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Abstract—Graph embedding has recently gained momentum
in the research community, in particular after the introduction
of random walk and neural network based approaches. How-
ever, most of the embedding approaches focus on representing
the local neighborhood of nodes and fail to capture the global
graph structure, i.e. to retain the relations to distant nodes. To
counter that problem, we propose a novel extension to random
walk based graph embedding, which removes a percentage of
least frequent nodes from the walks at different levels. By this
removal, we simulate farther distant nodes to reside in the close
neighborhood of a node and hence explicitly represent their
connection. Besides the common evaluation tasks for graph
embeddings, such as node classification and link prediction, we
evaluate and compare our approach against related methods
on shortest path approximation. The results indicate, that
extensions to random walk based methods (including our own)
improve the predictive performance only slightly - if at all.

Keywords-Graph Embedding; Node Embedding; Random
Walk; Feature Learning;

I. INTRODUCTION

Graph analysis involves predictions over nodes, edges and

further network properties, such as for example shortest

paths. A prominent example of predictions over nodes is

node classification, i.e. predicting the label(s) of a node.

In a social network, we might for example predict the

interests of a user or the community, this user belongs to.

Analogously, link prediction aims to identify, whether a

connecting edge should exist between a pair of nodes. In

a social network for instance, link prediction can be used

to discover novel connections, which are most likely to be

established, i.e. users making friends. Finding the shortest

path is for example relevant in a road network in order to

find the best route from A to B. In this case, the exact

computation is easily possible, but computation costs are

high, therefore a faster approximation by machine learning

can be desirable. The inherently predictive nature of the

other two examples (node classification and link prediction)

is in favor for a machine learning algorithm by itself.

Graph embedding aims to find meaningful feature rep-

resentations (embeddings) of nodes, edges or even whole

(sub-)graphs to be used as input in the aforementioned down-

stream machine learning tasks. Instead of laborious hand-

engineering, those feature representations can be learned by

solving an optimization problem [1]. In this paper, we focus

on unsupervised representation learning, i.e. learning task-

independent features by defining an objective independent of

the downstream prediction task. The flexibility in the defi-

nition of the objective in the unsupervised setting allows to

define computationally efficient feature learning mechanisms

and the representations to be used across several tasks.

A key aspect in feature learning is to reduce the dimen-

sionality of the original feature space in a way, that the rel-

evant information is still retained, while noise is eliminated.

Typically, methods that account for special properties of the

data perform better than general dimensionality reduction

methods, such as for example PCA [2]. A common graph-

specific objective is to preserve the local neighborhood of

a node, when learning feature representations for nodes.

However, when optimizing for the local neighborhood, the

global structure might be lost in the feature representations.

Several extensions to local optimization, which aim to retain

the global structure have been proposed, in particular for

random walk based methods (see the next section II for

details).

We propose a random walk based algorithm for learning

feature representations of nodes in a network, denoted as

HALK, Hierarchical random wALK. HALK optimizes a

graph-based objective function motivated by prior work in

the domain of natural language processing [3] via stochastic

gradient descent. The feature representations maximize the

likelihood of preserving the local network neighborhood

of nodes in a d-dimensional features space, while still

accounting for the global neighborhood. We combine the

feature representations of pairs of nodes using simple binary

operators to arrive at feature representations for edges. Our

key contributions are as follows:

• We propose a modification of the random walk sam-

pling of existing approaches that removes a fraction

of the least frequent nodes from the original walks at

different levels. This moves far distant nodes closer

together. By gradually increasing the amount of nodes

kept until we arrive at the original walk, we represent

the graph at different levels of detail.

• We evaluate and compare our approach to related meth-

ods on the tasks of node classification, link prediction

and shortest path approximation, providing new insights

in terms of the properties captured by the different
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The rest of the paper is structured as follows. In the

upcoming section II we briefly survey related work in feature

learning for networks with an emphasis on methods that

aim to incorporate global graph structure. We present our

approach and technical details in section III. In section IV,

we empirically evaluate our approach and the most closely

related methods on prediction tasks over nodes, edges and

shortest paths on various real-world data sets. We finally

conclude and provide an outlook on possible future direc-

tions in section V.

II. RELATED WORK

Graph embeddings can be obtained by either applying a

general dimensionality reduction algorithm or by methods

that are specifically tailored towards network-specific prop-

erties. A wide variety has been proposed in the literature

(c.f. Goyal and Ferrara [4] for a survey). Among the classi-

cal methods are Principal Component Analysis (PCA) [2],

Linear Discriminant Analysis (LDA) [5], ISOMAP [6],

Multidimensional Scaling (MDS) [7], LLE [8] and Laplacian

Eigenmaps [9] (c.f. Yan et al. [10] for a survey). Most of

these methods typically rely on solving eigen decomposition

and the complexity is at least quadratic in the number of

nodes, which makes them inefficient to handle large-scale

networks.

The advent of Word2Vec [3] in the natural language

processing domain, which places words that appear in

similar contexts closely together in the embedding space,

recently gave rise to neural network based methods. One

of the first methods in this line is DeepWalk [11], which

samples random walks from the graph and treats them as

sentence equivalents. Given the representation of a node

in the embedding space, DeepWalk approximates the con-

ditional probability of another node in the network being

close by optimizing for high probabilities of nodes in the

neighborhood. Neighborhood is defined by sliding a window

across the sampled random walk and considering all the

nodes within this window as context for the center node

of the window (or neighborhood respectively). Thereby,

nodes sharing a similar neighborhood, tend to have a similar

representation in the embedding space. Similar to Word2Vec

implicitly factorizing a matrix of word co-occurrences [12],

[13], DeepWalk has been shown to factorize a matrix of

node transition probabilities [14].

Node2Vec [15] extends DeepWalk by introducing pa-

rameters to control the random walk behaviour, aiming to

discover not only neighborhood similarities (homophily) but

also structural roles of nodes (structural equivalence). At

the most extreme parameter choices, Node2Vec employs

1The evaluation code including methods to create embeddings for all
compared approaches is available in the project repository:
https://doi.org/10.5281/zenodo.2822192

breadth-first or depth-first sampling, exploring the close-by

neighborhood or nodes that are far apart in the network.

LINE [16] explicitly optimizes the embeddings to cap-

ture first- and second-order proximity, by training separate

embeddings for them, which are finally concatenated. First-

order proximity is given by explicit connections between

nodes, while second-order proximity is given by comparing

the nodes’ neighborhoods. Liu et. al build on LINE and

present a method that is capable to embed large-scale graphs

distributively in a streaming fashion [17].

Instead of approximating the k-order proximity matrix, as

DeepWalk does, GraRep [18] calculates it accurately, at the

cost of increased complexity. Yang et al. [19] alleviate this

problem by using information from lower order proximity

matrices. The authors of HOPE [20] experimented with

different similarity measures, such as Katz Index, Rooted

Page Rank and Adamic-Adar.

HARP [21] and Walklets [22] address capturing higher-

order proximity by adapting the random walk strategy. While

HARP coarsens the graph and learns representations via

hierarchically collapsed graphs, Walklets skips over steps

in the random walks. Compared to DeepWalk or Node2Vec,

both HARP and Walklets exhibit additional complexity, as

the node representations are learned on multiple levels - The

collapsing level in HARP and the skip level in Walklets.

Besides most of these approaches utilizing shallow neural

network architectures to learn the feature representations,

deep architectures have been proposed as well, aiming

at capturing non-linearity in the graphs. SDNE [23] and

DNGR [24] utilize autoencoders, GCN [25] defines a con-

volution operator on the graph. Further, methods that incor-

porate additional information, such as particular graph prop-

erties, e.g. communities [26], [27] or node attributes [14],

[28] have been proposed. While random walk based methods

in principle can incorporate the direction of edges during

the random walk, this asymmetry is not encoded in the

final embeddings. Khosla et al. [29] proposed an approach

to maintain the different roles of nodes, according to the

direction of edges.

The focus of this paper is on methods applied to the raw

graph and the most closely related approaches are centered

around random walks, i.e. DeepWalk, Node2Vec, HARP and

Walklets. Experimental results reported in different papers

are often hard to compare, due to varying experimental

setups, evaluation metrics or datasets. Nevertheless, from

our experience, the random walk methods deliver state of

the art performance in tasks such as node classification and

can compete with even far more complex models. We will

provide more details on the aforementioned random walk

based methods in the upcoming section III when we describe

our approach and also compare our method against them in

section IV.

https://doi.org/10.5281/zenodo.2822192


III. APPROACH

A. Problem Definition

Let G = (V,E) denote the graph, where V is the set of

nodes and E the set of edges, E ⊆ (V × V ). The goal is

to find an embedding for the nodes (or equivalently for the

edges) φ : v ∈ V → R
|V |×d, where d << |V |. We want

to embed the nodes into a lower-dimensional, real-valued

space, while still retaining as much information as possible

as in the original space.

B. Feature Learning

To learn the mapping defined above, we seek to maximize

the following objective:

∑

u∈V

logP (v ∈ V +|φ(u)) (1)

That is, we aim to maximize the log-probability of observing

a node v that resides in the context (denoted as V +) of

u, conditioned on its feature representation φ(u). In other

words, given a node in the graph, we aim to maximize the

probability of observing nodes close-by. Predicting nodes

in the context is also know as the Skip-gram model (with

words as the equivalent to nodes in the original model) [3].

We model the conditional probability of every source-

context node pair as a softmax unit parametrized by a dot

product of the nodes’ feature representations:

P (v+|φ(u)) =
exp(〈φ′(v+), φ(u)〉)∑
v∈V exp(〈φ′(v), φ(u)〉)

(2)

where 〈·〉 is the dot product and φ′ is a similar mapping

as φ, often referred to as projection (opposed to embed-

ding). Technically, this is implemented by a shallow neural

network, with a linear hidden layer, where the embeddings

are the weights between the input layer and the hidden

layer and the projections are the weights between the hidden

layer and the output layer. However, the normalization in the

denominator is costly to compute and therefore, we replace

P (v+|φ(u)) by negative sampling, as proposed by Mikolov

et al. [3]:

log σ(〈φ′(v+), φ(u)〉) +

K∑

k=1

Evk∼Pn(v)[log σ(−〈φ′(vk), φ(u)〉]

(3)

where σ(x) = 1
1+exp(−x) is the logistic sigmoid function,

K is the number of negative samples, drawn from the noise

distribution Pn(v), which corresponds to the frequency of

nodes in the random walks (see next section for details

on the random walks). Replacing P (v+|φ(u)) by negative

sampling is possible, as we are not interested in the actual

probability, but a good representation φ(u). The negative

sampling objective is to distinguish between nodes in the

context of u and nodes not in the context (negative samples

vk).

C. Notion of Context

As previously stated, we aim to maximize the probability

to observe nodes that reside in the context of a node,

conditioned on its feature representation. Up to here, we did

not precisely define this context, which we will do now. To

obtain the context, we first sample a set of truncated random

walks from the graph. We then move a sliding window

across these walks. The center of the sliding window is the

node of interest and its spread to the left and right define the

context of this node. The left and right spread are equal and

defined by a parameter called window size. Each pair within

this sliding window (center node and left or right spread)

makes a pair for maximizing the source-context probability.

In order to emphasize the stronger connection to immediate

neighbors, the window size is randomly reduced to a smaller

value, giving less weight to farther distant nodes.

D. Modification of Random Walk Strategy

The modification we introduce in this paper is applied

after sampling the random walks. From the original walks,

we remove a fraction of least frequent nodes at different

levels. That is, we only keep the most frequent nodes

in the walks, starting at a small fraction (e.g. 10%) and

increase the retained fraction until we arrive back at the

original walks. We initialize the feature representations of

all nodes randomly, then we start training the representations

of the most frequent nodes, using the first level of reduced

walks. At the next level, we incorporate a larger fraction

of nodes, update the already trained representations and

train representations for the newly added nodes. We repeat

this procedure, until we have trained representations for all

nodes.

The intuition to train the most frequent nodes only in the

beginning is to establish artificial connections between the

most relevant nodes in the graph (hubs). With these artificial

connections, we initialize the mapping in the embedding

space by defining (close) relations between those hubs. The

embeddings are then updated on more fine-grained levels by

adding more and more nodes.

E. Key Differences of Related Methods to DeepWalk

In Node2Vec, the random walk sampling is parametrized,

such that walks can be controlled to explore the local neigh-

borhood or to walk further away from the original node. The

most extreme parameter choices, resemble Breadth-First or

Depth-First sampling.

The modification of Walklets is applied after sampling

the random walks. Nodes in the walks are skipped at

different levels, from 0 to k. For each level, a separate

model is trained, resulting in an overall dimensionality of the

embeddings as dimensionality of a single model multiplied

by the number of levels. These models are then combined

into a single model with desired dimensionality (usually

equal to the dimensionality of one of the previous single



models) via PCA. Skipping nodes can be seen as adding

artificial edges between nodes, e.g. skipping one node in

the walk [a,b,c] would result in [a,c].

HARP collapses the graph at different levels before

sampling the walks. Training the embeddings starts at the

farthest collapsed graph, i.e. the most coarse graph, training

only representations for nodes available at this level. The

graph is populated back with more and more nodes on each

level, until walks are sampled from the original graph. Dur-

ing this procedure, representations of nodes from previous

levels are updated, while those for newly added nodes in the

current level are initially trained.

Our approach can be seen as a kind of combination

between HARP and Walklets, as training on the most

frequent nodes first can be seen as collapsing the graph to

its hubs, similar to HARP. In terms of artificial connections,

our approach is similar to Walklets, as we introduce them

between hubs. Walklets adds artificial connections between

every pair of nodes in the random walks, which occurs

within k steps in the walk, where k is defined by the skip

level.

IV. EVALUATION

We start this section with the introduction of the different

evaluation tasks carried out, followed by a brief description

of the datasets, we used throughout the experiments and

a description of the different methods’ (hyper-)parameters.

Before finally presenting the evaluation of embeddings on

different tasks and datasets, we first present reproduction

results from the evaluation of the methods, we compare

against in section IV-A.

The performance of the embeddings is measured by three

different prediction tasks. The first task is label classifica-

tion, i.e. we use node embeddings to predict the label of

a particular node. The second task is link prediction, in

which we combine the embeddings of two nodes to an

edge representation between them, in order to predict the

existence of that edge in the graph. In the last task, we use

the embeddings of two nodes to predict their distance in

terms of the number of edges on the shortest path between

them.

Table I presents the basic statistics of the datasets used

throughout the evaluation. Cora and Citeseer are citation

networks, in which the class indicates the research domain

(single label). BlogCatalog is a social network, in which

edges represent friendship among bloggers and the classes

represent topics a blogger is interested in (multi label).

Facebook and Youtube are also social network datasets, with

edges representing friendship.

For each graph embedding method we have to select pa-

rameters that ensure a fair comparison. Common parameters

are the number of random walks µ, the walk length t,

window size w, initial learning rate α, final learning rate

αmin, the representation size d, the amount of negative

Table I
DATASETS USED IN OUR EXPERIMENTS

Dataset #Vertices #Edges #Classes

Cora 2,708 5,429 7
BlogCatalog 10,312 333,983 39
CiteSeer 3,312 4,732 6
Facebook 4,039 88,234 -
Youtube 1,134,890 2,987,624 -

samples and the number of iterations. Further parameters

originating from Word2Vec [3] are the sample threshold,

controlling the amount of high frequency nodes that are

randomly downsampled and the minimum count, ignoring

nodes that occur less often in the walks than this threshold.

The following feature learning methods have additional

individual parameters:

Node2Vec extends DeepWalk by introducing 2 parameters

p and q to control the random walk behavior. p contributes

to a depth-first search and q to a breadth-first search like

neighborhood exploration.

HARP applies two different kinds of graph collapsing

schemes. The graph is collapsed until only a determined

number of nodes is left. By default, the graph is collapsed

until no further collapsing is possible (i.e., the graph would

consist of a single node only) and we did not deviate from

this default in any evaluation task.

HALK needs as additional parameters the percentage of the

most frequent nodes that are kept for each random walk

pruning level and the number of training iterations per level.

Individual learning rates per level are possible, but we used

the same learning rate across all levels.

Walklets skips nodes in a random walk. The number of

skipped nodes is determined by the skip window-size π (not

to be confused with w, the window-size of the SkipGram-

Model).

A. Reproduction of Results

In order to guarantee a meaningful choice of parameters

throughout the evaluation carried out in this paper and a

correct implementation of the methods we compare against,

we first tried to reproduce experimental results from the

other papers. As each of these papers reports a score for

node classification on BlogCatalog with a training fraction

of 50%, we selected that setup for reproduction. We tried

to stick as close as possible to the original paper, by first

collecting the parameter settings as described in the papers.

If we could not find a parameter value in the paper, we tried

to obtain it from the source code, if available. Otherwise we

selected a reasonable value according to our experience.

Deepwalk We derived the following parameter settings

reported originally by Perozzi et al. [11]: number of random

walks µ = 80, window size w = 10 and dimensionality d =

128. According to the source code of Deepwalk, walk length

t = 40, intial learning rate α = 0.025, minimal learning rate



αmin = 0.0001, the number of iterations is 5, the number

of negative samples is 5, the sample threshold is 0.1 and

minimum count = 0.

Node2Vec As reported by Grover et al. [15], we set µ
= 10, t = 80, w = 10 and d = 128, p = 0.25 and q =

0.25. We set set α = 0.025 and αmin = 0.0001, derived

from the source code. The authors report that the Skip-

Gram model’s number of iterations is 1. This resulted in

worse results that were strongly below the reported ones in

our evaluation. Increasing the number of iterations to 5, we

were able to achieve comparable results The other common

parameters were exactly set as in Deepwalk as indicated by

the source code. Additionally, we investigated the influence

of the parameters p and q on the result. Therefore, we also

ran Node2Vec with parameters p = q = 1 on BlogCatalog.

Walklets We used the parameters for the reproduction

reported by Perozzi et al. [22]. We set µ = 1000, t = 11, skip

window-size π = 2 and d = 128. The following parameters

were not reported but set by us as follows: w = 10, α =

0.025 , αmin = 0.001 and number of iterations = 5. We set

the other common parameters equal to those of Deepwalk.

In case that the number of dimensions exceeded 128, we

also used PCA for dimensionality reduction to reduce the

number of dimensions to 128.

HARP The following parameters were reported by Chen et

al. [21]: µ = 40, t = 10, w = 10, d = 128, α = 0.025 and αmin

= 0.001. The number of iterations is not reported and set to

1 by us as we derived this setting from the code and did not

achieve better scores with a higher amount of iterations. This

behaviour can be explained by HARP’s graph coarsening:

Training on several levels (24 for BlogCatalog) of the

coarsened graphs effectively results in several iterations. We

reused the previous common parameters again.

According to the source code, HARP and DeepWalk

remove self-loops from the graph. We applied this pre-

processing step and removed isolates (nodes without any

edge) afterwards. Self-loops and isolates were only present

in the Citeseer dataset, which had 3279 nodes after pre-

processing. All authors report that they use a one-vs-rest

logistic regression classifier with L2 regularization for their

node classification task and we replicate this setup. Since

BlogCatalog is multi-label, we first obtain the number of

actual labels to predict for each sample from the test set.

Then we predict the k most probable classes, where k is

the number of labels to predict. This is a common choice

in the evaluation setup of the reproduced methods. All

methods report the Macro-F1 score, except for Walklets,

reporting Micro-F1, which we follow in the reproduction.

Each method uses a fraction of 50% for training. Scores are

averaged over 10 random splits and we make sure that every

method sees the same splits for training and test.

As clearly visible in table II, our reproduced results are

close to the reported ones and in particular the reproduced

results are constantly better. The slight deviation can be

Table II
REPRODUCTION RESULTS, ORIGINAL SCORE IN BRACKETS. MACRO-F1

REPORTED FOR ALL METHODS EXCEPT WALKLETS (MICRO)

Algorithm/Dataset BlogCatalog

Deepwalk 27.84 (27.30)
HARP 24.84 (24.66)
Walklets 41.37(41.19)
Node2Vec (p=q=0.25) 26,96 (25.81)
Node2Vec (p=q=1) 26,52

explained by the random factor. We can assume that our used

parameters are mostly similar to those used in the original

papers.

The different settings of p and q in Node2Vec show that

changes of these parameters affect the scores only slightly.

The choice of p = q = 0.25 leads to a small improvement

over p = q = 1, but does not have a huge impact. Therefore,

it can be assumed that a cost-intensive parameter search

regarding p and q is not essential. At the setting of p = q

= 1, Node2Vec resembles DeepWalk, as in this setting, the

random walk sampling is not biased, rendering the walks

really random. The difference between Node2Vec with p

= q = 1 and DeepWalk in the table can be explained by

the differences in the parameter choices for walk length t

and number of walks µ. As a result of the minor difference

between the different choices in Node2Vec’s walk control

parameters, we only use DeepWalk in all subsequent tasks.

B. Node Classification

We evaluated HALK, HARP, DeepWalk and Walklets on

the node classification task with the following datasets: Cora,

BlogCatalog and CiteSeer (see table I for basic statistics).

First, we learned embeddings for all nodes in the graph and

then we evaluated the same supervised classifier as in the

reproduction experiment over training / test splits. For Cora

and CiteSeer we used 90% of the data for training and 50%

for BlogCatalog as BlogCatalog contains more vertices and

edges. Similar to the reproduction experiment, we strictly

ensured that all methods use the same data for training and

testing to make a fair comparison possible. We report the

Macro-F1 score (and standard deviation) averaged over 10

random splits.

As all compared methods are random walk based, we

used the same parameters that determine the characteristics

of the random walks for HARP, HALK, DeepWalk and

Walklets. We also used the same representation and window

size for these methods. Most parameters are similar to those

that were already used in the reproduction of results. In

particular, we set µ = 80, t = 40,w = 10, d = 128, negative

samples = 5 and sample=0.1 for HALK, HARP, DeepWalk

and Walklets. We also set α = 0.025, αmin, = 0.001

and minimum count = 0 for all methods. For DeepWalk

and Walklets, we set the number of iterations to 5. These

settings mostly follow the original node classification setup



Table III
NODE CLASSIFICATION MACRO-F1 SCORES AND STANDARD DEVIATION

(±) OVER 10 RANDOM SPLITS. BEST SCORE IN BOLD, SECOND-BEST

UNDERLINED.

Algorithm/Dataset Cora BlogCatalog CiteSeer

HALK 81.65 ±2.2 27.70 ±0.4 56.97 ±3.2
HARP 81.33 ±2.5 27.65 ±0.6 56.16 ±2.0
Walklets 81.10 ±2.5 27.31 ±0.5 55.76 ±2.9
DeepWalk 81.33 ±2.0 27.57 ±0.5 55.54 ±2.8

of DeepWalk. We set the skip window-size for Walklets to π
= 2. We trained HALK on 4 levels with 10%, 20%, 40% and

100% of the most frequent nodes and 10, 5, 3, 1 iterations

respectively. While 10 iterations may seem rather high, one

needs to consider that at this level, only 10% of the nodes

are used for training, effectively resulting in less training

time than a single iteration on the full data.

The results are presented in table III. Best score per

dataset is marked in bold, second best is underlined. HALK

performed best on all three datasets with our parameter

settings. However, as differences in scores are all well within

the standard deviation, there is practically no difference in

performance. That means, we do not have a winner, but all

methods perform equally well.

Even more, running the evaluation a second time with the

same parameter settings may result in a slightly different

ranking. We observed this behavior for example for Deep-

Walk, creating several (Deepwalk) embedding models on

the same set of random walks. Some of these models were

then able to outperform the score of HALK on CiteSeer, but

had a lower score than reported in the table on Cora. This

behavior can be explained by the random initialization of the

embeddings (as the randomness introduced by the random

walks is eliminated by using the same set of walks).

C. Link Prediction

Link prediction attempts to estimate the likelihood of the

existence of edges among nodes based on the observed

network structure. For instance, recommendation systems

need to predict missing friendship links in social networks

and affinities between users and movies. In computational

biology, interaction graphs (e.g. proteins, drugs or diseases)

are usually incomplete and predicting links in these noisy

graphs is very important. Moreover, link prediction is com-

monly used for statistical relational learning to predict the

relation between entities in a knowledge graph [30].

Given a graph G = (V,E) the link prediction task is to

predict the existence of an edge between two nodes. From a

pure prediction perspective, of course the task is to predict

were edges should exist or connections will be established in

the future. The positive examples are obtained by removing

50% of edges from the original graph randomly, whereas

negative examples are generated by randomly sampling an

equal number of node pairs that are not connected by an

Table IV
CHOICE OF BINARY OPERATORS.

Operator Symbol definition

L1 | ⊖ | |φi(u)− φi(v)|
L2 L2 |φi(u) − φi(v)|

2

Subtraction ⊖ φi(u)− φi(v)
Concatenation ⊕ (φ(u), φ(v))

Average ⊘ φi(u)+φi(v)
2

Hadamard ⊙ φi(u) ∗ φi(v)

edge (i.e. (i, j) /∈ E ). Exploiting the vector representa-

tions from each embedding technique, we learn a model

to predict whether a given edge in the test set exists in E
or not. The prediction task involves pairs of nodes, hence

we need to use a bootstrapping approach over the feature

representations of the individual nodes. We use the same set

of binary operators as Grover and Leskovec [15] to construct

feature representations for the edges: L1, L2, Hadamard and

Average (see table IV for details). These edge features are

input to a logistic regression classifier with L2 regularization

to perform the binary classification task.

We re-used the embeddings for BlogCatalog obtained in

the node classification task and kept all hyperparameter

settings the same as in the node classification task for the

Facebook dataset.

Table V illustrates the results of our analysis reported

by the score of AUC (Area Under Curve). Best scores per

binary operator are underlined and best overall scores per

dataset are marked bold. It can be seen that performance

of link prediction greatly varies depending on the binary

operation. A general observation we can draw from the

results is that L1 and L2 achieve very close performance for

every embedding techniques. We can confirm the Hadamard

operator as “higly stable” [15] only partially. While its

performance on the Facebook dataset is consistent across all

Table V
AREA UNDER CURVE (AUC) SCORES FOR LINK PREDICTION. BEST

SCORE PER DATASET IN BOLD, BEST SCORE PER DATASET AND

OPERATOR UNDERLINED.

Dataset Embedding AUC

⊘ | ⊖ | L2 ⊙

Facebook

HALK 0.780 0.986 0.986 0.991

HARP 0.755 0.993 0.994 0.988

WALKLETS 0.767 0.994 0.995 0.987

DeepWalk 0.765 0.992 0.992 0.988

BlogCatalog

HALK 0.935 0.949 0.953 0.821

HARP 0.940 0.975 0.977 0.790

WALKLETS 0.913 0.984 0.985 0.836

DeepWalk 0.944 0.979 0.981 0.805



four methods and close to optimum, it varies slightly more

on BlogCatalog. Also on BlogCatalog, the Hadamard Oper-

ator performs considerably worse than the other operators,

which all yield results in a similar range. When we look

at operators individually, Walklets outperforms the others,

both in L1 and L2, which also results in the best overall

score. For the remaining operators, the best performing

method varies. However, similar to node classification in

the previous experiment, scores are extremely close to each

other and we cannot determine a clear winner.

D. Shortest Path Approximation

The first observation we can draw from the results is

the consistently low performance of the subtraction operator

⊖. In fact, its performance is equal to random prediction.

That means, combining the node features of a pair to an

edge feature via subtraction does not retain any meaningful

information in the resulting edge embedding.

On the Facebook dataset, the results per binary operator

are rather consistent among the different methods (ignoring

random embeddings as an obvious exception). The only ex-

ception is the Hadamard operator, which yields intermediate

scores for HARP and DeepWalk, a score at the top end

for HALK and one at the lower end for DeepWalk. On

the Youtube dataset, the Hadamard operator behaves even

worse, resulting in a score below random for the Walklets

approach. Hence we cannot consider Hadamard as a stable

operator for the shortest path approximation task. While the

L1 operator is rather stable and provides the best results on

the Facebook dataset, its performance varies stronger on the

Youtube dataset and drops to the lower end.

In terms of absolute values, HALK performs best on

Facebook and DeepWalk and Walklets share the top score

on Youtube (on which HALK performs worst). However

it is again hard to draw a decisive conclusion and select a

clear winner, given the variance across datasets and operators

and the (partially) small to non-existent differences in the

achieved scores.

All methods clearly outperform the trivial and random

baseline in terms of MAE on both datasets. On Facebook,

trivial and random baseline are on par, whereas on Youtube,

the random baseline performs even worse than the trivial

predictor. It seems as if the linear regression has been fooled,

learning in-existent patterns. In terms of MRE all embedding

methods improve only slightly over the baseline. This minor

improvement is caused to a partial extent by the nature of

the MRE as mentioned before. However, the improvement

in terms of MAE is also smaller when compared to the

Facebook dataset, so the behavior is not only explained by

the MRE’s nature. The second part of the explanation is the

imbalance of the walk length: In the test set, the difference in

shortest path frequencies on Facebook is between a 6-digits

number for the most and a 4-digits number for the least. On

Youtube this difference is by far more pronounced with a

7-digits number for the most and 2-digits for the least.

V. CONCLUSION & FUTURE WORK

We conclude, that the embedding methods tailored to-

wards retaining long distance relationships or representing

the graph at different hierarchical (including our method)

can improve the performance under certain circumstances,

such as parameter settings, particular tasks or datasets,

but in general the difference in performance is neglible.

DeepWalk is still along the state of the art and from the

methods compared in the evaluation in this paper, it is the

simplest method. That means while a more complex method

might outperform DeepWalk on a certain task/dataset, due

to its simplicity it is preferable in a general setting. We

were surprised by the similarity of results obtained when

conducting a rigorous evaluation. Even though all methods

used for comparison claim improvement over DeepWalk, we

did not clearly see this reflected in our evaluation. When

selecting parameters that are known to provide top scores,

differences almost vanish.

We plan to conduct a large-scale evaluation, including

further methods and datasets, since an unbiased comparison

of different methods is strongly desirable. The reproduction

of results in section IV-A explicitly shows the need for such

a comparison: While the evaluation setups are highly similar

across the compared methods, reported results do not match

the best known results.
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