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Abstract—We consider the block Rayleigh fading multiple-
input multiple-output (MIMO) wiretap channel with no prior
channel state information (CSI) available at any of the terminals.
The channel gains remain constant in a coherence time of T
symbols, and then change to another independent realization.
The transmitter, the legitimate receiver and the eavesdropper
have nt, nr and ne antennas, respectively. We determine the
exact secure degrees of freedom (s.d.o.f.) of this system when
T ≥ 2min(nt, nr). We show that, in this case, the s.d.o.f. is
exactly (min(nt, nr)− ne)

+(T −min(nt, nr))/T . The first term
can be interpreted as the eavesdropper with ne antennas taking
away ne antennas from both the transmitter and the legitimate
receiver. The second term can be interpreted as a fraction of
s.d.o.f. being lost due to the lack of CSI at the legitimate receiver.
In particular, the fraction loss, min(nt, nr)/T , can be interpreted
as the fraction of channel uses dedicated to training the legitimate
receiver for it to learn its own CSI. We prove that this s.d.o.f.
can be achieved by employing a constant norm channel input,
which can be viewed as a generalization of discrete signalling to
multiple dimensions.

I. INTRODUCTION

We consider the wiretap channel where a legitimate trans-
mitter wishes to have information-theoretically secure com-
munication with a legitimate receiver in the presence of an
eavesdropper. The wiretap channel was introduced by Shannon
[1] for the case of noiseless channels, where it was shown that
secure keys and one-time-pad encryption was necessary for
secure communications. The noisy wiretap channel was intro-
duced by Wyner, who determined the capacity-equivocation
region for the degraded case [2]. Csiszar and Korner general-
ized his result to arbitrary, not necessarily degraded, wiretap
channels [3]. Leung-Yan-Cheong and Hellman determined the
capacity-equivocation region of the Gaussian wiretap channel
and showed that Gaussian signaling is optimal [4]. The s.d.o.f.
of the scalar Gaussian wiretap channel is zero.

The MIMO wiretap channel where the legitimate entities
and the eavesdropper have multiple antennas was considered
for the 2-2-1 case in [5] and the general case in [6]–[8]. These
references determined the exact secrecy capacity of the MIMO
wiretap channel for the case of full CSI at all terminals, and
showed that no channel prefixing is necessary and Gaussian
signalling is optimal. It can be deduced from these works that
the s.d.o.f. of the MIMO wiretap channel with full CSI is
min((nt − ne)

+, nr), where (x)+ = max(x, 0).
The fading wiretap channel with a single antenna at all

terminals, where all parties have perfect CSI of all links was
considered in [9]–[12]. Modeling the fading wiretap under
full CSI as a bank of independent parallel channels, these
references showed that independent Gaussian signalling in all
parallel channels, together with water-filling of the total power
over these channels, is optimal. Reference [13] considered
the single antenna wiretap channel where the transmitter has
the legitimate receiver’s CSI but no eavesdropper CSI under
the assumption of infinite coherence times for channel fading,
and showed that Gaussian signalling is optimal in this case.
Reference [14] considered the same model under a fast fading
condition (single symbol coherence time), and showed that M-
QAM signaling or Gaussian signaling with added Gaussian
artificial noise, may outperform plain Gaussian signalling. In
the single antenna fading channel, under all CSI conditions,
the s.d.o.f. is zero, since it is zero under perfect CSI.

Using multiple antennas at the legitimate users however,
non-zero s.d.o.f. may be achieved even under partial CSI
conditions. Reference [15] showed that in MIMO wiretap
channel with perfect CSI at the receivers, but only a statistical
CSI at the transmitter, under a fast fading Rayleigh channel,
the s.d.o.f. of the system is (min(nt, nr) − ne)

+. Note that
this may be less than the s.d.o.f. achievable under perfect CSI,
which is min((nt − ne)

+, nr). A comparison of these two
s.d.o.f. may be interpreted as the eavesdropper taking away
ne antennas only from the transmitter in the case of perfect
CSI [5]–[8], but ne antennas from both the transmitter and
the legitimate receiver in the case of partial CSI [15]. More
strongly, reference [16] considered the case of an arbitrarily
varying eavesdropper in a MIMO wiretap channel and showed
that the same s.d.o.f. of (min(nt, nr)−ne)

+ can be achieved in
this case. In [16], the CSI of the legitimate receiver is assumed
known at the transmitter, however, nothing is known about
the eavesdropper CSI, not even its probability distribution.
This is an exceptionally strong modeling of the eavesdropper,
where secrecy must be guaranteed for every realization of
the eavesdropper channel; in a way, the eavesdropper may be
thought to be controlling its channel adversarially.

All above work considered that some (either perfect or
partial) CSI is available at some of the terminals. In practice,
typically, the way CSI becomes available at the terminals
is via the receivers measuring it and feeding it back to the
transmitters. It is reasonable to assume that no CSI is known



at the outset before the start of the communication. One must
then take into consideration the cost of acquiring the CSI. In
addition, the assumption of perfect CSI is an idealization; in
reality, the terminals can only have an estimate of the channel
in a delayed manner. Further, in most cases, eavesdropper CSI
will not be available at the transmitter, because she will not
feed her measurement back, and even if she does, she will
not be truthful. Thus, it is more practical to assume that no
CSI is available at any terminal a priori. Recently, reference
[17] studied the case where no CSI is available at any terminal
and the coherence time of the Rayleigh fading channel is one
symbol duration. Reference [17] determined the exact secrecy
capacity in this case and showed that discrete signalling is
optimal. As in all other single antenna cases, the s.d.o.f. in [17]
is zero. It can be shown that, even when multiple antennas are
added, s.d.o.f. in the case of fast fading in [17] is still zero.

In this paper, we consider the MIMO wiretap channel under
block Rayleigh fading, where the channel gains of both the
legitimate receiver and the eavesdropper remain fixed for T
symbols, and then change to another independent realiza-
tion. This models a Rayleigh fading wireless communication
channel with a coherence time of T symbol durations. We
consider the case when neither the transmitter nor the receivers
have any CSI. This can be considered as an extension of
[17] to the case of multiple antennas and larger (than one)
coherence times. A similar channel model without any secrecy
constraints was considered in [18], [19], where in [18] the
structure of the optimal input distribution was found, and in
[19] the d.o.f. was determined to be m(1 − m/T ) where
m = min(nt, nr, ⌊T/2⌋). Our work can also be considered
as a wiretap version of [18], [19].

We show that when the coherence time T satisfies
T ≥ 2min(nt, nr), the s.d.o.f. of this system is exactly
(min(nt, nr) − ne)

+(T − min(nt, nr))/T . Compared to the
MIMO wiretap channel results in [15], [16], where the legiti-
mate receiver knows its channel gain, the s.d.o.f. in our case
is exactly the same as those in [15], [16] except for a factor of
(T −min(nt, nr))/T . Intuitively, at high signal-to-noise ratio
(SNR), the legitimate receiver needs min(nt, nr) channel uses
out of T channel uses to learn its channel. Therefore, the factor
(T − min(nt, nr))/T intuitively accounts for the number of
channel uses lost for estimating the channel at the legitimate
receiver. As in the cases of [15], [16], due to no CSI at the
transmitter, the eavesdropper takes away ne antennas from
both the transmitter and the receiver, i.e., ne is subtracted from
min(nt, nr), as opposed to being subtracted only from nt as
in the case of full CSI at the transmitter [5]–[8]. In comparison
to the case without any secrecy constraints in [18], [19], here
we have a subtraction of ne from the first term in the d.o.f.
due to the presence of the eavesdropper.

Finally, it is interesting to note that one cannot achieve a
positive s.d.o.f with either a long coherence time in a single
antenna system [13] or with multiple antennas in a very short
(T = 1) coherence time channel [17]; however, with some
moderate coherence (T ≥ 2min(nt, nr)) and use of multiple
antennas, it is possible to achieve positive s.d.o.f.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wiretap channel that consists of a transmitter
with nt antennas, a legitimate receiver with nr antennas,
and an eavesdropper with ne antennas. The channel between
the transmitter and the legitimate receiver is denoted by
H ∈ Cnr×nt and the channel between the transmitter and the
eavesdropper is denoted by G ∈ Cne×nt . The channels are
Rayleigh fading with entries of H and G being i.i.d. complex
Gaussian random variables with zero-mean and unit-variance,
i.e., CN (0, 1). The unit-variance assumption is without loss
of generality as the difference in the channel qualities may be
modeled by different noise variances at the two receivers. The
channels are block fading, i.e., the channel coefficients remain
constant in a coherence interval T and change independently
across different intervals according to the same distribution.

Let X ∈ Cnt×T denote the signal transmitted by the
transmitter during a coherence interval. The transmitted signal
is subject to an average power constraint as,

1

T
E
[
tr(XX†)

]
≤ P (1)

where tr(·) denotes the trace function. The received signal at
the legitimate receiver and the eavesdropper are

Y = HX+Nr (2)
Z = GX+Ne (3)

where Nr ∈ Cnr×T and Ne ∈ Cne×T are additive white
Gaussian noises with i.i.d. entries with distributions CN (0, σ2

r)
and CN (0, σ2

e), respectively. The CSI, i.e., the realizations of
H and G, are not known to any of the terminals.

A (2nR, n) code consists of an encoder fn at the transmitter
that maps each secret message, say W ∈ W , {1, . . . , 2nR}
into a length-n codeword and a decoder gn at the legitimate
receiver that maps its received signal into a message estimate
Ŵ ∈ W . Each codeword is transmitted over multiple coher-
ence intervals [18] and n is chosen as a multiple of T . The
signal received at the legitimate receiver and the eavesdropper
over n channel uses are denoted by Yn and Zn, respectively.

A secret rate R is said to be achievable if there exists
an encoder fn and a decoder gn such that the probability
of error at the legitimate receiver P(W ̸= Ŵ ) goes to zero
and the average equivocation at the eavesdropper measured
by 1

nH(W |Zn) approaches 1
nH(W ), as the codeword length

n → ∞. The secrecy capacity Cs is the supremum of all such
achievable secrecy rates. From [3], the secrecy capacity is

Cs =
1

T
max
V,X

I(V ;Y)− I(V ;Z) (4)

where V is an auxiliary random variable that satisfies the
Markov chain V → X → Y,Z. Determining the optimal joint
distribution of (V,X) and the resulting exact secrecy capacity
expression is challenging, instead, in this paper, we focus on
determining the s.d.o.f. which is defined as,

Ds = lim
P→∞

Cs

logP
(5)



III. SUMMARY OF THE MAIN RESULTS

In this section, we summarize our main results. We provide
the proofs in the following sections. The main results of our
paper can be encapsulated through the following three lemmas
which leads to the conclusion in Theorem 1.

Lemma 1 For the MIMO wiretap channel in (2)-(3), with no
CSI at any terminal,

Ds = 0, if nr ≤ ne (6)

This implies that the secrecy capacity does not scale with
power when the eavesdropper has more antennas than the
legitimate user. We can however achieve positive s.d.o.f. when
nr > ne as stated in the following two lemmas.

Lemma 2 When nt ≥ nr > ne, and T ≥ 2nr, the s.d.o.f. is
given by

Ds = (nr − ne)

(
T − nr

T

)
(7)

Lemma 3 When nr > ne, nr > nt, and T ≥ 2nt, the s.d.o.f.
is given by

Ds = (nt − ne)
+

(
T − nt

T

)
(8)

We combine the above three lemmas and have the following
theorem as the main result of our paper.

Theorem 1 For the MIMO wiretap channel in (2)-(3), with
no CSI at any terminal, when T ≥ 2min(nt, nr), the s.d.o.f.
is given by

Ds = (min(nt, nr)− ne)
+

(
T −min(nt, nr)

T

)
(9)

Notice that the s.d.o.f. is affected by two factors. The
factor (min(nt, nr) − ne)

+ in Theorem 1 comes from the
difference between the d.o.f. of the main channel and that of
the eavesdropper’s channel, and the factor (1−min(nt, nr)/T )
is due to the lack of knowledge of the CSI. One can regard
the ratio min(nt, nr)/T as the cost of channel estimation from
the point of view of a training based scheme.

IV. PROOF OF LEMMA 1

To prove Lemma 1, we will in fact prove the following
stronger result for this case:

Cs ≤
[
ne log

(
1 +

P

σ2
r

)
− ne log

(
1 +

P

σ2
e

)]+
(10)

In order to derive this upper bound on the secrecy capacity,
since nr ≤ ne in this case, we first notice that for a fixed
ne, the secrecy capacity of the MIMO wiretap channel with
nr = ne is always greater than or equal to that of the case
with nr < ne. Hence it suffices to upper bound the secrecy
capacity of the system with nr = ne, which we will call the
enhanced wiretap channel.

For the enhanced wiretap channel, if σ2
r ≥ σ2

e , it is clear
that the legitimate user is stochastically degraded with respect
to the eavesdropper. Hence, the secrecy capacity in this case is
zero. However, if σ2

r < σ2
e , using the two conditions nr = ne

and σ2
r < σ2

e , we can construct a degraded wiretap channel
equivalent to (2)-(3) as follows

Y = HX+Nr (11)
Z′ = HX+Nr +N′

e = Y +N′
e (12)

where each element of N′
e ∈ Cne×T is i.i.d. Gaussian with

zero-mean and variance σ2
e − σ2

r , and N′
e is independent of

X, H, and Nr. The equivalent channel in (11)-(12) has the
same secrecy capacity as the original one in (2)-(3), since
the secrecy capacity depends only on the conditional marginal
probabilities p(Y|X) and p(Z|X). For the equivalent model
in (11)-(12), we have X → Y → Z′. Thus, from [2], [3], no
channel prefixing is required and the secrecy capacity of the
equivalent degraded wiretap channel (11)-(12) is given by

Cs =
1

T
max

pX∈SpX

I(X;Y)− I(X;Z′) (13)

where SpX
denotes the set of all input distributions which

satisfy the power constraint in (1).
To derive the upper bound in (10), we first rewrite (13) as

T · Cs = max
pX∈SpX

h(Y)− h(Z′)− h(Y|X) + h(Z′|X) (14)

Now we introduce the following lemma which is a vector
generalization of [17, eqn. (12)].

Lemma 4 If nr = ne and σ2
r < σ2

e , we have the following
inequality for the wiretap channel in (11)-(12)

h(Y|X)− h(Z′|X) ≥ h(Y|X,H)− h(Z′|X,H) (15)

Using Lemma 4 in (14), we obtain

T · Cs ≤ max
pX∈SpX

h(Y)− h(Y +N′
e)

− h(Y|X,H) + h(Z′|X,H) (16)

≤ ne log

(
1 +

P

σ2
r

)
− ne log

(
1 +

P

σ2
e

)
(17)

where we used the entropy power inequality and the fact
that Gaussian maximizes differential entropy, noting that
E[tr(YY†)] ≤ (P + σ2

r)neT . This gives us the desired result
in (10), completing the proof of Lemma 1.

V. PROOF OF LEMMA 2

Due to space limitations, we outline the steps of the proof
and skip some of the details. We first prove the converse and
then provide a scheme that achieves the desired s.d.o.f.

A. Converse

To find an upper bound for the s.d.o.f. Ds, we only need to
consider the case where σ2

r < σ2
e , since with all other channel

parameters remaining the same, the wiretap channel (2)-(3)
with σ2

r < σ2
e yields larger secrecy capacity than that with



σ2
r ≥ σ2

e . Under the assumption σ2
r < σ2

e , we can once again
construct a degraded equivalent channel (as we did in (11)-(12)
for nr = ne), without changing Cs by selecting ne row vectors
from nr rows of the legitimate channel matrix H to form
the eavesdropper’s channel. For any fixed partition p1 ∪ p2 =
{1, . . . , nr} where |p1| = ne and p2 = {1, . . . , nr} \ p1, we
construct a degraded equivalent channel for (2)-(3) as follows

Y = HX+Nr (18)
Zp1 = Hp1X+Np1

r +N′
e = Yp1 +N′

e (19)

where Hp1 ,Np1
e and Yp1 denote the collection of row vectors

with indices belonging to p1 from H,Ne and Y, respectively.
Zp1 denotes the equivalent eavesdropper’s received signal
constructed from Yp1 . For any partition (p1, p2), as in the
proof of Lemma 1, the secrecy capacity of the degraded
wiretap channel (18)-(19) is

Cs =
1

T
max

pX∈SpX

I(X;Y)− I(X;Zp1) (20)

First, we characterize the optimal input structure for the
equivalent degraded channel given in (18)-(19). This helps us
restrict possible input distributions and simplify the problem.
Interestingly, due to the degradedness of the equivalent wiretap
channel in (18)-(19) and the concavity of the secrecy capacity
in the input distribution for degraded channels [17], the
optimal input structure in (20) is the same as that in the
channel without secrecy constraints in [18].

Recall that a random matrix M ∈ CN×T where T ≥ N is
isotropically distributed (i.d.) if the following equation holds

p(M) = p(MU) (21)

for all deterministic T × T unitary matrices U. The optimal
input structure for the equivalent degraded wiretap channel in
(18)-(19) is characterized in the following lemma.

Lemma 5 When nr > ne and σ2
r < σ2

e , for the equivalent
channel in (18)-(19), the optimal input distribution that max-
imizes Cs in (20) has the structure

X = ΛΘ (22)

if T ≥ nt, where Λ is an nt×T diagonal random matrix with
real and non-negative diagonal elements, and Θ is a T × T
i.d. unitary matrix which is independent of Λ.

Although we cannot completely characterize the optimal X,
the results in Lemma 5 suffice to derive a useful upper bound
for Ds. We can rewrite the secrecy capacity given in (20) and
upper bound it as

T · Cs = max
pX∈S∗

pX

I(X;Y)− I(X;Zp1) (23)

= max
pX∈S∗

pX

h(Yp1) + h(Yp2 |Yp1)− h(Yp1 +N′
e)

− h(Y|X) + h(Zp1 |X) (24)
≤ max

pX∈S∗
pX

h(Yp2 |Yp1)− h(Y|X) + h(Zp1 |X) (25)

where S∗
pX

in (23) denotes the set of all input distributions
having the optimal structure described in Lemma 5 and
satisfying the power constraint in (1), matrix Yp2 in (24) is
the collection of row vectors of Y with indices belonging to
p2 = {1, . . . , nr} \ p1, and the inequality (25) follows from
h(Yp1) ≤ h(Yp1 +N′

e).
Now continuing from (25), we derive the desired upper

bound in four steps.
In step 1, we derive an upper bound for h(Yp2 |Yp1) in

terms of h(Y). We derive this upper bound by using the
following general lemma.

Lemma 6 Given an m × T random matrix M with entropy
h(M), for all n ∈ {1, . . . ,m}, there must exist a partition
(p′1, p

′
2) where p′1 ∪ p′2 = {1, . . . ,m}, |p′1| = n, and |p′2| =

m− n such that

h(Mp′
2 |Mp′

1) ≤ m− n

m
h(M) (26)

where Mp′
1 and Mp′

2 denote the collection of row vectors of
M with indices belonging to p′1 and p′2, respectively.

Now, from Lemma 6 and (25), we have

T · Cs ≤ max
pX∈S∗

pX

nr − ne

nr
h(Y)− h(Y|X) + h(Zp1 |X)

(27)

which comes from the fact that for any partition (p1, p2), (25)
is a valid upper-bound.

In step 2, we derive an upper bound for h(Y). Since given
the input signal X, each row vector of Y and Zp1 are i.i.d.
Gaussian, the −h(Y|X) + h(Zp1 |X) term in (27) can be
explicitly computed. In this step, we upper bound h(Y) using
the following lemma.

Lemma 7 With the distribution of the channel input X sat-
isfying the optimal structure in Lemma 5, the corresponding
differential entropy of the legitimate receiver signal Y in (11)
can be upper bounded as

max
pX∈S∗

pX

h(Y) ≤ n2
r logP + (T − nr)E

[
log detYY†]

+ o(logP ) (28)

where limP→∞ o(logP )/ logP = 0.

Now, from Lemma 7 and (27), we can further upper bound
the secrecy capacity as

T · Cs ≤ max
pX∈S∗

pX

nr − ne

nr
(T − nr)E

[
log detYY†]

− (nr − ne)

nt∑
i=1

E
[
log(||Xi||2 + σ2

r)
]

+ ne

nt∑
i=1

E
[
log

(
||Xi||2 + σ2

e

||Xi||2 + σ2
r

)]
+ (nr − ne)nr logP + o(logP ) (29)



where Xi is the ith row of the given input signal X.
By using the fact that log(1 + x) ≤ x, we have

E
[
log

(
||Xi||2 + σ2

e

||Xi||2 + σ2
r

)]
≤ E

[
σ2
e − σ2

r

||Xi||2 + σ2
r

]
(30)

≤ σ2
e − σ2

r

σ2
r

(31)

where the right hand side of (31) is a constant independent
of P . From (29) and (31), we can upper bound the secrecy
capacity T · Cs as

max
pX∈S∗

pX

(nr − ne)

(
(T − 2nr)

nr
E
[
log detYY†]

+ E
[
log detYY†]− nt∑

i=1

E
[
log(||Xi||2 + σ2

r)
])

+ (nr − ne)nr logP + o(logP ) (32)

By the assumptions T ≥ 2nr and nr > ne, we
can obtain a further upper bound for (32) by devel-
oping upper bounds separately for E

[
log detYY†] and

E
[
log detYY†] −∑nt

i=1 E
[
log(||Xi||2 + σ2

r)
]
, respectively.

In step 3 and step 4, we will develop upper bounds for these
two terms.

In step 3, we derive an upper bound for E
[
log detYY†]

in (32) using the following lemma.

Lemma 8 With the distribution of the channel input X sat-
isfying the optimal structure in Lemma 5, and with nt ≥ nr,
the legitimate received signal Y in (11) satisfies

max
pX∈S∗

pX

E
[
log detYY†] ≤ nr logP + o(logP ) (33)

where limP→∞ o(logP )/ logP = 0.

In step 4, we derive an upper bound for the combined term
E
[
log detYY†] −∑nt

i=1 E
[
log(||Xi||2 + σ2

r)
]

in (32) using
the following lemma.

Lemma 9 With the distribution of the channel input X sat-
isfying the optimal structure in Lemma 5, and with nt ≥ nr,
the legitimate received signal Y in (11) satisfies

max
pX∈S∗

pX

E
[
log detYY†]− nt∑

i=1

E
[
log(||Xi||2 + σ2

r)
]
≤ k

(34)

where k is a constant which is independent of P .

Finally, using Lemma 8 and Lemma 9 in (32), we obtain
the desired upper bound on the s.d.o.f. as

Ds ≤ (nr − ne)

(
T − nr

T

)
(35)

which completes the converse part of Lemma 2.

B. Achievable Scheme
In this part, we will show that a constant norm channel input

[18], [19] transmitted on nr antennas can achieve the s.d.o.f.

upper bound given in (35). Specifically, let the channel input
Xc be constant norm over nr transmitted antennas and zero
over the rest of nt − nr antennas, i.e.,

Xc = diag

{√
PT

nr
, . . . ,

√
PT

nr
, 0, . . . , 0

}
Θ (36)

where Θ is an T ×T i.d. unitary matrix. We can lower bound
the achievable rate Rs as follows:

T ·Rs ≥ I(Xc;Y)− I(Xc;Z) (37)
= h(Y)− h(Z)− h(Y|Xc) + h(Z|Xc) (38)
= h(Y)− h(Z)

− nr

nr∑
i=1

log

(
PT

nr
+ σ2

r

)
− nr(nt − nr) log σ

2
r

+ ne

nr∑
i=1

log

(
PT

nr
+ σ2

e

)
+ ne(nt − nr) log σ

2
e

(39)
≥ h(Y)− h(Z)− (nr − ne)nr logP + o(logP )

(40)

Since E[tr(ZZ†)] ≤ (P +σ2
e)neT , the entropy h(Z) of Z can

be upper bounded by entropy of an i.i.d. Gaussian matrix as

h(Z) ≤ neT logP + o(logP ) (41)

As for the entropy of Y, it can be shown that [19]

h(Y) ≥h(HXc) = nrT logP + o(logP ) (42)

Thus, we have the following lower bound on the secrecy rate

T ·Rs = I(Xc;Y)− I(Xc;Z) (43)
≥ (nr − ne)(T − nr) logP + o(logP ) (44)

which implies

Ds ≥ (nr − ne)

(
T − nr

T

)
(45)

This together with the upper bound in (35) gives the exact
secure d.o.f. for the case nt ≥ nr > ne and T ≥ 2nr as

Ds = (nr − ne)

(
T − nr

T

)
(46)

completing the proof of Lemma 2.
As a final remark, we note that when nt ≥ nr, we can use

nr transmitter antennas to achieve the optimal s.d.o.f. Having
more than nr transmit antennas gives us no improvement, at
least, as far as the s.d.o.f. is concerned.

VI. PROOF OF LEMMA 3

The proof is based on the key observation that when nt <
nr, the receiver can use only nt of its antennas without losing
any s.d.o.f. That is, for a fixed nt, the s.d.o.f. in the case
where nt < nr is, in fact, equal to the s.d.o.f. in the case with
nr = nt. We state this formally in the following lemma.



Lemma 10 For the MIMO legitimate channel (2), if nt < nr,
for any input signal X satisfying the power constraint in (1),
we have

I(X;Y)− I(X;Ynt) ≤ o(logP ) (47)

where Ynt denotes the collection of the first nt row vectors
of the received signal matrix Y.

Note that, in [19], a result similar to (47) but with more
restrictions is proved as

max
pX∈SpX

I(X;Y)− max
pX∈SpX

I(X;Ynt) ≤ o(logP ) (48)

The inequality in (48) suffices to prove the results in [19]
for block fading MIMO channels without secrecy constraints.
However, it does not suffice in the case of block fading MIMO
wiretap channel here. The reason is that we also need to
consider the information leakage I(X;Z) to the eavesdropper,
and the pX that maximizes I(X;Y) may also be favorable
for the eavesdropper. Thus, we need to derive a more general
result than that in (48) in [19]; i.e., we need (47) which is
valid for any input distribution pX as given in Lemma 10.

To derive an upper bound for the s.d.o.f., we only focus
on the case σ2

r < σ2
e . When nr > ne and σ2

r < σ2
e , we can

construct the same equivalent degraded channel in (18)-(19)
and the secrecy capacity can be rewritten as in (20). The only
difference here is that now the number of transmitter antennas
is less than the number of legitimate receiver antennas, i.e.,
nt < nr. If we denote X∗ as the optimal input for (20) when
nt < nr, based on Lemma 10, we have

T · Cnt<nr
s = I(X∗;Y)− I(X∗;Zp1) (49)

≤ I(X∗;Ynt)− I(X∗;Zp1) + o(logP ) (50)
≤ max

pX∈SpX

I(X;Ynt)− I(X;Zp1) + o(logP )

(51)
= T · Cnt=nr

s + o(logP ) (52)

where Cnt<nr
s and Cnt=nr

s are the secrecy capacity of the
degraded equivalent channel (18)-(19) with nt < nr and with
nt = nr, respectively. We already know the s.d.o.f. when nr =
nt and T ≥ 2min(nt, nr). For nr = nt > ne, the s.d.o.f. Ds

is given by (46) from Lemma 2, and for nr = nt ≤ ne,
Ds = 0 from Lemma 1. Thus, when nt < nr and T ≥ 2nt,
we get the required upper bound as

Ds ≤ (nt − ne)
+

(
T − nt

T

)
(53)

The achievability of the above upper bound follows by using
a constant norm channel input over nt transmitter antennas
as described previously. However, at the legitimate receiver,
only nt receiver antennas are needed and we can ignore the
remaining nr − nt row vectors of the received signal matrix
Y while decoding at high SNR. These matching converse and
achievability results complete the proof of Lemma 3.

VII. CONCLUSION

We considered the Rayleigh block fading wiretap channel
with no a priori CSI at any of the terminals. We constructed
a degraded equivalent channel, and determined its secrecy
capacity. We determined the s.d.o.f. of this channel when T ≥
2min(nt, nr) to be (min(nt, nr)−ne)

+(T−min(nt, nr))/T .
When min(nt, nr) ≤ ne, the s.d.o.f. is zero no matter how
long the coherence time T is; an example of this is the scalar
wiretap channel where nt = nr = ne = 1. When T = 1, the
s.d.o.f. is zero no matter how many antennas the transmitter
and the legitimate receiver may have. We showed in this paper
that when we have some moderate channel coherence together
with multiple antennas at the legitimate entities, we can have
non-zero s.d.o.f. The needed condition for this is that the
legitimate entities have more antennas than the eavesdropper.
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