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Abstract—The next generation (5G) cellular network faces the
challenges of efficiency, flexibility, and sustainability to support
data traffic in the mobile Internet era. To tackle these challenges,
cloud-based cellular architectures have been proposed where
virtual base stations (VBSs) play a key role. VBSs bring further
energy savings but also demands a new energy consumption
model as well as the optimization of computational resources.
This paper studies the energy-delay tradeoffs of VBSs with
delay tolerant traffic. We propose a computational-resource-
aware energy consumption model to capture the total energy
consumption of a VBS and reflect the dynamic allocation of
computational resources including the number of CPU cores and
the CPU speed. Based on the model, we analyze the energy-delay
tradeoffs of a VBS considering BS sleeping and state switching
cost to minimize the weighted sum of power consumption and
average delay. We derive the explicit form of the optimal data
transmission rate and find the condition under which the energy
optimal rate exists and is unique. Opportunities to reduce the
average delay and achieve energy savings simultaneously are
observed. We further propose an efficient algorithm to jointly
optimize the data rate and the number of CPU cores. Numerical
results validate our theoretical analyses and under a typical
simulation setting we find more than 60% energy savings can
be achieved by VBSs compared with conventional base stations
under the EARTH model, which demonstrates the great potential
of VBSs in 5G cellular systems.

Index Terms—5G, virtual base station, energy-delay tradeoff,
energy consumption model.

I. INTRODUCTION

The next generation (5G) cellular network has been attract-
ing research efforts from both academia and industry. The
requirements and challenges can be summarized as follows.
First, it is estimated that 5G needs to support 1000 times
increase in traffic capacity [1]. With limited spectrum and
energy, it is challenging for cellular systems to increase
the spectral efficiency and energy efficiency to cope with
the huge traffic demand. Second, 5G is expected to sup-
port massive connections including not only human-to-human
connections but also machine-to-machine connections. Some
of them demand high data rate, while others have loose
capacity requirement but require real time response and high
reliability. Hence, the cellular network must be flexible enough
to adapt to different connections with different characteristics.
Besides, with the influence of innovative applications from IT
companies, the average revenue per user of network operators

tends to increase slowly or even decrease in some cases, while
the expenditures increase rapidly [2]. Such trend imposes a
great challenge to the sustainability of the cellular network.

Facing these challenges, conventional cellular architectures
can hardly support the 5G systems for the following rea-
sons. First, in conventional cellular architectures, resources
are commonly provisioned according to peak traffic require-
ment. While this approach ensures quality of service (QoS),
it inevitably wastes a lot of resources in realistic networks
where data traffic is highly dynamic. Second, conventional
base stations (BSs) manage each cell in a distributed manner.
The lack of BS cooperation results in inflexibility, and makes
it difficult to utilize coordinated multi-point communications
(CoMP) and coordinated BS sleeping to increase the spectral
efficiency and energy efficiency. Moreover, conventional BS
is a complicated system where hardware and software are
tightly coupled, so operators cannot easily upgrade it, nor
deploy value added services quickly. To sum up, it is difficult
for conventional cellular architectures to tackle the challenges
faced by 5G including efficiency, flexibility, and sustainability.
Therefore it is crucial to renovate cellular network architec-
tures to meet the requirements of 5G systems.

One of the promising architecture evolution trends is in-
tegrating cloud computing technology into cellular networks.
Wireless Network Cloud (WNC) [3] proposed by IBM re-
searchers and CRAN [2] proposed by China Mobile share
the same idea of moving base band units (BBUs) of BSs
to a centralized cloud computing platform, and only leaving
remote radio heads (RRHs) in the front end. With the help of
open IT platforms, cellular systems can be more flexible and
sustainable. The deployment of CRAN also demonstrates its
capability to reduce the cost and improve radio access per-
formance. Based on the existing research, we have proposed
CONCERT [4], which stands for CONvergence of Cloud and
cEllulaR sysTems. Its main features are heterogeneous physi-
cal resources, logically centralized resource virtualization, and
software defined services. They altogether allow CONCERT to
support 5G cellular systems and provide innovative services.

In cloud-based cellular network architectures, virtualization
technology is vital to make BSs software defined, that is to
make them virtual base stations (VBSs). The main advan-
tage compared with conventional BSs is that computational
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resources such as the number of CPU cores and the CPU
speed of VBSs are pooled and can be dynamically allocated
to each VBS to adapt to the dynamics of the traffic demand
over time and space, which brings further energy savings.
However, computational resource dynamics are not captured in
the existing BS energy consumption models [5], [6]. Therefore
we propose a new model to assist the research, which, to
our best knowledge, is the first computational-resource-aware
energy consumption model for VBSs.

Energy-delay tradeoffs of BSs in wireless systems have been
studied in many literatures. It was pointed out that when taking
practical concerns into account, the energy-delay tradeoff
deviates from the simple monotonic curve [7]. Our previous
work analyzed the energy-delay tradeoffs of conventional BSs
with the EARTH energy consumption model [8], [9]. In this
paper we analyze the energy-delay tradeoff relationship of
VBSs with a computational-resource-aware model considering
BS sleeping and state switching cost. Moreover, we investigate
the impact of computational resources on the relationship, and
compare the energy saving performance of VBSs in cloud-
based architectures with EARTH BSs in conventional cellular
networks to show the energy saving gain of VBSs.

The main contributions of the paper are as follows.
1) We propose a computational-resource-aware energy con-

sumption model for VBSs which can capture the total
energy consumption and reflect the dynamic allocation
of computational resources.

2) We derive the explicit form of the optimal data transmis-
sion rate which minimizes the weighted sum of power
consumption and average delay, and find the condition
under which the energy optimal rate exists. This property
indicates the opportunity to reduce the average delay and
save energy simultaneously.

3) We investigate the impact of computational resources on
energy-delay tradeoffs of VBSs and propose an efficient
algorithm to optimize the data rate and the number of
CPU cores jointly.

The rest of this paper is organized as follows. We first
present our computational-resource-aware energy consumption
model in Section II. Then we describe the system model
in Section III. Theoretical analyses of energy-delay tradeoffs
are given in Section IV. We show our numerical results in
Section V and then conclude the paper in Section VI.

II. ENERGY CONSUMPTION MODEL

A. EARTH Model

The EARTH energy consumption model of BSs [5] has
been widely adopted in the literature to analyze the energy
efficiency of cellular systems. It has the form as:

Pin =

{
NTRXP0 + ∆pPout, 0 < Pout ≤ Pmax

NTRXPsleep, Pout = 0
(1)

where Pin is the total power supply of the BS, and Pout is the
output power per antenna measured at the input of the antenna
element. NTRX is the number of antennas at the BS, P0 is the

power consumption at the minimum non-zero load, ∆p is the
slope of load varying power consumption, and Psleep is the
energy consumption in sleep mode.

This model cannot be directly used with VBSs for two
reasons. One is that multiple BBUs reside in one cloud
infrastructure, so the energy consumption of BBU per BS
should be reduced. The other is that by virtualization, the base
band computational resources can be dynamically allocated,
and the BBU application can be run only when necessary.
However, the EARTH model cannot reflect the variations of
computational resources. As a result, a new model for VBSs
under cloud-based cellular architectures is required.

B. Computation Resource Aware Model

Based on the analysis of the existing energy consumption
model, we propose a computational-resource-aware energy
consumption model for VBSs. Following the component based
methodology of the EARTH model, we calculate the power
consumption of the BBU and the RRH in the VBS separately,
and take the summation as the total power consumption:

P = PR + PB (2)

where PR and PB are the power consumption of the RRH and
the BBU respectively.

Regarding the RRH part, we leverage the intermediate result
from the EARTH model [5]:

PR =
Pout

η
+ PRF (3)

where η denotes the power amplifier (PA) efficiency, and PRF
denotes the power consumption of the radio frequency (RF)
circuits.

As for the BBU part, we calculate the energy consumption
as follows:

PB = Nc(PBm + ∆PBρcs
β) (4)

where
∆PB = (PBM − PBm)/sβ0 , (5)

Nc denotes the number of active CPU cores, PBm and PBM
are the minimum and maximum power consumption of each
core, ρc denotes the CPU load by the BBU process for
Nc cores which is usually expressed in percentage, s is the
CPU speed, s0 is the reference CPU speed, and β is the
exponential coefficient of CPU speed. In this model the power
consumption of the BBU is linear with the number of CPU
cores as well as the CPU load [10], [11]. With speed-scaling,
the dynamic part of the power consumption is polynomial with
the CPU speed besides the CPU load [12].

Furthermore, we capture the relationship between the uti-
lized computational resources and the software tasks which
compute samples for wireless communications. The CPU load
can be expressed by the following equation:

ρc =
f(r)

Ncs
=
c0 + κr

Ncs
(6)

where f(r) is the actual instructions per unit time and Ncs
represents the maximum instructions available per unit time.



We assume f(r) is linear with the data transmission rate r,
where c0 and κ are relevant coefficients. The assumption is
based on the profiling result in CloudIQ [13] which shows
a linear relationship between the processing time of an LTE
subframe and the modulation and coding scheme (MCS) used
as well as the physical resource blocks (PRB) available.

Substitute (6) into (4), we get

PB = NcPBm + ∆PBc0s
β−1 + ∆PBκrs

β−1 (7)

which means the computational power consumption is linear
with the data rate.

In summary, the power consumption of a VBS is:

P =

{
PB + PR, 0 < Pout ≤ Pmax

Psleep, Pout = 0
(8)

III. SYSTEM MODEL

We consider one VBS on a server with Nc active CPU
cores with speed s. We model the system as an M/G/1
Processor Sharing (PS) queue. Traffic flows arrive at the BS
with average rate λ, and each flow has an average file size
L. The data transmission rate is r bps when the queue has
customers; otherwise it is zero. So the traffic load of the queue
is ρ = λL/r. According to queueing theory, the average queue
length is:

E{n} =
ρ

1− ρ
=

λL

r − λL
(9)

By applying Little’s Law, we know the average delay is
E{D} = E{n}/λ.

In our model the VBS will go to sleep when there is no
customer in the queue (“off” state), and be back to work when
a new customer arrives (“on” state). In an on-off cycle, we let
Ta denote the time duration in the busy period, Ts the time in
the consecutive idle period, and Tc = Ta + Ts the total time.
We assume a switching cost Esw is incurred during each on-
off state switching, so the average power consumption in a
cycle is as follows:

E{P} = pactive(PB + PR) + psleepPsleep +
2Esw

E{Tc}
(10)

where pactive = ρ and psleep = 1− ρ are the fraction of time of
busy and idle period during one cycle respectively.

As for the cell coverage, we adopt the standard 3GPP
propagation model. The radius of cell is R. We consider large
scale path loss while ignoring shadowing loss. The downlink
signal-to-interference-plus-noise ratio (SINR) is given by:

SINR(d) = gPout =
Pout

L(d)FN0W
(11)

where L(d) is the path loss, F is the noise factor of the user
equipment (UE), N0 is the noise spectral density, and W is the
system bandwidth. For explicit analysis, we assume all users
are located at the cell edge, so the overall channel gain g is
the same for each user. Therefore the sum data rate at the BS
can be expressed by the following equation:

r = W log2(1 + gPout) (12)

The optimization problem is as follows:

min
r,Nc

z = E{P}+ αE{n} (13)

We want to minimize the system cost z, which is a weighted
sum of average power consumption and average queue length.
α is the weighting factor. The decision variables are the data
rate r and the number of CPU cores Nc.

IV. ENERGY-DELAY TRADEOFFS

To get the optimal solution to the above problem, we first
let ∂z

∂r = 0, and find that the optimal rate r∗ satisfies:

Ω

(
αgη

e

(
r∗

r∗ − λL

)2

+
gηPs − 1

e

)
=
r∗ ln 2

W
− 1 (14)

where

Ps = Po − Psleep − 2λEsw, (15)

Po = NcPBm + ∆PBc0s
β−1 + PRF, (16)

and Ω(·) is the principal branch of Lambert W function. As
r increases, the left side of Eqn. (14) decreases and the right
side increases. Therefore the optimal rate r∗ is unique.

We have the following proposition on the energy-delay
tradeoff relationship of VBSs with varying data rate r.

Proposition 1: For the relationship between average power
consumption and average delay, we have:

1) There exists the unique energy optimal rate r∗e when the
following condition is satisfied:

λ <
Po − Psleep

2Esw
, (17)

L <
W

λ ln 2

[
Ω

(
gηPs − 1

e

)
+ 1

]
(18)

The corresponding energy optimal rate is given by:

r∗e =
W

ln 2

[
Ω

(
gηPs − 1

e

)
+ 1

]
. (19)

2) When the above condition is not satisfied, the average
power consumption is monotonically decreasing with the
average delay.

3) In both cases, when the average delay goes to infin-
ity, the average power consumption approaches Po +

κ∆PBs
β−1λL+ 2

λL
W −1
gη .

The proof is omitted for brevity.
Remark: When the energy optimal point exists, average

delay can be traded off for energy savings only when r > r∗e ,
and when r < r∗e we can reduce the average delay and save
energy simultaneously. Interestingly, the proposition has the
same mathematical structure as that in our previous work [9],
and for VBSs the energy optimal rate is not affected by
the part of computational power consumption that is linear
with data rate. The reason is that the effect of that part
of computational power consumption is neutralized by time
fraction factor influenced by traffic load which is inversely
proportional to the data rate.



1: Set NcM, Nc ← 1, S ← Φ
2: while Nc ≤ NcM do
3: r̂(Nc)← argminr z(r,Nc)
4: if r̂(Nc) ≤ rM(Nc) then
5: S ← S ∪ {(r̂(Nc), Nc)}
6: Break out of the loop
7: else
8: S ← S ∪ {(rM(Nc), Nc)}
9: Nc ← Nc + 1

10: end if
11: end while
12: return (r∗, N∗c ) = argmin(r,Nc)∈S z(r,Nc)

Fig. 1. The algorithm to find the optimum (r∗, N∗
c ). NcM is the maximum

number of CPU cores in practical systems. S is the set to store the candidates
of optimal points. Φ is the empty set.

Further we investigate the impact of computational re-
sources, in particular the impact of the number of CPU cores.
On one hand, if we fix the number of CPU cores, it sets the
maximum supportable rate:

rM(Nc) =
Ncs− c0

κ
(20)

On the other hand, we have ∂z
∂Nc

= PBm > 0, ∂r∗

∂Nc
> 0, which

means increasing the number of CPU cores will increase the
system cost and the optimal rate.

Based on the above analyses, we propose an efficient
algorithm in Fig. 1 to find the optimal data rate and number
of CPU cores (r∗, N∗c ) jointly. In the algorithm, we search
through the zone of average delay decreasingly. At first only
one CPU core is considered. When the current number of CPU
core cannot support the local optimal rate under that number,
we mark the maximum supportable rate as one candidate of
global optimal solution, and consider one more CPU core.
When we find the number of CPU cores under which the
local optimal rate can be achieved, we can mark the local
optimal rate as the final candidate and exit the search since
the total cost always increases afterwards. At last the global
optimal rate and number of CPU cores can be obtained by
comparing all the candidates. In this way it is unnecessary to
exhaustively search all the possible numbers of CPU cores and
make comparisons, which makes the algorithm efficient.

V. NUMERICAL RESULTS

In this section we present the numerical results to show the
energy-delay tradeoffs of VBSs. The simulation parameters
of VBSs are listed in Table I. Among them the base band
parameters are based on commodity servers, and the cellular
parameters are from LTE R11 standard. As for the conven-
tional BS under the EARTH model, we set P0 = 84 W,∆p =
2.8, Psleep = 56 W, and NTRX = 1.

Fig. 2 shows the energy saving performance of VBSs
compared with BSs under the EARTH model. We can find
more than 60% energy consumed by conventional BSs can
be saved when using VBSs. For example when λ = 1 s−1,
about 64% savings can be achieved with the same average

TABLE I
SIMULATION PARAMETERS

CPU speed (s) 2 GHz

Reference CPU speed (s0) 2 GHz

Maximum power per CPU core (PBM) 20 W

Minimum power per CPU core (PBm) 5 W

Exponential coefficient of CPU speed (β) 2

Constant coefficient of instruction speed (c0) 7 × 108

Rate varying coefficient of instruction speed (κ) 35

Carrier frequency (f ) 2 GHz

Cell radius (R) 0.5 km

UE noise figure (F in dB) 9 dB

Noise spectral density (N0) −174 dBm/Hz

System bandwidth (W ) 20 MHz

RF circuit power (PRF) 12.9 W

PA efficiency (η) 31.1%

VBS sleeping power (Psleep) 6.45 W

Switch cost (Esw) 5 J

delay E{D} = 0.26 s that optimizes the power consumption
of conventional BSs. The savings come from traffic aware
computational power consumption. The BBU power consump-
tion scales with the actual data rate, rather than stays static in
conventional BSs.

Fig. 3 shows the relationship between average power con-
sumption and average delay given different numbers of CPU
cores. For example when Nc = 4, there exists the unique
optimal point to minimize the energy consumption. To the
right of the optimal point, there is the opportunity to reduce
the average delay and achieve energy savings simultaneously.
In addition, the impact of the number of CPU cores on energy-
delay tradeoffs is presented in the figure. The left end points
of the curves for smaller numbers of CPU cores mark the
maximum supportable data rate. Given the average delay,
increasing the number of CPU cores will increase the average
power consumption as well as the energy optimal rate.

When both the data rate and the number of CPU cores
are adjusted, the energy-delay tradeoff relationship between
the average power consumption and the average delay is
shown with different traffic load in Fig. 4. Note each curve
is divided into several zones due to the impact of the number
of CPU cores. The algorithm to find the optimum (r∗, N∗c )
can be illustrated by the figure. Take the red curve with cross
markers as an example. We need to compare the rightmost
turning point with E{D} = 0.89 s and the local optimal
point with E{D} = 0.34 s to determine the global optimal
solution. Besides, Fig. 4 depicts the impact of traffic arrival
on the energy-delay tradeoff. Either larger arrival rate or larger
average file size will increase the average power consumption
given average delay. The power consumption when average
delay approaches infinity is monotonically increasing with λL.
Specially the two curves in the middle with the same λL
approach the same asymptotic value.
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VI. CONCLUSION

In this paper we propose a computational-resource-aware
energy consumption model for VBSs in cloud-based cellular
network architectures, and investigate the energy-delay trade-
offs of a VBS considering BS sleeping. We give the explicit

form of the optimal data rate, and find the property which can
depict the opportunity to achieve energy savings and reduce
the average delay simultaneously. We further investigate the
impact of computational resources and propose an efficient
algorithm to jointly optimize the data rate and the number of
CPU cores. Numerical results validate our theoretical analyses
and reveal that more than 60% energy savings can be brought
by VBSs compared with conventional BSs under the EARTH
model. Future work will consider the multi-BS scenario.
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