arXiv:2303.00498v1 [cs.NI] 28 Feb 2023

Adaptive Hybrid Spatial-Temporal Graph Neural
Network for Cellular Traffic Prediction

Xing Wang, Kexin Yang, Zhendong Wang, Junlan Feng, Lin Zhu, Juan Zhao, Chao Deng
JIUTTIAN Team, China Mobile Research Institute, Beijing, China
Email: {wangxing, yangkexin, wangzhendongai, fengjunlan, zhulinyj, zhaojuan, dengchao} @chinamobile.com

Abstract—Cellular traffic prediction is an indispensable part
for intelligent telecommunication networks. Nevertheless, due
to the frequent user mobility and complex network scheduling
mechanisms, cellular traffic often inherits complicated spatial-
temporal patterns, making the prediction incredibly challenging.
Although recent advanced algorithms such as graph-based pre-
diction approaches have been proposed, they frequently model
spatial dependencies based on static or dynamic graphs and
neglect the coexisting multiple spatial correlations induced by
traffic generation. Meanwhile, some works lack the consideration
of the diverse cellular traffic patterns, result in suboptimal
prediction results. In this paper, we propose a novel deep learning
network architecture, Adaptive Hybrid Spatial-Temporal Graph
Neural Network (AHSTGNN), to tackle the cellular traffic pre-
diction problem. First, we apply adaptive hybrid graph learning
to learn the compound spatial correlations among cell towers.
Second, we implement a Temporal Convolution Module with
multi-periodic temporal data input to capture the nonlinear
temporal dependencies. In addition, we introduce an extra
Spatial-Temporal Adaptive Module to conquer the heterogeneity
lying in cell towers. Our experiments on two real-world cellular
traffic datasets show AHSTGNN outperforms the state-of-the-art
by a significant margin, illustrating the superior scalability of our
method for spatial-temporal cellular traffic prediction.

Index Terms—Cellular Traffic Prediction, Spatial-Temporal
Data, Graph Neural Network, Mobile Network, Deep Learning

I. INTRODUCTION

Total global mobile data traffic reached 67EB per month
by the end of 2021, and is projected to grow 4.2 percent to
reach 282EB per month in 2027 [1]]. The explosive growth of
traffic not only brings a huge demand for network capacity, but
also brings challenges for telecom network management and
resource allocation. As a crucial aspect of telecom network
operation, traffic prediction is essential for intelligent wireless
networks. Accurate cellular traffic prediction plays an impor-
tant role in network planning, traffic scheduling, network fault
diagnosis and reducing operation cost, etc.

However, it is extremely challenging to predict cellular
traffic due to several reasons. First, cellular traffic exhibits
nonlinear temporal dependencies since the mobile data traffic
is extremely dynamic. For instance, a user can consume a
large volume of data for a moment via a given cell tower.
At the next moment, this user may stop the connection or
migrate to a new cell tower, causing a certain amount of
traffic to disappear suddenly [2]. The discontinuous nature of
data usage makes the inherent temporal dependency of mobile
traffic a complex nonlinear and unstable problem. Second,
frequent user mobility and complicated network scheduling
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Fig. 1. An example of cell tower distribution in a region. Purple, orange and
green ellipses indicate the coverage of the cell tower A, B and C. Blue ellipses
means the coverage of other cell towers. The coverage areas of different cell
towers are partially overlapped, so users can switch between cell towers and
still maintain the connection.

mechanisms bring complex spatial correlations between cell
towers. As shown in Fig. [T] different cell towers in a wireless
network maintain distinct coverage zones. Users can attach to
a cell tower within its coverage area to access mobile network
services and consume traffic. Due to the limited coverage
of wireless signals, users could switch between multiple cell
towers as they migrate between areas, resulting in the spatial
correlations of cellular traffic. Moreover, users can easily
travel across the city within half an hour with the efficient
urban transportation, which brings the spatial dependencies
even with distant cell towers [3]. For better user experience,
the wireless network scheduling mechanism may also hand
over the user to a closer cell tower, or a cell tower with
fewer users, or a distant cell tower with stronger signal,
etc., which increases the complexity of spatial correlation.
Third, the different capacities, geographical locations, and
surroundings of cell towers make their data traffic patterns
diverse, which called heterogeneity. For example, the data
traffic of a cell tower near a shopping mall shows significant
increase at weekend compared with the weekday. Meanwhile,
it is opposite for the cell tower located in a subway station,
whose data traffic in the weekday is regularly higher than that
of the weekend with obvious morning and evening peak.
Recently deep learning-based methods for mobile traffic
prediction have attracted the interests of researchers due to its
powerful ability to capture intricate data patterns. Typically,



Recurrent Neural Networks (RNN) based models, such as
Long-Short Term Memory (LSTM) networks [4], have shown
promising performance on modeling temporal dependencies
[S]. But they ignore spatial correlations, resulting in a loss
of accuracy. [6] proposed the use of convolutional LSTM
(ConvLSTM) [7]] for spatial-temporal traffic prediction, which
adopts a grid-based assumption that cells have a Euclidean spa-
tial relationship. Although the grid-based approach achieved
better performance than LSTM, it may not accurately capture
the spatial dependencies of the cell towers. Several research
tend to employ Graph Neural Networks (GNNs) [8]] for mod-
eling the spatial dependencies based on graph. [2]] proposed
to implement graph convolutional networks (GCN) [9] with a
static predefined graph constructed based on the geographical
distance between base stations, to capture the spatial correla-
tions of cellular traffic. [[10] adopted an attention mechanism
to capture global spatial-temporal correlations for the dynamic
characteristics of cellular traffic. While the remarkable results
have been achieved, they still have limitations. The static
graph can hardly reflect the time-varying relationships between
nodes. And the dynamic graph generated approaches often
have high model complexity and rely heavily on the traffic
data, which is sensitive to data noise and hard to converge. [2[]
implemented a spatial-temporal joint convolutional network
with adaptive multi-receptive fields for capturing the hetero-
geneity in mobile traffic. But it only focus on modeling node-
specific patterns of the spatial feature propagation and ignore
the nodes’ distinct spatial-temporal perceptions.

In this paper, we propose a novel Adaptive Hybrid Spatial-
Temporal Graph Neural Network (AHSTGNN) to address
the aforementioned challenges. We apply an Adaptive Hybrid
Graph Learning Module (AHGLM) to capture the complex
spatial dependencies in the cellular network motivated by the
observed daily routine of user behavior. The majority of users
regularly go to several locations, such as their workplaces
or homes, which implies relatively static spatial dependen-
cies between their visited cell towers. Meanwhile, they may
spontaneously visit other locations, indicating the occasional
dynamic spatial relationships coexisted. We combine the Static
Adaptive Graph Learning (SAGL) and Dynamic Graph Learn-
ing (DGL) to capture the stable and occasional relationships
in an AHGLM, respectively. Meanwhile, we implement a
Temporal Convolution Module (TCM) equipped with multiple
periodic components to enhance the model ability to capture
the non-linear temporal features. For solving the heterogeneity,
we construct a Spatial-Temporal Adaptive Module (STAM) to
model the various spatial-temporal perceptions of cell towers.
Overall, our main contributions are summarized as follows:

o« We design a novel AHGLM to capture the compound
spatial dependencies and a TCM with multi-periodic data
inputs to model the nonlinear temporal dependencies in
cellular traffic.

o We propose an effective framework AHSTGNN for ac-
curate cellular traffic prediction with the STAM for mod-
eling the various traffic patterns, which can effectively

protect the nodes from unexpected spatial noise.

e Our experiments on two real-world cellular traffic
datasets show AHSTGNN outperforms the state-of-the-
art, illustrating the superior scalability of our method.

II. DATASET DESCRIPTION AND PRELIMINARIES
A. Dataset Description

The Jiangsu and the Milan [[I1] are two cellular traffic
datasets analyzed in this paper. The Jiangsu dataset is collected
by a Chinese mobile network operator, China Mobile, from
January to March, 2021. The data is collected from 1,051 cell
towers in Jiangsu Province, China, which contains the cellular
traffic data with sampling rate per 15 minutes. The Milan
dataset is one of the most commonly used public datasets in
cellular traffic prediction. This dataset provided by Telecom
Italia is recorded from November 1, 2013 to January 1, 2014
with a 10-minute time slot. It contains the cellular traffic
collected from the 100 x 100 cells subdivided in Milan, where
the size of each cell is 235m x 235m.

B. Preliminaries

In this paper, we formulate the cellular traffic prediction
problem as a spatial-temporal sequence prediction problem.
Specifically, we define a graph G = (V, E, A) as the traffic
network. V' denotes the set of cell towers, where |V| = N
(N indicates the number of vertices). We can also call them
nodes in the rest of this paper. E is the set of edges which
represents the spatial proximity between nodes. A € RV*V
is the adjacency matrix of G, where A, ,, represents the
connection between node v; and v;. The data traffic of the
cell towers, also known as graph signal matrix, is denoted as
X; = (xb 22, 2M)T € RVXF | where F indicates the
feature dimension and ¢ denotes the time step, z} represents
the observations of the i-th cell tower at time step t.

Problem Defined. Given the graph signal matrix of histor-
ical 7 time steps X = (X;_,41,...,X;_1, X;) € RTXNXF,
our target is to predict the future data traffic for all v € V
-vXt+IV[) €
RM*NXF In general, we formulate the problem as learning
a mapping function F to map the graph signal matrix of
historical time steps to the graph signal matrix of future time
steps:

(Xt+1aXt+27 - »Xt-i-M) =Fo (X, Xo—1, ., Xe—r15G)
(D

where 6 denotes all the learnable parameters in our model.

III. METHODOLOGY

in the next M time steps Y = (Xt+1,Xt+2, ..

A. Architecture

Fig. 2| illustrates the architecture of our AHSTGNN model,
which consists of multiple Adaptive Hybrid Spatial-Temporal
Learning Blocks (AHSTL block) with skip connections, and
an output layer. Each AHSTL block is composed of a Tem-
poral Convolution Module (TCM), an Adaptive Hybrid Graph
Learning Module (AHGLM), and a Spatial-Temporal Adaptive
Module (STAM). Among them, the TCM with multi-periodic



data inputs is used to extract different periodic characteristics
of the data traffic in the temporal axis. The AHGLM is adopted
to capture the complex spatial dependencies between cell
towers. We also incorporate the STAM to adaptively model
the spatial-temporal tendency of cell towers for solving the
heterogeneity problem.
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Fig. 2. The Architecture of AHSTGNN.

B. Periodic Input Data

We introduce three periodic inputs for capturing multi-
period temporal dependencies. T'r, Tp and T}y represent the
input length of historical time steps for the recently, daily and
weekly components in TCM respectively. Lp and Ly denote
the number of past days and past weeks we select, respectively.

Intuitively, future mobile data traffic are influenced
by the most recent traffic sequence trend. Assume t is
the current time step and ¢ is the sampling frequency
per day. The recently component extracts the features
of cellular traffic adjacent to the predicting period.
XR = [thTRﬂ»ly Xt*TR+27 N 7Xt] S RTRXNXF denotes
the recent data traffic input. The daily component models the
daily patterns of cellular traffic in the same period as the

predicting period over the last few days. For the L't day, we
denote X, = [Xt—Lqu-‘rla Xt—Lqu-i-Qa R 7Xt—L,i><q+TD] S
RTDXNXE 3 the daily traffic input, where Ly € {1,---, Lp}.
For the last Lp days, we simply sum all the corresponding
X, to get Xp. The weekly component extracts the periodic
features of cellular traffic in last few weeks with the same
weekday and same time period as the future prediction
time period. For the Lwth week, we also have X, =
[Xt—7><Lu,><q+17 Xt—7><Lw><q+27 s ,Xt—7><Lu,><q+TW} S
RTw>NXF “where L,, € {1,-++, Ly }. To obtain the weekly
features of the last Ly, weeks, we use the same way as Xp
to get the Xy as the input of the weekly component.

C. Adaptive Hybrid Spatial-Temporal Learning Block

As shown in Fig. |2l we denote the input of the [** AHSTL
block as H!™1, including three periodic data features, the
recently feature H ﬁ{l, the daily feature Hﬁ;l and the weekly
feature Hy;; ', which are the outputs of the TCM in the (I—1)"
block. The outputs of TCM and AHGLM in the I** block
are represented as HY. and HY. After the STAM, we obtain
the output of the I*" block, denoted as H'. For consistency,
we denote the hidden state feature dimension as D and the
historical time steps of data traffic as 7.

1) Temporal Convolution Module: Temporal Convolution
Module consists of three gated Temporal Convolution Net-
works (gated TCN) [12], named Temporal Conv-recently,
Temporal Conv-daily, and Temporal Conv-weekly, to cap-
ture the complicated temporal correlations and periodicity
of the data traffic. The initial input for the 1** TCM are
the periodic input data Xp, Xp, Xy described above. The
temporal convolution is highly parallelizable and amenable
to maintaining higher computational efficiency. By stacking
multiple layers, TCN allows for an exponential receptive
field with dilated causal convolution. The gating mechanism
shows the capability of handling sequence data and enhances
the modelling capacity of temporal convolution. Taking the
recently component as an example, it takes the form:

Hp =tanh Wy « Hy ' +bi1) @ 0 (Wio * Hiy '+ bya)

2
where * denotes the convolution operator, Wy, W, b1 and
bio are learnable parameters, ® is element-wise product, o
means sigmoid activation function and tanh means hyperbolic
tangent activation function. The daily and weekly component
share the same framework as the recently component. After-
wards, the temporal features are concatenated into one vector,
then fed into a Multilayer Perceptron (MLP). The final output
of the I!" TCM is HL € RTXNxD,

2) Adaptive Hybrid Graph Learning Module: AHGLM
comprises the Static Adaptive Graph Learning (SAGL), the
Dynamic Graph Learning (DGL) and the Spatial Gate Fusion,
as illustrated in Fig. 2l In the I*" block, we denote the outputs
of SAGL and DGL as H), and H}, . After the Spatial Gate
Fusion, the output of the I'* AHGLM is HY.

Static Adaptive Graph Learning. The Static Adaptive
Graph Learning is put forward to capture the relatively stable



spatial relationships between the cell towers, regardless of the
geographic distance among them. We use GCN to implement
the feature aggregation on graph in SAGL. According to [9],
the graph convolution operation in the spectral domain can be
well-approximated by 1%¢ Chebyshev polynomial expansion
and generalized to high-dimensional GCN as:

H= (IN+D%AD—%)X@, 3)

where A is the adjacency matrix, D is a degree matrix, Iy €
RN >N s an identity matrix, © is the graph convolution kernel.
We believe that the node-level attributes such as the geo-
graphic location and surrounding environment of the cell tower
can be represented by the learned node embedding abstractly
in the high-dimensional space. So, SAGL implements a learn-
able graph node embedding Eg € RV >4, where d represents
the node embedding dimension. Inspired by [13]], we obtain
the adaptive adjacency matrix Agq, of the static graph by
multiplying Eg and EZ. And the formula is as follows:

Agap = softmax(RELU(Eg - EL)), 4)

where softmax function is used to normalize the adaptive
adjacency matrix. Then, enhanced with GCN, the graph con-
volution operation in SAGL can be formulated as:

Hio = (In + Agap) H-O, (5)

where the Hng € RTXNXD g the output of SAGL, © ¢
RPXP s the learnable graph convolution kernel.

Dynamic Graph Learning. DGL implements Graph Atten-
tion Network (GAT) [14] to perform dynamic spatial feature
aggregation, owing to GAT’s ability to capture the dynamic
influences of neighbors. We believe that short-term dynamic
influences mostly occur between nearby cell towers, so we
deploy the exponential distance-decay matrix [15]] as the prior
graph structure of GAT. We call it the distance adjacency
matrix, denoted as Ay, € RV*N. As shown in Fig.
GAT achieves weighted feature aggregation by calculating the
attention scores of the central node and neighbor nodes. We
also apply multi-head attention [16] to capture the relation
semantics between nodes from different learning subspaces.
Moreover, the multi-head attention can be computed in parallel
for reducing time complexity. For simplicity, taking a graph
node v; as an example, the graph attention mechanism of DGL
can be formulated as follows:

exp (LR (a7 [Whei|[Whi;)))

Qi = ) (6)
T Ykew, exp (LR (@ [Whei[Whe x]))
~ 1 E
hig =0 i Z Z aiiW¥h; |, @)
k=1j€EN;
where a;; € R represents the computed attention score

between v; and v;, where j € N;. N represents the neighbors
set of v; in the graph, i.e., Ay, ,, > 0. LR(-) denotes the
LeakyReLU function. a € R?P*X! is a learnable parameter
vector. W € RP*P is a weight matrix of a shared linear
transformation. h;; € RP represents the feature of v; at time

step ¢ in H'.. We use the summation to aggregate the features
generated by multi-head attention. K represents the number
of heads and W* € RP*P is the transformation parameter
matrix corresponding to the head k. Et,i € RP is the DGL
output of v; at time step t. In the [** block, the final output
of the DGL is Hl,, € RT*NxD,

Spatial Gate Fusion. We apply a Spatial Gate Fusion to
fuse the two inputs Hng and H EG, which come from the
above mentioned SAGL and DGL in the I** block, respec-
tively. As shown in Fig. [2] the gate fusion mechanism can be
expressed as follows:

Hy = gate ® Hig + (1 — gate) © Hpg, ®)
gate = o (H5c W1 + HpWa + by) ©

where Wy, € RP*P Wy, € RP*D and b, € R are all
learnable parameters. The final output of the AHGLM is H ls €
RT*NxD The Spatial Gate Fusion can adaptively control the
flow of the static and dynamic spatial dependencies at each
cell tower.

3) Spatial-Temporal Adaptive Module: In this paper, we
believe that different cell towers are affected variously by
spatial and temporal influences. In other words, some cell
towers may be affected more by their own data traffic than
that of their neighbors. The previous spatial-temporal traffic
prediction methods also noticed this problem. [17] implement
a hyper parameter 5 to avoid spatial noise from neighbors,
where [ is shared for all nodes. But we argue that the spatial-
temporal tendencies of different nodes are different. Therefore,
we propose a Spatial-Temporal Adaptive Module (STAM) to
capture the node-level spatial-temporal adaptation tendencies.

The entire architecture of STAM is shown in Fig. 3] It is
worth noting that we use the same graph node embedding E¢
in the STAM with the AHGLM to maintain a uniform high-
dimensional node representation of the cell tower in the entire
model, which can also reduce the amount of parameters. First,
we apply linear transformation to the node embedding E for
obtaining the graph node queries Q = EqW¢, where Wg €
R?*P and Q € RV*P . Second, we transform the output of
the TCM HY. with K'. = HL Wi, to get the keys of nodes in
the temporal dimension, where W, € RP*D, Similarly, the
output of the AHGLM HY is transformed by K% = H Wi,
to obtain the keys of nodes in the spatial dimension, where
Wgs € RPXP Then, we compute the attention function the
same as [16], formulated as A} = Q(K%)T/v/D and A =
Q(KY)T/VD, where AL, € RT*Nx1 and AL € RT*Nx1,
Aép and Als are the computed temporal and spatial attention of
the graph nodes, respectively. At last, we calculate the output
of STAM as:

exp (AIT)
Atth, = , (10)
g > re(T,s} €XP (A7)
exp (Af)
Attl, = , (11)
s Y reqr,sy eXp (A7)
H' = Attly - H + Attly - HY, (12)



Fig. 3. Structure of Spatial-Temporal Adaptive Module.

where Atth, € RT*N*1 and Attl, € RT*N*1 are the
attention scores of the nodes in the temporal and spatial
dimension, respectively. H' € RT*N*D s the output of
STAM and is also the final output of the [*» AHSTL block.

D. Output Layer

For each AHSTL block output, we implement skip con-
nections to directly connect them to the output layer. With
stacking multiple AHSTL blocks, the temporal receptive field
of the AHSTGNN is increasing. The bottom block pays
more attention to the temporally adjacent traffic features,
and the high-level block focuses on long-term temporal traf-
fic information. Skip connections are adopted to solve the
spatial dependencies modeling at different temporal levels.
After the skip connections, we use summation to fuse the
outputs of all the AHSTL blocks, and the result is denoted
as H,y,; € RT*NXD At last, we implement the output layer
with two fully connected layers to generate the final multi-step
prediction Y € RM*N*F The output layer can be formulated
as follows:

Y = RELU(HoputWi1 +bp1) - Wea +bpa,  (13)

where Wy € RIPIXC 1y € ROXME) " pey € R and
bso € RMF are learnable parameters. Y is the final output of
the entire AHSTGNN.

For the multi-step cellular traffic prediction task in this
paper, we use the Mean Absolute Error (MAE) between the
predicted values and the true values as the loss function and
minimize it through backpropagation, formulated as:

1 t+M )
LO) =57 2 [Yi=Yil,
1=t+1

(14)

where 6 represents all learnable parameters of our model. Y;
denotes the model’s prediction of all cell towers at time step
¢ and Y; is the ground truth.

IV. EXPERIMENTS
A. Experiment Settings

To evaluate the performance of our work, we conduct
experiments on two real-world datasets: Jiangsu and Milan.

TABLE I
DESCRIPTION OF DATASETS.

e j . . N N Input Output
Datasets ~ Samples  Nodes Timespan Timeslot Length  Length
Jiangsu 8640 1051 Jan-Mar, 2021 15 min 12 12

Milan 4320 900 Nov, 2013 10 min 6 6

Specifically, we select the commonly used central regions
(30x 30 grids) in Milan dataset [18]]. The ratios of training set,
validation set and testing set are 2:0:1 for Milan and 2:1:1 for
Jiangsu. To facilitate comparison of the experimental results,
the data split ratios, adjacency matrix, as well as the history
and prediction windows of the two datasets are consistent with
[2]. The detailed statistics of these two datasets are shown
in Table [l Our experiments are conducted on the JIUTIAN
Artificial Intelligence Platform with one NVIDIA Tesla V100s
GPU card using Pytorch 1.8. The hyperparameters are set as
follows. For periodic input, the Lp and Ly are both set
to 1. We stack 4 AHSTL blocks and the graph convolution
kernel size is set to 2. The models are trained by the Adam
optimizer. The distance adjacency matrix is constructed based
on the geographic distances between nodes with thresholded

Gaussian kernel, which can be formed as:
2

d'vi,u7' .
A _ exp { — o2 ) if d’ui,’uj S K
Vi, V5 —
0, otherwise.

15)

where d,, ,; denotes the distance between cell tower i and
J, o is the standard deviation and x is the threshold used to
control the sparsity of the adjacency matrix.

We compare AHSTGNN F_] with typical cellular traffic
prediction methods including HA (Historical Average), LSTM
[4], MVSTGN [10] and AMF-STGCN [2]], as well as the
generic advanced spatial-temporal sequence prediction meth-
ods including Graph Wavenet [19], MTGNN [17] and AGCRN
[13]. The Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) are used to evaluate the performance of differ-
ent models.

B. Experiment Results
TABLE 11

PERFORMANCE COMPARSION OF AHSTGNN AND BASELINE MODELS ON
JIANGSU AND MILAN DATASETS.

Jiangsu Milan
Models

MAE RMSE MAE RMSE
HA 196.76 334.74 61.28 120.73
LSTM 168.46 313.21 43.28 79.77
Graph WaveNet 130.83 254.28 32.71 65.35
MVSTGN 164.14 319.57 35.03 70.29
MTGNN 130.61 253.26 29.13 57.63
AGCRN 129.01 251.19 30.27 59.81
AMF-STGCN 129.78 252.71 30.59 57.89
AHSTGNN 124.81 243.91 27.96 57.18

Table [lI] shows the overall performance on Jiangsu and
Milan datasets. Our AHSTGNN achieves the best performance

Code available at: https://github.com/starxingwang/AHSTGNN



on both datasets. We observe that HA has the worst prediction
performance since it can hardly capture the nonlinear temporal
dependencies in cellular traffic. LSTM outperforms HA but
is inferior to other spatial-temporal prediction models. The
GCN-based methods such as Graph WaveNet, MTGNN and
AGCRN, show impressive performance on spatial-temporal
cellular traffic prediction. Although Graph WaveNet and
AGCRN present to learn an adaptive graph adjacency matrix,
the adaptive graphs that they learn are static and can barely
reflect the time-varying spatial correlations among cell towers
and they perform slightly worse than AHSTGNN. AHTST-
GNN considers both the stable relationships and dynamic
influences among nodes, and is more capable of learning the
complicated spatial dependencies in cellular traffic data.

The results of MVSTGN are not ideal due to the fact that
it relies heavily on the attention mechanism and is therefore
susceptible to data noise and volatile data. Since the Jiangsu
dataset is more dynamic than the Milan dataset, the corre-
sponding performance of MVSTGN on Jiangsu dataset is even
worse. AMF-STGCN shows relatively better performance on
both datasets, indicating that the spatial-temporal correlations
and heterogeneity modeling can bring benefits for cellular
traffic prediction. Fig. [] depicts the prediction performance
at each time step for both datasets. AHSTGNN achieves the
best performance in both short-term and long-term prediction,
and maintains a relatively stable error even at the last time
step. The significant increase in performances on the Jiangsu
dataset also indicates the effectiveness of AHSTGNN in
handling cellular traffic data with complex spatial-temporal
dependencies.
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Fig. 4. Prediction performance comparison at each horizon on Jiangsu and
Milan datasets.

C. Ablation Study

To further evaluate the effectiveness of different modules
in AHSTGNN. We conduct ablation experiments with four
variants of AHSTGNN:

o DGL-adp+dis w/o SAGL: We deploy the DGL on adap-
tive adjacency matrix and distance adjacency matrix, and
remove the SAGL of AHGLM from AHSTGNN.

e SAGL-adp+dis w/o DGL: We deploy the SAGL on
adaptive adjacency matrix and distance adjacency matrix,
and remove the DGL of AHGLM from AHSTGNN.

o w/o STAM: This is AHSTGNN whose node-level Spatial-
Temporal Adaptive Module is removed.

e w/o TCM-periodic data: We replace the three periodic
data inputs with recently data traffic input only.

TABLE III
ABLATION STUDY.

Jiangsu Milan
Model MAE RMSE MAE RMSE
AHSTGNN 124.81 24391 28.57 5791
DGL-adp+dis w/o SAGL ~ 124.84  246.61 29.09 58.23
SAGL-adp+dis w/o DGL 12542  248.28 29.35 59.08
w/o STAM 127.97  250.06  32.80 63.04
w/o TCM-periodic data 132.09 256.86 28.67 59.05

As shown in the Table [ITI] the experimental results on
Jiangsu and Milan datasets are illustrated, and we observe that:
1) The results for both SAGL-adp+dis w/o DGL and DGL-
adp+dis w/o SAGL are worse than AHSTGNN, indicating
the effectiveness of the DGL and SAGL. DGL can capture
the irregular dynamic spatial correlations and SAGL is able
to exploit the stable interactions between the cell towers. 2)
STAM module can effectively solve the problem of node het-
erogeneity and improve the model performance, as the module
effectively protecting the nodes from unexpected spatial noise.
3) The periodic data input brings more benefits than recently
data traffic only, as the cellular traffic datasets inherit strong
daily and weekly periodic characteristics. In summary, each
component of our AHSTGNN has benefits for modeling the
crucial aspects of traffic data, and they jointly promote the
cellular traffic prediction performance.

D. Computational Complexity

TABLE IV
THE COMPUTATION COST ON THE MILAN DATASET.

Model Parameters  Training Time (s/epoch)
AHSTGNN 255862 10.46
Graph WaveNet 236438 9.99
MVSTGN 493401 352
AGCRN 754350 10.02
AMF-STGCN 982393 36.53

To evaluate the computational complexity, we compare the
parameter numbers and training time of AHSTGNN with
Graph WaveNet, MVSTGN, AGCRN and AMF-STGCN on
the Milan dataset in Table [Vl Due to the fact that MTGNN
has been optimized in the model training process, it is unfair
to compare it to other algorithms, so we do not include it. As
shown in Table[[V] AHSTGNN requires a slightly higher num-
ber of parameters than Graph WaveNet as a tradeoff for hybrid



graph learning. AHSTGNN is slightly slower than Graph
WaveNet and AGCRN in terms of training time, as a sacrifice
for improving the prediction performance. Graph WaveNet and
AGCRN maintain relatively simple model structures, consist-
ing only of the graph convolutions and temporal convolutions
or the recurrent networks. MVSTGN and AMF-STGCN take
longer to train than other models, more than three times that of
AHSTGNN. We hypothesize that one of the primary reasons
is that they employ the complicated model architectures to
learn the intricate spatial-temporal correlations. In conclusion,
the computation cost of AHSTGNN is reasonable in light of
the improvement in accuracy of prediction that AHSTGNN
provides.

V. CONCLUSION

In this paper, we propose a novel AHSTGNN for cellular
traffic prediction. We present an AHGLM which combines the
static adaptive graph learning with dynamic graph learning
to capture the compound spatial dependencies. We employ
the TCM with multi-periodic data inputs to capture the non-
linear temporal dependencies of cellular data traffic. Besides,
a spatial-temporal adaptive module is implemented to tackle
the heterogeneity problem. Our experiments on two real-world
cellular traffic datasets show that AHSTGNN achieves the
state-of-the-art, demonstrating the superior traffic prediction
capabilities of our proposed model. In the future, we plan
to go deeper into cellular traffic prediction by exploring the
impact of crowds’ migration on cellular traffic.
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