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Abstract—Advances in reverse engineering make it challenging
to deploy any on-chip information in a way that is hidden from a
determined attacker. A variety of techniques have been proposed
for design obfuscation including look-alike cells in which func-
tionality is determined by hard to observe mechanisms including
dummy vias or transistor threshold voltages. Threshold-based
obfuscation is especially promising because threshold voltages
cannot be observed optically and require more sophisticated
measurements by the attacker. In this work, we demonstrate
the effectiveness of a methodology that applies threshold-defined
behavior to memory cells, in combination with error correcting
codes to achieve a high degree of protection against invasive
reverse engineering. The combination of error correction and
small threshold manipulations is significant because it makes the
attacker’s job harder without compromising the reliability of the
obfuscated key. We present analysis to quantify key reliability of
our approach, and its resistance to reverse engineering attacks
that seek to extract the key through imperfect measurement
of transistor threshold voltages. The security analysis and cost
metrics we provide allow designers to make a quantifiable
tradeoff between cost and security. We find that the combination
of small threshold offsets and stronger error correcting codes are
advantageous when security is the primary objective.

I. INTRODUCTION

The goal of hardware obfuscation is to hide certain infor-
mation about a design, making it harder for a reverse engineer
to extract secret data or information about the function that
is implemented. A designer may seek different objectives
through hardware obfuscation. She might try to hide the
structure of a circuit while preserving its functionality, or
simply try to store a secret key in hardware. However as
more sophisticated and advanced methods are proposed for
design obfuscation, the reverse engineering procedures such as
delayering and schematic reconstruction are becoming more
capable, automated, and available [20], [22]. Designers wishing
to keep secrets on chips have to find new and better approaches
for stopping reverse engineering, leading to a continued arms
race between designers and attackers.

A. Related Work

In recent years, several approaches have been proposed for
hardware obfuscation of logic. One notable approach is the
use of look-alike cells with dummy contacts [17], [4] that are
intended to be hard for an attacker to read out invasively after
delayering a chip. A variation of the same idea is the use
of transistor thresholds or doping to change the function of
cells as introduced by Becker et al. [3]. The modification of
threshold voltages can make transistors permanently on/off or

can adjust their characteristics in a way that will change the
function of a logic gate [16], [7], [5]. Design automation for
logic obfuscation can be used to deploy the aforementioned
modified transistors as basic library cells [9]. Note that all
obfuscations techniques of this type induce the same logic
function on all chip instances; this provides an attractive high-
value target for a determined attacker. Although threshold
voltages cannot be learned from optical analysis during reverse
engineering, techniques do exist which can measure thresholds.
Sugawara et al. [19] show that it is possible to invasively read
out information about transistor doping of the type utilized by
Becker [3].

Similar to obfuscated logic that can be attacked invasively,
data stored in flash memory or antifuses can be attacked
and read out invasively when a chip is not powered. This
is especially troublesome in the case of high-value master
keys that must be stored on many instances of a chip. To
mitigate the threat of invasive readout, Valamehr et al. present
a scheme to protect data from invasive attack [21]; in their
work, an attacker is required to read out a large number of
cells correctly in order to extract the key, but the information
read by the attacker is still digital information. By contrast,
the approach we will present uses distributed analog secrets to
prevent attack, in order to offer even stronger defense by not
having any sensitive digital artifact that can be attacked at rest.

B. Proposed Approach

An important idea in Cryptography is Kerckhoffs’ principle
– that security should rely only on the key, and it should not
matter whether an adversary knows the algorithm. In other
words, a system should remain secure even if everything except
the key is public knowledge. A common restatement of this
principle is to avoid “security through obscurity.” In this work,
we try to adhere to Kerckhoffs’ principle by obfuscating only
a key and allowing an attacker to know everything about the
design except for the characteristics of certain transistors that
determine the key. The advantages of doing so will be the
following:

1) Modularity: Involving an arbitrary logic circuit in ob-
fuscation comes with extra difficulties for design and
test. However, if the key is separate from the logic, the
interactions between obfuscation and logic are minimal
and well-defined. This allows for a detailed exploration
of key obfuscation without regard to its impact on logic.
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Fig. 1: The overall design approach, both from the designer’s
and attacker’s perspective

2) Generality: A key is perhaps the most general type of
information to hide on a chip, and an obfuscated key
can also be used in a straightforward way to obfuscate
logic [23].

3) Use of error correction: Most importantly, a separate ob-
fuscated key storage allows for the use of error correction,
which is not possible when logic is obfuscated directly.
We will show that error correction is crucial for allowing
the threshold differences to be small enough to fool the
attacker without compromising reliability.

Figure 1 shows the overall key generation process from the
designer and attacker perspective. The design consists of a
block containing cells with modified threshold voltages, which
is used to generate the encoded secret key when it is needed.
The output of this block is given to an error correction block,
which decodes the encoded secret key in a way that tolerates
errors. The designer can choose the threshold offset of cells to
store the encoded secret key, and can choose the parameters of
the error correction codes to ensure key reliability. The attacker
is allowed to know the error correction used, and knows the
mechanism that the designer uses to configure the cells; the
attacker can even invasively measure the threshold voltages of
the cells, but does so imperfectly. If the attacker is able to get
enough information about the cells, then he will be able to
guess the encoded key accurately enough to produce the secret
key by applying the known error correction scheme to it.

The specific contributions of this work are as follows:
• We present the first approach that combines threshold-

based obfuscation and error correction.
• We show that this approach leads to quantifiable protection

against invasive readout using a very conservative attacker
model that only assumes some amount of imprecision
when invasively measuring device threshold voltages.

• We give a CAD flow for deploying the proposed approach
in a way that can achieve various tradeoffs between
reliability, security, and cost.

II. SKETCH OF APPROACH

Figure 2 shows our overall design flow. An engineer can
use this framework to implement obfuscated keys that achieve
desired tradeoffs of cost, reliability, and security. Each step of
the flow is described in detail in the following sections. In the
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Fig. 2: Overall CAD flow of the work

first step the designer chooses a cell type to use for storing the
obfuscated constants, and chooses a threshold voltage offset to
use for biasing the cells to generate codewords of the encoded
key; from this, a cell reliability model is extracted. In the second
step, the designer uses the cell reliability model and the chosen
key reliability criteria to decide which error correcting code
strengths are compatible with the circuit design. A candidate
design then exists, and in the third step its security against
invasive readout attack is quantified. Depending on whether the
security level is deemed adequate, the design can be revised.
Examples of revision can be to trade cost against security by
decreasing threshold offset and increasing error correction, or
trade reliability against security by using a weakened error
correction.

III. THRESHOLD-BASED KEY STORAGE ELEMENTS

Threshold voltages of transistors are commonly chosen for
power-performance tradeoffs, but recent works have shown
that modifications to threshold voltages can also be used to
determine the logical function of cells. The basic idea behind
these works is to use multiple classes of transistors with
different threshold voltages. The modification of threshold
voltages can permanently make transistors on/off or can adjust
their relative characteristics to cause the circuit to implement
a specific function [16], [7], [5], [9].

There exist a number of ways in which threshold voltages
can determine digital values produced in a circuit. In another
context, intrinsic variations in threshold voltages have been
used to create device-tied identifiers [12], [18] or secret values
in PUFs. It has been previously shown that the power-up state
of an SRAM cell depends on the intrinsic threshold voltage
differences between transistors which are caused by process
variation [8]. In the same way that intrinsic differences in
threshold voltages can randomly bias cells toward generating
specific values, intentional differences in threshold voltages
can bias cells toward specific values in a way that is common
across chip instances.

Consider a designer that wants to modify the 6-T SRAM
cell of figure 3 so that it will generate a certain value each time
it is powered up. Without loss of generality, we assume the
desired state is the 1 state (Q = 1, Q = 0), while noting that
the 0 state works the same way due to the symmetry of the
cell. For simplicity, we assume the designer wants to induce
the desired state by changing the threshold voltage of only
one transistor in the cell. Then the question arises regarding
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Fig. 3: A simple 6T SRAM cell. The cell is biased toward the
1-state by increasing the magnitude of transistor P2, and biased
toward the 0-state by increasing the magnitude of transistor
P1.

which transistor should be changed, and by how much should
its threshold be changed.

The designer can change the threshold voltage of one
transistor in the cell in the following ways to bias the cell
toward the 1 state: 1) increase the magnitude of threshold
voltage on N1; 2) decrease the magnitude of threshold voltage
on N2; 3) increase the magnitude of threshold voltage on
P2; or 4) decrease the magnitude of threshold voltage on P1.
Regardless of which transistor threshold is modified, a larger
magnitude change will make the cell more reliably biased,
but will also give the attacker a better chance of correctly
measuring the threshold difference invasively during reverse
engineering. The designer therefore seeks to maximize the
reliability that can be obtained for a given amount of threshold
offset.

To determine which transistor should be modified, we
evaluate the 1-probability of the SRAM cell versus its threshold
offset. For any threshold offset, the 1-probability shows the
fraction of cells that are biased toward producing the desired
1 state after process variations are added. The evaluation is
based on 1000 Monte Carlo simulation instances of an SRAM
cell in HSPICE using 45nm CMOS Predictive Technology
Model [1] (PTM) with nominal threshold voltage of 469mV
for NMOS and -418mV for PMOS transistors. We consider
standard deviation of threshold voltage distribution to be 30mV.
The result of this comparison is shown in figure 4. It can clearly
be seen that biasing the threshold of PMOS transistor results
in a higher 1-probability. Therefore, we conclude that adding
a threshold offset on the PMOS transistor is a more effective
way to influence the value generated by the cell, compared to
the same threshold offset on an NMOS transistor. Based on
this analysis, the threshold-based cell programming that we
use is to increase the magnitude of P2 to induce a 1 value
in the cell. Because of the symmetric structure of an SRAM
cell, a 0 is stored in the complementary way, by increasing
the magnitude of P1.

We have shown that it is more beneficial in terms of value
stability to choose PMOS over NMOS transistors. Therefore,
our technique requires two different kinds of PMOS devices
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Fig. 4: The 1-probability against different threshold voltage
offsets for a PMOS and NMOS transistor

with two different thresholds to choose from. One is nominal,
and we assume in several places that the second is a threshold
of our choosing. Multi-threshold processes are common, but
different fabrication processes will typically offer fixed choices
for thresholds. There are no technical barriers to having the
second threshold be arbitrary, and for the sake of exploring the
achievable limits of obfuscation, we will assume fabrication
cooperation that allows us to freely choose threshold. For a
slightly more granular approach, a designer can choose among
a discrete number of thresholds that are available in existing
commercial processes.

IV. RELIABILITY OF THRESHOLD-BASED KEYS

In cryptography, even a single key bit upset may cause
discernible consequences, and threshold-programmed values
are inherently unreliable due to noise and process variation.
For this reason, our scheme uses error correction in addition
to the threshold-programmed cells. The parameters of error
correction and the cell threshold offsets must be chosen together
to ensure that the key meets a reliability criterion; a larger
threshold offset improves cell reliability and allows weaker
error correction to suffice, while a smaller threshold offset will
require a correspondingly stronger error correction. Due to
variations across chips, the chips will not all have the same key
failure rates. Any reliability criterion must therefore specify
both a key failure rate, and a fraction of chips that must have
key failure rates below that number. The reliability criterion
that we use is that at least 99% of chips must have a key failure
rate of less than 10−6. The error correcting code selected for
any threshold offset must cause this criterion to be satisfied.

Because key failures are such infrequent events, it is not
possible to check whether a design meets the given reliability
criterion using random simulation alone, so we rely on a
careful combination of simulation, modeling, and statistics.
The scheme we use to check reliability is a two step process.
The distribution of cell error probabilities is first captured in
a two-parameter abstracted model. The model of cell error
probabilities is then used within a procedure that calculates the
distribution across chips of the key failure rate for different
error correction schemes.



A. Distribution of Error Probabilities across Cells

Each cell is biased to produce a single 0 or 1 bit of a
codeword as chosen by the designer, but due to noise and
variability it may not produce this desired value in a given trial.
In fact, due to process variations, some cells may almost never
produce the desired value, while other cells will produce it
sometimes or almost always. Circuit simulation is used to learn
the distribution of cell error probabilities for a given threshold
offset.

Our baseline data for cell reliability is generated using
HSPICE simulation of SRAM cells in 45nm Predictive Tech-
nology Model (PTM). We created 512 SRAM cell instances
with variation on transistor threshold voltages according to
PTM, and evaluated each cell in the presence of transient noise
300 times. Noise is captured in the simulations of each instance
by doing a single-sample Monte Carlo transient noise analysis
with the .TRANNOISE command. From these simulations,
a set of empirical cell error probabilities is obtained.

Noting that an SRAM cell with an intentionally offset
threshold voltage is similar to a biased PUF, we adopt a
modeling approach from PUFs to compute an expression
that describes the distribution of cell error probabilities. The
heterogeneous error rate model we use is proposed for PUFs by
Roel Maes [13]. The model assumes two sources of variation
in a cell: The process variable (M ) that models the persistent
impact of bias and process variations, and the noise variable
(Ni) that accounts for the cumulative effect of all noise sources
during evaluation. Both variables are normally distributed.
The process variable has an unknown mean and variance,
while the noise variable is modeled as having 0-mean and
an unknown variance. These three unknowns reduce to two
unknown parameters λ1 and λ2 in the model (Eq. 1); φ(x)
and φ−1(x) represent the cumulative distribution function of
standard normal distribution x and its inverse, respectively.
Parameters λ1 and λ2 are chosen by fitting Eq. 1 to the
empirical CDF of cell error probability from circuit simulation
using Levenberg-Marquardt algorithm. Figure 5 shows the
fitting of the model to simulation data for various threshold
offsets. Having an expression for the distribution of cell error
probabilities (Pe) allows us to sample from this distribution
in order to obtain representative cell error probabilities.

cdfPe(x) = φ(λ1φ
−1(x) + λ2) (1)

B. Distribution of Key Failures Across Chips

For any threshold voltage offset, using the known distribution
of cell error probabilities, we can compute the distribution
of key failure rates that will be achieved using different
error correcting codes, and can check which codes satisfy
our reliability criterion. We focus on BCH codes, which is
a class of codes with different block sizes and numbers of
correctable errors in each block. We denote a certain BCH code
as BCH[n,m, t]; where n is the block size, m is the number
of useful information bits per block after error correction, and
t is the number of correctable errors in each block. In our
setting, n is the number of SRAM bits used to store a portion
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Fig. 5: Cumulative distribution function of error probabilities
from the simulation data and their relative fitted curves for
different magnitudes of voltage offsets

of the encoded key, m is the number of key bits generated
from decoding the n bits, and t is the maximum number of
SRAM bit errors that can be tolerated. If an error correcting
code is able to correct t bits, the block fails if more than t bits
are erroneous.

The number of blocks required to generate a key using
a given BCH code will depend on the desired key size (k)
and the number of useful information bits from each block
in that BCH code (m). The number of blocks needed for key
generation is therefore d kme. The key generation fails if at least
one code block that contributes to the key fails. If PFblock,i
is the probability of failure in block i, then the key failure
probability is given by Eq. 2.

PFkey = 1−
d kme∏
i=1

(1− PFblock,i) (2)

For each block of BCH[n,m, t] code, the probability of
producing an erroneous result is the probability that the number
of errors in that block exceeds t. With a heterogeneous error
rate model of cells, each block in a chip will have a failure
rate that depends on the unique error rates of its cells. Hence,
we cannot use binomial distribution to find failure rate of
each block and instead, we use a more general case of
binomial distribution, called ”Poisson-binomial distribution”.
The distribution is a discrete probability distribution to calculate
summation of Bernoulli trials that are not necessarily identically
distributed. Given a set of n non-uniform cell error rates
Pne = (pe,1, pe,2, ..., pe,n) in a block, the probability of having
less than t errors is calculated using cumulative distribution
function of Poisson-binomial distribution FPB(t;Pne ) as shown
by Maes [13] and given by Eq. 3; this describes the probability
of correctly decoding the block. Therefore, the failure rate the
same block is given by Eq. 4

FPB(t;Pne ) =
t+ 1

n+ 1
+

1

n+ 1

n∑
m=1

(1− e
−j2πm(t+1)

n+1 )

(1− e
−j2πm
n+1 )

.

n∏
k=1

(pe,ke
j2πm
n+1 + (1− pe,k))

(3)

PFblock = 1− FPB(t;Pne ) (4)
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We now describe the steps to use the equations given above
for evaluating key reliability with a given BCH code and given
threshold offset. First, we sample cell error probabilities from
the fitted cdfPe (Eq. 1) using inverse transform sampling to
obtain a set of n representative cell error probabilities (Pne );
because the error probabilities are fitted to simulation results,
this accounts for circuit-level reliability. We repeat the sampling
for the number of required blocks, and then for each one
calculate the block failure rate (PFblock) using Eq. 3 and Eq. 4,
and use the block failure rates to compute the key failure rate
using Eq. 2. This calculated key failure rate is for one chip
instance with a specific combination of threshold offset and
BCH code. Repeating the whole calculation multiple times
produces the distribution of key failure rates, and we use that
distribution to evaluate whether the combination of threshold
offset and BCH code satisfy our reliability criterion of at least
99% of chips having key failure rates of less than 10−6.

Among all the BCH codes that will satisfy our reliability
criterion for a given threshold offset, we use only the lowest
cost BCH code, which is the one that corrects the fewest errors
among all sufficiently reliable codes. A designer can choose
from different combinations of threshold voltage offsets and
error correcting codes to reach the desired reliability for the key.
Figure 6a shows the key read failure rate for threshold offset
of magnitude 200mV, evaluated for different BCH codes. As
can be seen, the least expensive code that meets our reliability
criterion is BCH[255, 131, 18].

Figure 6b shows, for each threshold offset, the distribution

of key failure rates that occurs when the minimal BCH code
meeting the reliability criterion is used. Table I shows the area
of each of these combinations in order to generate a 128-bit key
that satisfies the reliability requirement of at least 99% of chips
having key failure rate of less than 10−6. For our area overhead
evaluations we used SRAM cell area of 0.345µm2 as reported
in [15] and synthesized the BCH decoders using NanGate 45nm
Open Cell Library [2]. The cost of each option is provided in
terms of area in µm2 units. Given that equivalent reliability can
be obtained by these different combinations of threshold offset
and BCH code, one must consider the implications of choosing
among the equivalent-reliability design alternatives. As we will
show in the next section, each of these approaches comes with
some tradeoff of cost and security. Using a higher threshold
voltage offset makes reverse engineering easier, but using a
stronger error correcting code comes with more expense in
terms of area and power consumption.

V. RESISTANCE AGAINST INVASIVE READOUT

If the designer uses the proposed technique to store a
key, the first question that comes to mind is how resistant
this key is to reverse engineering attacks. As explained in
the previous sections, our approach benefits from the use
of error correcting codes to correct the impact of noise and
manufacturing issues on key values. The strength of this code is
chosen in accordance with the threshold offset (∆V t); a smaller
threshold offset will require stronger error correction to reach
its desired reliability. Choosing a small threshold offset makes
it harder for a reverse engineer to distinguish between the
different measured threshold voltage values, but the stronger
error correction can also help the attacker to correct errors in
his own invasive measurements. This makes it difficult for a
designer to increase security without compromising reliability,
and leads to a space of trade-offs between reliability, security
and cost that must be considered during design. In this section,
we will evaluate the resistance of each design option against
reverse engineering.

A. Attacker Model

We conservatively assume that an attacker knows everything
about the encoded secret key except for the key value that the
designer has encoded. The attacker knows which cells store
the encoded values, and knows that the secret key bits are
encoded into the cells by increasing the magnitude of threshold
voltage on either transistor P1 or P2 to encode a 0 or 1 bit. The
attacker also knows the parameters of the BCH error correction
that is used.

Using this knowledge to reverse engineer the encoded values,
the attacker has to somehow guess enough bits correctly that
applying the error correction to his guess will produce the key.
For example, if the designer added a BCH error correcting
block capable of correcting t errors, the attacker’s guess of
the encoded key must be within t bits of the value that the
designer intended to store. The attacker learns about encoded
key bits by invasively measuring the threshold voltages of P1
and P2 to guess whether the cell stores a 0 or 1 value.



TABLE I: Evaluation of equivalent-reliability designs. Each pairing of threshold offset and BCH code are chosen such that the
BCH code is the lowest cost code that will satisfy the reliability criterion for that threshold offset.

∆vt(mV ) 100 150 200 250 300
BCH code parameters (n, m, t) (255,47,42) (255,91,25) (255,131,18) (255,155,13) (255,171,11)

Number of cells to store encoded key 765 510 255 255 255
Cells area overhead (µm2) 264 176 88 88 88
BCH decoder area (µm2) 61403 40723 31428 24835 21602
Total area (SRAM cells + BCH decoder (µm2)) 61667 40899 31516 24923 21690

Attacker success for a single chip (RSkey) 8.99e-36 1.45e-28 5.26e-13 6.90e-11 7.66e-08

Since threshold voltage cannot be learned through conven-
tional methods such as delayering and imaging, most works
on multi-threshold obfuscation regard the threshold voltage as
being perfectly secure. However, there are still methods such
as spreading resistance profiling (SRP) [14], scanning capaci-
tance microscopy (SCM) [10], scanning spreading resistance
microscopy (SSRM) [6] and Kelvin probe force microscopy
(KPFM) [11] to measure the concentration of dopant atoms in
the channel and hence reveal the threshold voltage. However,
these methods still have low read accuracy and high overhead.
We evaluate the key stealthiness even for high threshold read
accuracies that may not be feasible yet.

Regardless of the technique used to invasively measure
transistor threshold voltages, there will be some imperfection
to the measurements. Measuring the threshold of transistors
and their relative values can be a difficult task since the
measurement precision of threshold voltages may not be perfect,
and even the task of preparing the chip for measurement can
be difficult. There are two sources of inaccuracy that limit the
attacker’s success in reverse engineering the obfuscated key:

1) Manufacturing Variations: Process variations cause the
threshold voltages of manufactured transistors to differ
from the nominal values intended by the designer. The
effect of process variation on threshold voltage of each
transistor has a distribution of N (0, σ2

var). This is the
same process variation model used in circuit simulation
in Section III.

2) Measurement Error: Regardless of the type of measure-
ments performed by the attacker to read out the threshold
voltages, some inaccuracy is inevitable. Measurement error
causes the reverse engineer to measure a threshold voltage
that differs slightly from the true threshold of the transistor.
We model measurement error as N (0, σ2

err).

Consider the attacker’s view of a cell that is designed to
store a 1. The magnitude of threshold voltages of P2 and P1
are N (vt+ ∆vt, σ

2
var) and N (vt, σ2

var) respectively, because
an increased threshold on P2 is the mechanism used to create
a 1-value. The threshold voltages of P1 and P2 as read by the
attacker with measurement error are N (vt+ ∆vt, σ

2
var +σ2

err)
and N (vt, σ2

var+σ2
err) respectively. The attacker should guess

that the cell stores a 1 value if he measures a higher threshold
voltage on P2. The difference between the measured threshold
voltages of P2 and P1 is N (∆vt, 2σ

2
var + 2σ2

err), and when
this difference is positive, the attacker guesses a value for the
cell that is the same as what the designer intended for the cell.
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Fig. 7: For different values of ∆vt, plot shows the probability
(Pre) that an attacker reads a value for a cell that differs from
the value programmed by the designer, as a function of the
attacker’s measurement error (σerr).

The probability (Pre) that the attacker will infer the wrong
value for the cell is then the cumulative distribution function
of N (∆vt, 2σ

2
var + 2σ2

err) evaluated at point x = 0 (Eq. 5).

Pre = cdfN (∆vt,2σ2
var+2σ2

err)(x = 0) (5)

Figure 7 shows the probability, for different values of ∆vt

and σerr, of an attacker inferring a value that disagrees with
the value intended by the designer. As would be expected, this
probability of misreading a cell is higher when the threshold
offset (∆vt) is small or the standard deviation of measurement
error (σerr) is large.

B. Attacker’s Success Rate for Key Readout
To correctly guess the key, the attacker has to guess the

encoded key bits with a number of errors that is within the error
correcting capacity of the BCH code. Having the probability of
cell read error (Pre) from Eq. 5, the number of errors in a block
is binomially distributed, and the probability of the attacker
successfully reading out a single block of a BCH[n,m, t]
error correcting code is given by Eq. 6.

PRSblock =

t∑
i=0

(
n

i

)
(Pre)

i(1− Pre)n−i (6)

Given that multiple error correction blocks may be required
to generate the entire key, the attacker will only succeed in
reading out the key when all blocks are read correctly. The
probability of the attacker reading out the key successfully
is denoted PRSkey and calculated as shown in Eq. 7. Table I
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reports the attacker success rate (PRSkey) for different threshold
offset magnitudes when σerr = 200mV .

PRSkey =

d kme∏
i=1

PRSblock,i (7)

C. Cost of Readout by Attacking Multiple Chips

When the same key is encoded in multiple chips, an attacker
can choose to attack multiple chips in order to improve
accuracy by averaging out deviations in measurement error
and process variations. In this case, the attacker sees the
differences between the transistor threshold voltages in a cell
as N (∆vt,

2σ2
var+2σ2

err

C ), where C is the number of chips mea-
sured. Changing the normal distribution of Eq. 5 to account for
this reduced variance leads to a reduction in Pre which benefits
the attacker. Note that taking measurements from additional
chips is preferable over taking multiple measurements of the
same chip, which only reduces measurement noise but not
process variations. Depending on the costs of preparing a chip
for measurement, there could be advantages to re-measuring a
single chip, but we do not consider that here.

Figure 8 shows the relation of reverse engineering success
rate with the number of individual chips used for measurements
for each threshold offset. As an example, one can observe that
when the threshold offset (∆V t) is 100mV, the attacker has
to measure about 13770 transistors to have more than a 53%
chance of extracting the key. This requires measuring two
transistors from all 6885 cells that store the encoded key on
9 instances of the chip.’ However, it should be noted that
although having more chips increase the attacker’s success rate,
it also comes with extra cost of measuring multiple threshold
values.

As mentioned before, parameters of a BCH code are denoted
as [n,m, t] where n is the block size, m is the size of useful
data after error correction and t is the size of correctable
errors in a block. For a key of size k that uses BCH blocks
of size [n,m, t], a total of d kne blocks are used. Therefore,
there are m ∗ d kne input bits for BCH blocks that are provided
by threshold-biased SRAM cells. The reverse engineer needs
to measure the threshold of two PMOS transistors for each

cell, making a total number of 2m ∗ d kne transistor threshold
measurements per chip in order to extract the key in this setting.

If the reverse engineer tries to increase the key read reliability
by measuring the cell values from C chips, it will increase the
number of transistor threshold measurements to a total of C ∗
2m ∗ d kne. In this way, using a smaller value of ∆vt combined
with stronger error correction has two advantages. By storing
information more diffusely, it requires more measurements to
be made on each chip, and requires more chips to be attacked
before the key can be guessed.

VI. DESIGN TRADEOFFS

Having shown analysis of reliability and security for different
design scenarios, we now discuss how a designer can maximize
her advantage over the attacker for effective security tradeoffs.
While most changes will impact both reliability and security,
some will represent more effective tradeoffs for the designer
to consider.

A. Loosening Reliability Constraints

Error correcting code choice is constrained by our reliability
criterion which specifies a maximum key failure rate for chips
in the first percentile of reliability. In other words, we’ve
specified that 99% of chips must satisfy some reliability bound.
If we allow weaker error correction to be used, then the failure
rate of chips in the first percentile of reliability will increase.
Yet, at the same time, the attacker’s success rate for extracting
the key will decrease.

To compare the key reliability of the design to the key read
success rate of an attacker, Figure 9 shows the security versus
reliability tradeoff offered by different error correcting codes.
This plot is analyzes a scenario with a threshold offset (∆vt)
of 200mV, and a low measurement error (σerr) of 100mV. The
leftmost point shows the attackers high success rate if the BCH
code used is strong enough to ensure that 99% of chips have
an error rate less than 1E-6, as was used before. If different
BCH codes are used, the plot shows how the failure rate of
first-percentile chips increases, and the attacker success rate
decreases, with increasingly weaker BCH codes. This curve
represent a set of tradeoffs that a designer can make. Allowing
a higher failure rate in key generation may be desirable in
some scenarios if higher level error correction mechanisms
occur. Note that this particular scenario is one in which the
attacker is already able to make highly precise measurements,
and that the achievable tradeoffs can be even better in other
cases.

B. Majority Voting

Majority voting using multiple values obtained from each
cell provides a way for the designer to mitigate the effects
of on-chip noise. This an interesting tradeoff for the designer
because on-chip noise, which is detrimental to key reliability,
does not present any difficulty to the attacker since his read-out
is not based on observing digital values from a functional chip.
Therefore, majority voting is an attractive way to improve
reliability of cell values and allow a weaker BCH code to
be used, which has the effect of making the attacker’s task
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Fig. 9: Tradeoff between attacker’s key read success rate
(PRSkey) and key failure rate (PFkey) that can be achieved by
using different error correcting codes.

more difficult without compromising key reliability. In other
words, the designer can strategically replace some amount of
algorithmic error correction that helps the attacker, with an
amount of circuit-level error correction that does not help the
attacker.

VII. CONCLUSION

This work presents a methodology for storing obfuscated
master keys with quantifiable security against an attacker that
knows everything about the design except for the values of
the secret key bits. The underlying technique is to combine
threshold-based secrets with error correcting codes to allow
secrets to be stored diffusely, which gives the designer an
advantage over attackers that try to read out the secrets with
some amount of imprecision. The proposed methodology
enables designers to achieve different tradeoffs of area cost, key
reliability, and security against invasive readout. Future work
building on these ideas can consider even more diffuse ways
to store keys, can consider technologies other than threshold
voltages in SRAM, and can consider how to impart biases on
cells as a post-manufacturing step so that the technique can
be used for device-tied keys in addition to secure storage of
master keys.
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