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ABSTRACT

We propose a deep learning approach to predicting audio
event onsets in electroencephalogram (EEG) recorded from
users as they listen to music. We use a publicly available
dataset containing ten contemporary songs and concurrently
recorded EEG. We generate a sequence of onset labels for the
songs in our dataset and trained neural networks (a fully con-
nected network (FCN) and a recurrent neural network (RNN))
to parse one second windows of input EEG to predict one
second windows of onsets in the audio. We compare our RNN
network to both the standard spectral-flux based novelty func-
tion and the FCN. We find that our RNN was able to produce
results that reflected its ability to generalize better than the
other methods.

Since there are no pre-existing works on this topic, the
numbers presented in this paper may serve as useful bench-
marks for future approaches to this research problem.

Index Terms— EEG, MIR, Deep Learning, Audio Onset
detection

1. INTRODUCTION

Our work seeks to measure the degree to which we may solve
the problem: how precisely can we extract audio onsets from
the music a person is listening to, given access only the user’s
EEG signal? A visual representation of the problem is shown
in Fig. 1.

A primary goal of music imagery information retrieval
(MIIR) research is to "recognize the music in our thoughts [1]."
Researchers in this nascent field have sought to reconstruct
audio from electroencephalogram (EEG) recordings of music
listening, known to be an intractable problem due to the indi-
rect, epiphenomenal relationship between sensory input and
the resulting EEG traces measured from a listener, in addition
to the presence of confounding artifacts in the EEG data itself.

In contrast, onset detection is a well-defined problem in the
field of music information retrieval (MIR) in which an onset
detection function (ODF) is developed to identify the onset of
an acoustic event in a given recording of music. Contemporary
solutions to the problem rely on deep neural networks (DNNs)
[2, 3].

We propose that current solutions to the problem of audio
onset estimation may lay the foundation for a solution to the
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Fig. 1. Given EEG recording during music listening, we pro-
pose applying neural networks to the prediction of audio onsets
in the music.

more difficult task of estimating audio onsets from EEG data.
A solution to this problem would enable new technologies that
predict music features from a user’s EEG signal allowing the
user to control, for example, music recommendation systems
or generative systems for music composition and performance.
While our title refers to the musical concept of beats, our paper
focuses on the more fundamental underlying process of beat
or onset detection.

In the upcoming section, we review past research in com-
putational EEG analysis, MIR and MIIR that lend methods
we apply to the present research problem. Section 3 outlines
our present problem and defines the recurrent neural network
(RNN) architectures we evaluate in our experiments and our
overall evaluation strategy. Section 4 is dedicated to results
and discussion. Section 5 discusses future research directions.

2. RELATED WORK

Hans Berger [4] invented EEG as a diagnostic tool in under-
standing human brain activity. His first EEG recordings were
instrumental in understanding the difference between a normal
and an abnormal brain. Since then, there has been an interest
in understanding of the connection between an auditory stimu-
lus and the resulting EEG trace it elicits. This is a lively area
of research in neuroscience. The earliest research was com-
pleted in clinical settings in which doctors attempted to better
understand the human auditory system by observing rhythmic
fluctuations in voltage measured from the human scalp, notably
in patients experiencing musicogenic epilepsy [5]. An early
non-diagnostic use of EEG and music comes from Walker [6],
who used EEG to measure performance on a music recognition
task.

More recently, researchers in the field of music cognition
have designed controlled experiments aimed at defining the
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features of EEG that shift predictably in the presence of rhyth-
mic musical tones [7, 8]. For example, Fujioka et al. modeled
audio features in physiological responses by using alternating
loud and soft tones at a fixed 390 ms inter-onset interval as
stimulus [9]. They used wavelet transforms to decompose
data into a time-frequency representation to better analyze
synchronicity between onsets in audio and onsets in the MEG
data. In the MEG signal, they found spikes in activity in the
Beta (10–25 Hz) and Gamma (28–48 Hz) bands at intervals
consistent with the inter-onset interval of the audio. Fujioka
et al. follow up their work in 2015 [7] where they investigate
synchronous presence of beats of specific music styles in the
beta bands of MEG they recorded in response to music stimuli.
Heilbron and Chait [8] explore the possibility of predictive
coding in the auditory cortex of the brain given that there is
evidence of time locking provided above. Their work opens
the doors for us to investigate research questions that seek to
understand feature representation of music in the brain.

In contrast to these well-controlled auditory experiments,
more naturalistic experimental approaches have focused on
gathering physiological data from music listeners as they enjoy
the music they listen to on a regular basis. For instance, one
recent study collected EEG recordings of 48 participants lis-
tening to natural music stimuli to understand how participants
enjoyed music based on the modifications to a song [10]. In
a similar example, the researchers analyzed fMRI of music
listening to understand music preferences, predict the genre a
person might be thinking of, and identify the song [11].

In parallel to this new vein of naturalistic listening research,
there has been a significant shift towards machine learning and
deep learning based approaches that may be applied to feature
extraction and information retrieval from these naturalistic
music stimuli [?, 13]. These techniques have also been applied
to research questions combining music and EEG.

Ofner and Stober influenced the present research direction
by using EEG data of music and speech listening to generate
the mel-spectrogram of the EEG and audio [14]. Specifically,
they used one-second windows of raw EEG as input to a neural
network which generates one second of mel-spectrogram of
music as output. Their work highlights the potential of using
neural networks for MIIR specific tasks. It is among the first
works to make use of a dataset called NMED-T [?] for ma-
chine learning tasks. However, due to the lack of definition
in the evaluation procedure and metrics, their results remain
inconclusive.

In addition to NMED-T, other multi-modal EEG-audio
datasets have been released in recent years which enable data-
driven approaches to human auditory research. Of these, the
OpenMIIR dataset [1] studies the difference between imagined
and perceived music as represented by the EEG of the listener.
Researchers at CCRMA, Stanford, have released datasets in
addition to the previously mentioned NMED-T: NMED-RP
studies the perception of rhythm [16], whereas NMED-H [17]
studies the perception of full-length popular Bollywood works.

The field of music information retrieval has contributed
important methods that we draw upon in this research. The

extraction of onsets from audio signals has long been a core
problem in MIR, feeding into systems such as tempo detec-
tion or music transcription. Onsets mark the beginning of an
acoustic event [18], and there have been multiple contributions
to detecting onsets in a music signal. Two state-of-the-art
methods use deep learning methods to predict onsets and use
spectrogram representations of the music signal as inputs [2,3].
While Schlüter and Böck use a convolutional neural network to
perform the same task, Eyben et al. use bi-directional RNNs to
model onsets. Conventional RNNs use layers of hidden states
to process inputs across time. Both methods are implemented
in the MADMOM library [19]. We use MADMOM in our
work to generate pseudo-ground truth annotations upon which
our networks are trained.

3. EXPERIMENTAL SETUP

We extract onsets in music from the EEG signals recorded
during music listening sessions. Since this problem is an
information retrieval problem, we adopt approaches used in the
MIR and MIIR domains. Our work takes cues from Ofner and
Stober [14]; their work influenced our decision on handling
EEG inputs and our choice of dataset. In this section, we
discuss the experiments undertaken to evaluate the feasibility
of an EEG audio onset detection solution: how we handle the
flow of data and evaluate the output of our networks.

3.1. Dataset and data representation

We use the NMED-T dataset [?]. The dataset is a collection
of EEG recordings from subjects listening to contemporary
alternative music. The dataset contains ten songs and EEG
from twenty participants. All songs are between four and five
minutes long. The EEG data is available in both a raw 128-
channel and a pre-processed 125-channel format. We use the
latter variant, which is provided at a sample rate of 125 Hz.
Each file provided in the pre-processed version provides us
with a 20 × 125 ×N matrix (20 subjects, 125 channels and
N time steps).

3.1.1. Audio onset generation

In order to evaluate any EEG audio onset detection method,
ground truth audio onset data is required as a basis for compar-
ison. As the NMED-T dataset does not provide such onset data
for the music stimuli, this ground truth onset information needs
to be annotated either by hand or with an automated detec-
tion method. The amount of data precludes hand-annotation;
since we want the most robust set of annotations for onsets,
we choose to work with MADMOM’s RNN ODF [2] to gener-
ate our ground truth onset information. MADMOM contains
the state-of-the-art robust music onset detection methods in-
troduced in Sect. 2, which outperform other onset detection
methods [2, 3].

The present method is expected to have a 7 % error rate for
a given song [2], producing a reliable set of annotations that
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Fig. 2. Our RNN architecture predicts onsets in music using
an EEG signal of music listening as input.

we can use as our pseudo-ground truth. MADMOM’s ODFs
take an audio file as input and output a series of timestamps.
We use these timestamps to generate a binary sequence with
a sample rate of 125 Hz where 1 indicates the presence of an
onset at the timestep and 0 indicates the absence of an onset.

3.1.2. Pre-processing

EEG data are typically preprocessed using a standard set of
functions designed to limit the influence of noise and artifacts.
In this case, we filter the EEG data with a bandpass filter (0.1–
40 Hz) and zero-pad the dataset uniformly to a length of 37500
samples (5 min), since the longest song in the dataset is around
five minutes long. The resulting EEG signals are segmented
into one second blocks as suggested by Ofner and Stober [14].

The NMED-T dataset is provided in a song-wise format:
each file represents both a song and the 20 subjects’ EEG
recording while listening to that song. We rearrange the data
to sequentially reflect a subject-wise format, where each file
would instead represent a subject’s perception of all songs. As
the dataset is considerably smaller than other datasets currently
used in both the MIR and image processing domains, k-fold
cross-validation (with k = 20 for the number of subjects) is
used to train and validate our models.

3.2. Architectures

3.2.1. Fully connected network

We choose a fully connected network (FCN) as a baseline
comparison network for its simple architectural design and
convert the 125 channels × 125 time-step signal into a vector
of the dimension 1× 15625. The output is a 1× 125 sequence
which represents the equivalent binary onset output sequence
in the audio example. We use a two-layer FCN with a hidden
layer of size 256.

3.2.2. Recurrent Neural Network

RNNs have been shown to be suitable for modeling both se-
quences and time-series [20]. We use gated recurrent units
(GRUs) as our RNN architecture of choice, given its similarity
to a long-short term memory (LSTM) network. LSTMs are

effective at learning long-term dependencies and retaining con-
text across time using gates [21]. The choice of GRUs is more
suitable to our task since the small amount of data requires
a comparably small number of training parameters to avoid
over-fitting. A two layer GRU with a hidden state size of 64
predicts onsets using a 125× 125 EEG input (or one second
of EEG). The output of the GRU is fed into a fully connected
layer, which generates a 1 × 125 sequence containing onset
probabilities. This architecture is shown in Figure 2.

3.3. Spectral Flux

We wanted to understand how well a standard method of de-
tecting onsets in audio would operate when using EEG data. In
order to do this, we used a spectral flux-based novelty function
built into the pyACA package [18]. The pyACA ODF takes in
a music signal and returns timestamps in seconds for onsets.
Since we have a 125-channel EEG input, we extract estimated
onset timestamps per channel and average them before feeding
our evaluation pipeline.

3.4. Training

Our dataset is presented to the model in the form of {ei, ai},
where ei is the 125× 125 matrix with 125 channels of EEG
data for 1 second of data (or 125 timesteps) and ai is a 1×125
binary vector indicating the presence of onsets at a given time
step. We use binary cross-entropy as our loss function to train
our network.

During training, the networks output a 1× 125 sequence
of logits. The loss function internally applies a sigmoid to
the logits to convert them into a series of log-probabilities
indicating the probability of an onset at a given timestep before
computing cross entropy. During evaluation, a sigmoid is
applied to the output of the network directly. We train our
models for a total of 50 epochs each with the Adam optimizer
and a fixed learning rate of 1× 10−3.

3.5. Evaluation

The model outputs are assessed with mir_eval toolkit’s
onset evaluation method [22]. The onset evaluation method
compares the timestamps of the ground truth with the predic-
tion and reports the F-measure, precision and recall scores.
Traditionally, onset detection models employ a peak picking
on the generated output to identify positions of the most-likely
onsets. We use the approach proposed by Böck et al. [23],
which uses a series of tunable parameters w1 . . .w5 and a
fixed threshold δ for difference in computed average values.
Their algorithm for peak picking is usable for both real-time
peak picking uses and asynchronous tasks such as ours.

The series of selected onsets is mapped to timestamps for
evaluation. In order to investigate the timing accuracy, these
time steps are evaluated with several tolerance window sizes.
Onset detection systems are usually evaluated with tolerance
windows between 50 and 100 ms [2, 3]. We present results
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Fig. 3. Each box plot represents a metric evaluated through
the onset evaluation toolkit. The comparisons are done with
the RNN, FCN, Spectral Flux methods and a dummy method.
The results shown here are evaluated at a tolerance window of
100 ms. The RNN network produces a higher F-score across
all songs and showcases room for improvement.

for tolerance windows of length 0.05 s, 0.1 s, 0.15 s, 0.25 s,
0.5 s, 0.75 s, 1 s, and 2 s. Increasing the window size provides
more room for correct predictions in our output. For instance,
a tolerance of 50 ms means that an onset will be classified as
being ’correct’ if it is within 50 milliseconds of an annotated
onset. Additionally, as we are using cross validation, all results
are evaluated out of fold.

4. RESULTS AND DISCUSSION

Figure 3 shows the difference in performance between the
two networks we trained as revealed by F-measures, precision
and recall metrics, all evaluated at a 100 ms tolerance window.
Overall, the RNN outperforms the FCN. While the FCN per-
forms well as measured by precision, it displays poor recall
performance; this means that the FCN produced a high number
of false negatives. On the other hand, the RNN produced simi-
lar precision, but was able to generate fewer false negatives,
resulting in a considerably better F-measure. We implemented
a dummy method which produces an onset every second. This
method performed as well as the FCN, further highlighting the
poor performance of the network architecture.

Fig. 4 shows the results as a function of the tolerance
window length. Increasing the tolerance window size leads,
as expected, to better results across the board for all metrics.
We observed that the increased windows increased precision
greatly, and had less impact on the recall. This indicates that
our network is producing a higher number of false negatives
than desired. The gains start to converge at 250 ms and do
not change much for windows sizes larger than 750 ms. This
indicates a reduced time accuracy compared to audio-based
onset detection methods which can be explained by the more
noisy and complex input data.

Simply applying traditional music oriented methods to
EEG data did not perform well on this task — peak-picking
a spectral flux-based novelty function yielded an average F-
measure of 0.32 (see Fig. 3), emphasizing the power of the
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Fig. 4. Tolerance windows and their impact on performance
across each performance metric. Most gains are realized by
the 750 ms mark.

proposed method. However, compared to models extracting
onsets from the audio data, the EEG onset detection is consider-
ably less accurate. While we can expect an average F-measure
of nearly 90 % for audio data [3], our method can only achieve
54 %. This large difference can obviously be attributed to the
much more noisy and indirect EEG input data; however, it is
a very encouraging result that our approach can detect onsets
from EEG data with a reasonable accuracy.

Across all subjects, we found that the average F-scores
were similar to the reported scores in Fig. 3 (µ = 0.416, σ =
0.08), indicating a reasonable amount of inter-subject variabil-
ity. Additionally, we performed a correlation analysis between
the RNN results, and the metadata provided by NMED-T
and found no significant correlations between the reported
F-measures and age, musical training, listening habits.

5. CONCLUSION

This research asks the question: how well can we predict on-
sets in music using physiological data recorded in response to
that music? Simply applying music-oriented ODFs to EEG
data did not work well; they require music signals sampled
at audio rates and cannot generalize to physiological data at
lower sample rates. Therefore, we developed an RNN archi-
tecture and experimental setup to extract onsets in music using
EEG. Our encouraging results demonstrate the feasibility of
constructing and testing a network to extract onsets in music,
providing a basis for comparison for future studies.

Our results also encourage future research in reconstruct-
ing other features and creating a path for being able to recon-
struct stimuli found in the EEG signal. For onset modeling,
we believe that the future will rely on the creation of a dataset
specifically intended to evaluate the performance of a network
in extracting onsets from EEG of music listening.
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