
Control Message Reduction Techniques in
Backward Learning Ad Hoc Routing Protocols

Navodaya Garepalli Kartik Gopalan Ping Yang
Computer Science, Binghamton University (State University of New York)

Contact: kartik@cs.binghamton.edu

Abstract—Most existing wireless ad hoc routing protocols rely
upon the use of backward learning technique with explicit control
messages to route packets. In this paper we propose a set of
techniques that can be applied in a backward learning routing
algorithm in order to minimize or even eliminate explicit control
messages for route discovery, setup, and maintenance, while
minimally using implicit data-like control messages that need
no special processing. We also show that such an algorithm does
not need to prevent routing loops at all costs, such as by means
of extensive network-wide spanning trees in traditional LAN
bridges, or destination sequence numbers in AODV, or source-
routing in DSR. In fact, we prove that transient loops can be
safely allowed to occur when a simple route refresh mechanism
is coupled with the use of packet identification field to effectively
bound the lifetime of such transient loops without negatively
impacting the network performance. Results demonstrate that
even a routing algorithm without explicit control messages
can perform competitively in comparison to AODV and DSR
protocols while significantly reducing the protocol complexity.

I. I NTRODUCTION

Existing ad hoc routing protocols [3], [5], [9], [7], [4], [6],
[8], [2] set up and maintain loop-free routes by depending
upon explicit control message exchanges using an extensive
control infrastructure. The use of explicit control messages
enables these protocols to optimize the network performance.
For instance, the AODV [9] protocol guarantees loop freedom
through use of destination sequence numbers and relies upon
explicit control messages such as RREQ, RREP, and RERR
messages to construct and maintain routes. Similarly, DSR [7]
uses explicit control messages, such as RREQ and RREP
packets, to perform source routing. While protocols-specific
optimizations, such as piggybacking, can reduce the overhead
of explicit control messages, significant protocol complexity
remains in place due to the need to maintain this control
infrastructure and process the explicit control information.
In this paper, we investigate whether one can design an ad
hoc routing protocol that incurs very low control message
overhead and at the same time maintains competitive network
performance. We propose a set of generic mechanisms that can
be applied tobackward learningad hoc routing algorithms in
order to greatly reduce protocol complexity. These techniques
help to eliminate the use ofexplicit control messages as well
as the need to maintain an overarching control infrastructure
for route set up, maintenance, or loop prevention, and at the
same time maintain a high network throughput. The key idea is
to combine the on-demand nature of ad hoc routing protocols
with the simplicity ofbackward learningtransparent bridges.
While most existing ad hoc protocols employ the basic prin-
ciples of backward learning, we exploit this principle without
having to construct and maintain network-wide spanning trees

as in wired LANs, or use destination sequence numbers as
in AODV [9], or resort to source routing as in DSR [7]. Our
results show that, even without explicit control messages,a
protocol can deliver highly competitive network performance,
if not better, in comparison to the popular AODV and DSR
protocols. Using extensive simulations, we investigate the
advantages and disadvantages of eliminating control message
overhead in order to achieve greater protocol simplicity. For
clarity of exposition, we describe these techniques as embod-
ied in a proof-of-concept routing protocol called the Explicit
Control Message Free (ECMF) routing protocol. However, the
proposed techniques can be readily adapted even to existing
backward learning protocols, such as AODV, to eliminate
control message processing.

Just as in wired bridging and many wireless ad hoc proto-
cols, nodes in ECMF protocol use backward learning to set up
and adapt routes to different destinations on-the-fly. However,
unlike conventional wireless ad hoc protocols, ECMF nodes
implicitly learn routes from data packets themselves, rather
than through explicit control messages. This works well for
most network communication sessions which involve bidirec-
tional exchange of data, such as while using TCP. In the case
of unidirectional traffic flow, ECMF selectively uses minimal
number ofimplicit (or data-like) control messages that do not
require any special processing in the network interior.

At the same time, unlike wired bridges, ECMF also does
not go out of its way to prevent routing loops at all cost
but limits their performance impact by design, if and when
such loops arise. Hence ECMF eliminates the overhead of
constructing and maintaining an extensive infrastructurefor
loop prevention, such as network-wide spanning trees in
wired-LAN bridges, destination sequence numbers in AODV,
or source-routing in DSR.We prove that any transient loops,
which may potentially arise, do not last beyond a bounded
small duration. Moreover, packets do not traverse around
transient loops more than once and thus do not lead to expo-
nential packet storms. Additional features of ECMF includeno
need for promiscuous mode operation of wireless interfaces,
no Hello messages between neighbors, and elimination of
ARP (Address Resolution Protocol) request/reply messages.
Thus, ECMF is completely decentralized, self-starting, and
automatically adapts to the widely varying network conditions.

II. ECMF PROTOCOL OVERVIEW

ECMF nodes have two identities. First is at link level, such
as layer-2 MAC address, which is visible only to immediate
neighbors of the node. Second is at network level, such as

2

layer-3 IP address, which a node uses to identify and com-
municate with any other node (not necessarily a neighbor). A
node does not need to have any prior knowledge of the identity,
connectivity, or location, of other nodes in the network except,
of course, the layer-3 IP address of the nodes with which it
explicitly wishes to communicate. A node dynamically learns
and unlearns the layer-2 MAC address identity of its neighbors
only when it needs to communicate with/via those nodes.
ECMF operates on top of link layer protocols, such as the
802.11 family of protocols, which support link-level acknowl-
edgment between neighbors to avoid unidirectional links. A
network interface is not required to operate in ‘promiscuous’
mode. Every ECMF node makes completely local routing
decisions that require no coordination with other nodes. ECMF
is positioned as a thin protocol layer in the networking stack
between the Layer-3 (IP layer) and the Layer-2 (MAC layer).
Although forwarding is based on destination IP address, the
ECMF routing is slightly different from traditional IP routing.
The next-hop address for a destination IP in the routing table
is the layer-2 MAC address of the next-hop rather than its
IP address. ECMF nodes do not care about the IP-to-MAC
address mappings of other nodes, except as needed to make
forwarding decisions.

Routing Table and Data Packets: Each ECMF node
maintains its forwarding knowledge in asoft-staterouting
table. Each routing table entry contains the following basic
information: (1) Destination IP Address (D), (2) Next Hop
MAC Address (m), (3) A list of alternative next hop MAC
addresses,(4) Valid flag (v), and (5) Expiration time (e).
Only routing entries that arevalid can be used for packet
forwarding. Routing entries can be invalid during the times
when a node is recovering after a failure or mobility of a
neighbor. A routing entry getsrefreshedeach time a packet
from the corresponding destinationD is received from the
next-hop MAC addressm. In other words, reverse traffic
from the destinationD updates its forward routing entries
at intermediate nodes.This is unlike in the case of AODV,
where forward traffic towardsD is used to refresh the forward
routing entries. Expiration Time field indicates the amountof
time left before anun-refreshedrouting entry can be purged.
We represent the relevant header fields of a packet by the
quadruple[sm, dm, SIP , DIP]. Heresm anddm represent the
source and destination MAC addresses of immediate neighbors
exchanging the packet andSIP andDIP represent the original
source and final destination IP addresses. A∗ represents a
broadcast MAC or IP address.

III. ROUTE DISCOVERY

Figure 1 illustrates the basic route setup mechanism in
ECMF. SourceS initiates communication with destination
D for the first time by flooding its first data packet with
header[Sm, ∗, SIP , DIP]. This data packet travels towardsD,
setting up routing table entries forS at intermediate nodes.
Any intermediate nodeX , that receives the packet fromS,
processes the packet in two phases: thelearning phase and
the forwarding phase. Note that flooding a potentially large
data packet could be more expensive than flooding a smaller

Y

W , *, S , D m IP IP

m IP
S , *, S , D

IP m IP IP
X , *, S , D

S(a)

S(b)

X D

DY

m m IP
X ,Y , S ,D

IP

W X

Fig. 1. Illustration of route discovery mechanism.

control packet. In practice, most communication sessions begin
with an initial bidirectional exchange of small packets (such
as TCP SYN/ACK) which greatly reduces the flooding cost.

A. Learning Phase

In the learning phase, nodeX learns about the direction
in which node S is reachable. First consider the case in
Figure 1(a) whereX is an immediate neighbor ofS, but is
not aware of this fact and does not have any prior routing
information for S in its routing table. WhenX receives
the first broadcast packet with header[Sm, ∗, SIP , DIP], it
immediately infers that a node with layer-3 IP addressSIP

can be reached in the direction of an immediate neighbor
with layer-2 MAC addressSm. The nodeX then enters this
newly learned forwarding information in its routing table as
a valid routing entry forSIP . Note thatX does not care that
SIP andSm are the same neighbor’s IP and MAC addresses
respectively. All X cares is thatSIP is reachable in the
direction ofSm.

Consider the second case in Figure 1(b) whenX is not
an immediate neighbor ofS and does not have any prior
routing entry for SIP . Rather X receives a packet with
header[Wm, ∗, SIP , DIP], forwarded from another neighbor
W , which does not know the next hop toD. Here X will
learn thatSIP is reachable in the direction ofWm.

Finally consider the third case, again in Figure 1(b), when
node X already has a valid routing table entry forS. As-
sume that a non-duplicate (i.e. first-time) packet with header
[Wm, ∗, SIP , DIP] is received from a neighborW , which X

already knows is a valid next hop forSIP . In this case the only
new information that nodeX can learn from the packet is that
SIP is still reachable viaWm and can refresh its routing table
entry forS by resetting the expiration time field. On the other
hand, if the current next hop forSIP is not Wm thenX can
infer that either the earlier known route toSIP has failed, or
S has moved to a new location, or simply a better route toS

may have appeared depending on the specific link/path quality
metric of interest. In this case,X can choose tore-learn the
new next-hop toSIP , as described later in Section IV.

Another function of the learning phase is to learn alternative
routes. Suppose an intermediate nodeX receives multiple
copies of the same packet, which originated fromS, from
different neighbors. The first copy of the packet will be
used byX to learn theprimary next hop towardsS. Any
subsequent copy of the packet will be recognized byX as a
duplicate (using mechanism is described later in Section V).
Before dropping the duplicates,X will extract the source MAC
address from the duplicates asalternativenext hop towardsS.
This alternative next hop can be used to replace the the primary

3

next hop, in case the primary link fails or the alternative has
better link quality metric (such as bandwidth or noise).

B. Forwarding Phase

In the forwarding phase, nodeX first checks if the packet
is destined to itself, i.e.DIP = XIP . If so, the packet is
delivered to the IP layer (layer-3) withinX . If not, thenX

determines the next hop for destinationD. If no valid routing
entry exists forDIP then, as shown in Figure 1(a),X re-
broadcasts the data packet to its neighbors with a modified
header[Xm, ∗, SIP , DIP]. If X already has a valid routing
entry forDIP with the next hop neighborY then, as shown in
Figure 1(b),X forwards the data packet toY with a modified
header[Xm, Ym, SIP , DIP]. Hence, if parts of the network
already have valid routes toD then those routes are reused.

If, for some reason, the transmission to next hop node
Y fails, then X invalidates the routing entry and attempts
to send the data packet to one of its neighborsZ in the
alternativenext hop list of routing entry forD with a modified
header[Xm, Zm, SIP , DIP]. If transmissions to none of the
alternative next hops succeed, thenX simply re-broadcasts the
packet with a modified header[Xm, ∗, SIP , DIP].

To complete the picture, by the time the packet fromS
reachesD, the intermediate nodes in the network (including
D) learn about the route to reachS. Similarly, when the
receiving user-level application at nodeD responds back with
its own data to its peer application at nodeS, the intermediate
nodes (includingS) learn about how to reachD as well.

C. Handling Silent Endpoints

Most real-world network sessions, such as TCP, engage in
bidirectional exchange of data or control packets at application
or transport level. In the unlikely event, where only one of
the end-points actively sends traffic, the backward learning
mechanism would maintain routing information for only the
active sender and not for the passive receiver. This createsan
undesirable situation where all data packets to the silent re-
ceiver might end up being flooded due to absence of routing in-
formation for the receiver. To rectify this situation, the ECMF
layer at the receiver nodeD monitors whether packets from
S are being received for someACTIV ITY INTERV AL

duration (say80% of maximum route expiration time) without
the application atD sending any data back toS. If so, the
ECMF layer atD transmits adummy IP packetto SIP with
zero byte data payload. As the dummy IP packet fromDIP

to SIP travels through the network, intermediate nodes learn
the routing information forDIP . Thus future data packets
from S to D are unicasted rather than flooded through the
network. Since the dummy IP packet is not meant for any
specific application atS, it is silently discarded by the IP
layer atS. ECMF layer atD stops sending dummy IP packets
once it observes thatS is not sending any more data packets.
The dummy IP packet is animplicit control messagethat is
forwarded just like any other data packet without any special
processing. Further, it is created only under the exceptional
circumstance when one of end-points is completely silent for
a long time. ECMF layer atS also avoids initial broadcast

of too many back-to-back packets fromS to D by buffering
the packets following the first packet, until either the firstdata
packet or dummy IP packet is received fromD.

IV. ROUTE MAINTENANCE

A. Refreshing Soft Routing State Using Reverse Traffic

The route refresh mechanism employed by ECMF is par-
ticularly different from the refresh mechanisms employed by
other protocols such as AODV. Each routing entry in ECMF
routing table has an associated lifetime, which indicates the
time duration after which the a non-refreshed routing entrywill
be deleted. Assume that a nodeX ’s routing table contains a
valid routing entry for a destination addressDIP with next hop
as nodeY . The lifetime field of this routing entry is refreshed
to a maximum lifetime value of MAXROUTE LIFETIME
each time a packetoriginating from nodeD is forwarded by
nodeY to nodeX . In other words,X can reaffirm the fact
that D is still reachable via its neighborY when it receives
a packet fromY that has asourceIP address ofDIP . Note
that reverse traffic originating fromD is used to refresh the
forward routing information towardsD. This in more accurate
than other routing protocols such as AODV in which packets
destinedto D are used to refresh its routing information.

B. Handling Mobility and Network Failures

A failure is detected whenever a node doesn’t receive a link-
level acknowledgment for its unicast transmission. Consider
Figure 2 in which there is a failure along a route fromS to
D between neighborsX and Y . When X detects a failure
during unicast transmission of a packet to its neighborY ,
it first checks every routing entry that containsYm as the
next hop address. If such a routing entry contains a list of
alternative next hops, then the best alternative, as per thelink
metric used, is assigned as the primary next hop. Otherwise,
the corresponding routing entry is marked as invalid. For
example, in Figure 2,X has four other neighborsL, M , N ,
and O, besidesY . Of these four,L happens to be the best
alternative next hop towards destinationD. Upon failure of
communication withY , X first assignsL as the primary next
hop and unicasts the packet forD to L. This is shown in
case (a). If the communication withL fails as well and there
are no more alternative next hops, thenX floods the packet to
all its neighbors hoping that at least one of them can reachD.
This is shown in case (b). The scope of this flood is naturally
limited by the packet’s TTL value when it is received byX .
Further, nodes around the area that are affected by the failure
can quickly re-learn about new routes to the destinationD as
soon as packets fromD flow through those nodes.

V. DAMPING DUPLICATES WITHOUT A SPANNING TREE

ECMF nodes do not construct or maintain any spanning
trees. Instead they damp the propagation of duplicate packets
by using the TTL and 16-bit Identification fields, which are
carried inside the IP header of every packet. Every ECMF
node remembers the Identification values of lastk packets seen
from source nodeS. A packet is dropped only if its value
is among the lastk remembered values or is smaller than

4

DYX X

L

M

N
O

Failure

m m(a)

(b)

 X ,L , S ,D
IP IP

m IP
X , * , S ,D

IP

Alternative next hop

Next Hop

Fig. 2. Two cases when the communi-
cation link betweenX andY fails. Fig. 3. Complete transient loops

disappear in bounded time.

all of them. This technique detects duplicates and tolerates
re-ordering of packets within a window ofk packets. In
evaluations, we observe that a window size as small ask = 3
is more than sufficient to detect and damp all duplicates even
in the presence of packet reordering. The worst-case per-node
state requirement in anN -node network would beO(kN).
Also note that, use of the Identification field in ECMF is
quite different from the intricate mechanism of destination
sequence numbers in AODV, which are used to altogether
prevent routing loops as well as maintain route freshness. In
contrast, the IP Identification field is used in ECMF only to
detect and damp duplicate packets.

VI. L IMITING THE IMPACT OF TRANSIENT LOOPS

We define acompletetransient loop for a destinationD as
one in which each node in the loop has a valid routing entry
towards the next hop node in the loop. Apartial transient loop
for a destinationD is one in which at least one node in the
loop does not have a valid routing entry forD. Consequently,
such a node would broadcast the packets destined toD and
the next node in the loop picks up the broadcast packet.
No protocol can avoidpartial transient loops whenever any
intermediate node needs to broadcast a packet to an unknown
destination. ECMF does not attempt to prevent transient loops
at all costs. Rather, if and when transient loops are indeed
formed, their impact on network performance is contained as
follows. (1) ECMF guarantees that complete transient loops
last for less than a provably short bounded time interval
(We prove this claim below).(2) Since ECMF nodes perform
duplicate packet detection (Section V), no packet will traverse
a loop more than once. Rather a packet is discarded once it
revisits any node.(3) Successive ECMF nodes decrement the
TTL in each packet and discard them when TTL reaches zero.

Theorem 1:Lifetime of a complete transient loop
for any destination D is less than or equal to
MAX ROUTE LIFETIME.

Proof: Consider the complete loop in Figure 3 for des-
tination D with k nodesN1 to Nk, where the next hop
for destinationD at node Ni is Ni+1 and at nodeNk

is N1. By definition, nodeD itself cannot be part of the
complete loop and hence is outside the loop. Furthermore,
in order for nodeNi to maintain Ni+1 as its next hop
entry for D, Ni+1 must forward a packet withsource IP
addressDIP to Ni within MAX ROUTE LIFETIME interval
of its learning the next hop. Two cases arise. In the first
case, nodeD does not send a packet through any node in

the complete loop for MAXROUTE LIFETIME duration.
Thus Ni+1 cannot forward a packet withDIP as source IP
address toNi. ConsequentlyNi’s routing entry forD will
expire and become invalid, thus breaking the complete loop
within MAX ROUTE LIFETIME duration. In the second
case, nodeD does send a packet through nodeNi+1 within
MAX ROUTE LIFETIME interval. Since nodeD is outside
the loop, the packet fromD must enter the loop from some
external nodeNe. Without loss of generality, assume thatNe

is a neighbor of nodeNi+1 that we are presently considering.
Thus nodeD’s packet arrives atNi+1 from Ne. However,Ne

is different fromNi+2, which is the current next hop forD at
nodeNi+1 (sinceNe is outside the loop). Thus, as described
in Section IV,Ni+1 will switch to maintenance mode to re-
learn its next hop forD by invalidating its routing entry for
D via Ni+2. This too would break the complete loop within
MAX ROUTE LIFETIME interval.

It is easy to see from the above argument that a complete
loop soon decays into a partial loop in which one or more
nodes do not have a valid routing entry towardsD and
broadcast the packets destined toD. However the partial loop
also lasts only until the broadcasting node re-learns a new
route toD, which would happen quickly if the broadcasting
node lies along the path of data/dummy-IP packets arriving
from D. Furthermore,D is guaranteedto send either a data
or a dummy IP packet within ACTIVITYINTERVAL.

VII. PERFORMANCEEVALUATION

In this section we show that, even without explicit control
messages, the performance of a backward learning algorithm,
such as ECMF, is highly competitive, if not better, when
compared to AODV and DSR protocols. Simulations were
run using NS2 for different networks with 50 nodes. The
number of connections were varied from 10 to 100 between
randomly selected node pairs. We used the mobility scenarios
from [1]. Mobility speed of the nodes varies between 0 to
20 meters/sec. Nodes move within a rectangular field of
1500mX300m according to the Random Waypoint Model.
Each simulation is run for 900 simulated seconds. Pause
times were varied from 0s to 900s. We used both TCP-based
connections, (for bidirectional communication), and UDP-
based Constant Bit Rate (CBR) connections (for unidirec-
tional communication). The UDP CBR sources sent traffic
at 4 packets/sec with 64 byte packets. Each data point is
averaged over five simulation runs with a different random
seed to vary the connection establishment pattern. We count
the dummy IP packets as the control packets for ECMF. The
MAX ROUTE LIFETIME is set to 5 seconds and the dummy
IP packets are generated by the ECMF layer at a node after 4
seconds of silence on the part of the network application. For
AODV and DSR, we count the Route Request (RREQ), Route
Reply (RREP), Route Error (RERR), ARP requests/replies,
and Hello messages as the control overhead. For DSR, we
do notcount the source routing information carried in packet
headers towards the control overhead. The control packets are
counted on a hop-to-hop basis rather than on end-to-end basis.
For fair comparison, in AODV simulations we enabled the

5

Local Repair optimization (which attempts to repair a failed
link locally before returning a RREQ message to source) and
the Link Layer Detection optimization (which suppresses the
transmission of “Hello” messages). Similarly, the simulation
of DSR included the optimization of piggybacking RERR and
RREP messages onto RREQ messages and the optimization
of populating route cache by listening in promiscuous mode.
We use three metrics :(1) R/S is the ratio of the number of
packets received by the destination to the number of packets
sent by the source.(2) C/R is the ratio of number of control
packets to the number of data packets received by destination.
(3) Number of control packetsrepresents the total number of
control messages transmitted.

A. Performance with TCP Traffic

R/S: Figures 4, 5, and 6 show that DSR performs best
in terms of R/S values, followed by ECMF and AODV. In
Figure 4, as the pause time increases, the R/S value approaches
1 (no packet loss). In Figure 5, as the number of connec-
tions increases, channel contention and packet losses increase
resulting in a drop in R/S. As in the previous case, DSR
performs best, followed by ECMF and finally AODV. Figure 6
shows a universal decrease in R/S with increase in mobility
speed. The difference in R/S between DSR and ECMF is less
than 1%. It can be seen from these figures that reducing the
protocol complexity in ECMF does not automatically translate
into better delivery ratio (R/S) when compared against DSR,
because reduction in control overhead is offset to somewhat
by increase in both data traffic. However, ECMF’s delivery
ratio remains competitive with both AODV and DSR.

C/R: Figures 7, 8, and 9 show that ECMF maintains a low
value of C/R around 0.2 because it exploits the bidirectional
nature of TCP traffic to maintain routing state without ex-
changing excessive control messages. DSR and AODV show
higher value of C/R for smaller pause times than for larger
pause times. ECMF experiences little variation in C/R whereas
variation is C/R is large for both AODV and DSR. Figure 9
shows that increasing the mobility speed of nodes results in
greater increase in C/R for DSR than for ECMF and AODV,
because DSR is unable to benefit from the forward routing
information carried in the reverse traffic.

Number of Control Packets:Figure 10 shows that number
of control messages in ECMF is much lower than AODV
and DSR. For 0s pause time, ECMF generates 4.5 times
fewer control packets than AODV and 6 times fewer control
packets than DSR. In Figure 11, we vary the number of TCP
connections from 10 to 150, for a fixed 60s pause time and
fixed mobility speed of 20m/s. One can see that number of
control packets generated by ECMF remains much lower than
AODV and DSR. As For 150 connections, AODV generates
around 220K control packets, DSR generates around 125K
control packets, while ECMF generates around 25K control
packets. As with C/R, Figure 12 shows that increasing the
mobility speed of nodes results in greater increase in number
of control packets for DSR than for ECMF and AODV.

B. Performance with Constant Bit Rate (CBR) UDP Traffic

In Figure 13, ECMF achieves an R/S smaller than both
AODV and DSR for smaller pause times. In Figure 14,
ECMF and DSR achieve almost the same R/S which is smaller
than AODV. When compared against results for TCP traffic,
the above results show that, as expected, ECMF performs
better with bidirectional traffic, than with unidirectional traffic.
Figure 15 shows that AODV transmits almost 1.5 control
packets for each received data packet. Although, DSR has
approximately 0.8 C/R at 0s pause time, it reduces as the
pause time increases. ECMF has a C/R less than 0.2 at any
given point of time. Figure 16 shows that, as the number
of connections increases, the C/R value drops for ECMF.
With more number of connections, dummy IP packets are
suppressed more often leading to lower C/R value. On the
other hand, C/R value increases for both DSR and AODV. In
Figure 17, AODV generates around 140K control packets for
0s pause time, DSR around 75K, and ECMF around 12K. In
Figure 18, ECMF uses far fewer control packets than others
for large number of connections. Due to space constraints, we
omit the mobility speed variation results.

VIII. C ONCLUSION

In this paper, we have proposed a set of techniques that can
be applied to eliminate the use of explicit control messages
in backward learning ad hoc routing protocols. The proposed
techniques do not rely upon any extensive control infrastruc-
ture for loop prevention, such as spanning trees, destination
sequence numbers, or source routing mechanisms. They are
particularly suited for routing bidirectional communication
sessions with minimal control overhead, and for unidirectional
communication, use minimal implicit (data-like) control mes-
sages that require no special processing at intermediate nodes.

REFERENCES

[1] The monarch project. httpe//www.monarch.cs.rice.edu/.
[2] I. Chakeres, E. Royer, and C. Perkins. Dynamic MANET on-demand

routing protocol. IETF Internet Draft, October 2005.
[3] C.Perkins and P.Bhagwat. Highly dynamic destination-sequenced

distance-vector routing (DSDV) for mobile computers. InACM SIG-
COMM’94, pages 234–244, 1994.

[4] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop
wireless mesh networks. InProc. of MobiCom, 2004.

[5] J. J. Garcia-Luna-Aceves and M. Spohn. Source-tree routing in wireless
networks. InICNP, 1999.

[6] Z. Haas, M. Pearlman, and P. Samar. The interzone routingprotocol for
ad hoc networks. IETF Internet draft, July 2002.

[7] D. B. Johnson and D. A. Maltz. Dynamic source routing in adhoc
wireless networks. InMobile Computing, volume 353. Kluwer, 1996.

[8] Y. Lee and G. Riley. Dynamic NIx-Vector routing for mobile ad hoc
networks. InWireless Commn. and Networking Conf., 2005.

[9] C. Perkins and E. M. Royer. Ad-hoc on-demand distance vector routing.
IEEE Workshop on Mobile Comp Sys and Applications, 1999.

6

0 100 200 300 400 500 600 700 800 900
Pause Time

0.97

0.975

0.98

0.985

0.99

0.995

1

R
/S

AODV
DSR
ECMF

R/S vs Pause Time
50 nodes - 30 TCP connections - 20m/s

Fig. 4. R/S vs Pause Time for 50 nodes,
30 TCP connections, 20m/s.

0 50 100 150
of TCP Connections

0.96

0.97

0.98

0.99

1

R
/S

AODV
DSR
ECMF

R/S vs # of Connections
50 nodes - 60 Pause Time - 20m/s

Fig. 5. R/S vs TCP connections for 50
nodes, 60s pause time, 20m/s.

0 5 10 15 20 25
Mobility Speed

0.975

0.98

0.985

0.99

0.995

R
/S

AODV
DSR
ECMF

R/S vs Mobility Speed
50 nodes - 30 connections - 60 sec pause time

Fig. 6. R/S vs Mobility speed for 50 nodes,
30 TCP connections, 60s pause time.

0 100 200 300 400 500 600 700 800 900
Pause Time

0

0.2

0.4

0.6

0.8

1

C
/R

AODV
DSR
ECMF

C/R vs Pause Time
50 nodes - 30 TCP connections - 20m/s

Fig. 7. C/R vs Pause Time for 50 nodes,
30 TCP connections, 20m/s.

30 60 90 120 150
of TCP Connections

0

0.25

0.5

0.75

1

C
/R

AODV
DSR
ECMF

C/R vs # of Connections
50 nodes - 60 Pause Time - 20m/s

Fig. 8. C/R vs TCP Connections for 50
nodes, 60s pause time, 20m/s.

0 5 10 15 20 25
Mobility Speed

0

0.2

0.4

0.6

0.8

C
/R

AODV
DSR
ECMF

C/R vs Mobility Speed
50 Nodes - 30 Connections - 60 sec Pause Time

Fig. 9. C/R vs Mobility speed for 50 nodes,
30 TCP connections, 60s pause time.

0 100 200 300 400 500 600 700 800 900
Pause Time

0

50000

1e+05

1.5e+05

of

 C
on

tr
ol

 P
ac

ke
ts

AODV
DSR
ECMF

of Control Packets vs Pause Time
50 nodes - 30 TCP connections - 20m/s

Fig. 10. Control packets vs Pause Time for
50 nodes, 30 TCP connections, 20m/s.

0 30 60 90 120 150
of TCP Connections

0

50000

1e+05

1.5e+05

2e+05

2.5e+05

of

 C
on

tr
ol

 P
ac

ke
ts

AODV
DSR
ECMF

of Control Packets vs # of Connections
50 nodes - 60 Pause Time - 20m/s

Fig. 11. Control packets vs TCP Connec-
tions for 50 nodes, 60s pause time, 20m/s.

0 5 10 15 20 25
Mobility Speed

0

50000

1e+05

1.5e+05

of

 C
on

tr
ol

 P
ac

ke
ts

AODV
DSR
ECMF

of Control Pkts vs Mobility Speed
50 nodes - 30 connections - 60 sec pause time

Fig. 12. Control pkts vs Mobility speed. 50
nodes, 30 TCP connections, 60s pause time.

0 100 200 300 400 500 600 700 800 900
Pause Time

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
/S

AODV
DSR
ECMF

R/S vs Pause Time
50 nodes - 30 UDP connections - 20m/s

Fig. 13. R/S vs Pause Time for 50 nodes,
30 UDP connections, 20m/s.

0 30 60 90 120 150
of UDP connections

0

0.2

0.4

0.6

0.8

1

R
/S

AODV
DSR
ECMF

R/S vs # of UDP connections
50 nodes - 60 sec Pause Time - 20m/s

Fig. 14. R/S vs Number of UDP connec-
tions for 50 nodes, 60s pause time, 20m/s.

0 100 200 300 400 500 600 700 800 900
Pause Time

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
/S

AODV
DSR
ECMF

R/S vs Pause Time
50 nodes - 30 UDP connections - 20m/s

Fig. 15. C/R vs Pause Time for 50 nodes,
30 UDP connections, 20m/s.

0 30 60 90 120 150
of UDP Connections

0

1

2

3

4

C
/R

AODV
DSR
ECMF

C/R vs # of UDP Connections
50 nodes - 60 Pause time - 20 m/s

Fig. 16. C/R vs UDP Connections for 50
nodes, 60s pause time, 20m/s.

0 100 200 300 400500 600 700 800 900
Pause Time

0

50000

1e+05

1.5e+05

2e+05

of

 C
on

tr
ol

 P
ac

ke
ts

AODV
DSR
ECMF

of Control Packets vs Pause Time
50 nodes - 30 UDP connections - 20m/s

Fig. 17. Control pkts vs Pause Time for 50
nodes, 30 UDP connections, 20m/s.

0 30 60 90 120 150
of UDP connections

0

1e+05

2e+05

3e+05

4e+05

of

 C
on

tr
ol

 P
ac

ke
ts

AODV
DSR
ECMF

of Control Packets vs # of UDP connections
50 nodes - 60 Pause Time - 20m/s

Fig. 18. Control pkts vs UDP Connections
for 50 nodes, 60s pause time, 20m/s.

