SW5
μ 97.1 76.9 81.4 64.2 89.3 172.0 334.5 130.8

SW5
σ 33.8 74.4 53.8 28.2 79.2 117.7 345.1 104.6

SW10
μ 94.8 77.3 81.8 63.2 87.1 170.2 327.2 128.8

SW10
σ 34.3 74.1 54.2 28.3 79.4 117.8 341.5 104.2

Rec. consistency

USD 0.89 0.85 0.46 0.90 1.00 0.64 0.76 0.79

SW5
⋆ 0.95 0.81 0.50 0.84 1.00 0.69 0.73 0.79

SW10
⋆ 0.95 0.75 0.50 0.64 1.00 0.55 0.00 0.63

SW5
μ 0.07 0.32 0.09 0.07 0.08 0.13 0.12 0.12

SW5
σ 0.16 0.33 0.25 0.20 0.21 0.29 0.22 0.24

SW10
μ 0.08 0.31 0.09 0.07 0.09 0.13 0.12 0.13

SW10
σ 0.19 0.33 0.26 0.21 0.22 0.29 0.23 0.25
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