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Abstract—This paper considers the problem of 
reconstructing a bandlimited signal from severely aliased 
multichannel samples. Multichannel sampling in this context 
means that the samples are available after the signal has been 
filtered by various linear operators. We propose the method 
of Generalized Matching Pursuit to solve the reconstruction 
problem. We illustrate the potential of the method using 
synthetic data that could be acquired using 
multimeasurement towed-streamer seismic data acquisition 
technology. A remarkable observation is that high-fidelity 
reconstruction is possible even when the data are uniformly 
and coarsely sampled, with the order of aliasing significantly 
exceeding the number of channels. 
 

I. INTRODUCTION 
In multichannel sampling, samples of a signal that was 

filtered by various linear operators are available. Suppose 
m(y)=h(y)*s(y), where m(y)=[m1,⋅⋅⋅,mJ] are the measurements, 
and h(y)=[h1,⋅⋅⋅,hJ] are the operators. The samples are available at 
points y1,⋅⋅⋅,yL, which may be regularly or irregularly spaced. The 
objective is to reconstruct bandlimited signal s(y) at arbitrary 
points y. In Figure 1, we show a slight generalization, where, for 
each channel j, the measurements are undersampled by a factor of 
Rj with respect to the bandwidth of s. In the spectral domain, we 
have m(ky)=H(ky)s(ky), where ky is the wavenumber (spatial 
frequency). 

 Fig. 1. Multichannel sampling. 

 The generalized sampling expansion proposed by Papoulis 
[1] implies that such a linear system, under certain conditions, 
allows reconstruction of the desired signal when Rj=J, j=1,2, ⋅⋅⋅,J. 
However, Papoulis [1] does not provide a readily realizable 

solution for the inversion of the system. Later, several articles 
were proposed to study the properties of the generalized sampling 
expansion, the well-posedness of the system, and a closed-form 
solution of the inverse problem [2, 3]. 
 In some applications, such as marine seismic data 
acquisition, the decimation rate Rj can be significantly larger than 
the number of channels, J.  In this case the order of aliasing 
significantly exceeds the number of channels. In the next section, 
we discuss a method that has shown promising performance in 
this setting. 

II. GENERALIZED MATCHING PURSUIT 
In this section, we describe a parametric matching pursuit 

method to solve the reconstruction problem that arises in 
multichannel sampling; we call it Generalized Matching Pursuit 
(GMP), as its aim is to reconstruct a signal of which no direct 
samples may be available. Suppose that the unknown signal s(y) 
is modeled as a sum of parametric basis functions β(y;θn) with 
parameter set θn:   ( ) ( ; ) .n

n
s y yβ=∑ θ           (1) 

There are various basis functions that can be considered; one 
possibility that is especially convenient for seismic applications is 
 ( ),( ; ) exp ,n n y n ny A j k yβ φ = + θ  (2) 

where the parameter set θn consists of amplitude An, phase φn, and 
wavenumber ky,n. The corresponding measurements would then 
be 
 

,( ) ( ) ( ; ) .y n n
n

y k yβ=∑m H θ  (3) 

In GMP, the forward linear filters Hj(ky) are applied to each basis 
function; the filtered basis functions are then iteratively matched 
to the multichannel measurements. Iteratively, the basis function 
that, once forward filtered, jointly best matches all the input 
signals is used to reconstruct the desired output, with or without 
the forward filter applied. At the N-th iteration, i.e., after N-1 
basis functions have been determined previously, the residual in 
the measurements is given by 
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= −∑r m H θ  (4)              

If a new term β(y;θN)  is added to the existing representation of 
the signal, the residual becomes rN(y;θN) =rN-1(y)− H(ky,N) β(y;θN), 
where the parameters of the new term, i.e., θN,  are to be 
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determined by minimizing a metric of the residual calculated over 
measurement locations. One such metric is 
 ( ) ( ) ( )1; ; ,

HN N
N l N l N

l
y yµ − =  ∑θ r θ C r θ  (5) 

where the superscript H represents the Hermitian operator, C is a 
positive definite matrix, and yl represents the sensor locations in 
the y direction. These locations can, in general, be irregularly 
spaced. The role of matrix C is to weight the contributions of 
different measurements to the cost function to be minimized. This 
can take into account the difference of energy content due to the 
different physics of the input measurements, as well as the signal-
to-noise ratio that can vary in time, space, and frequency [10]. 

For basis functions chosen as in (2), it can be shown that the 
optimal AN and φN can be analytically related to the residuals rN-1, 
the input sample positions yl, and the optimal wavenumber ky,N. 
Hence, the only remaining parameter to select is 
 ( ) ( ){ }1 1

, arg max ( ), , ( ), .N N
y N N l N l

k
k A y k y kφ− −= r rL  (6) 

We call the objective function L the generalized Lomb 
spectrum, in analogy with the single-channel interpolation 
problem. There, in the case of sinusoidal basis functions, the 
objective function generated by Interpolation by Matching 
Pursuit (IMAP) with optimal amplitudes in the least-squares 
sense corresponds to the Lomb spectrum [4, 5, 6]. 

The GMP iterations can be terminated once the residual 
energy falls below a predetermined fraction of the input energy. 

Next, we illustrate the antialiasing power of GMP for 
uniformly sampled multichannel data with a very simple 
multichannel sampling example. In this example, a single 
sinusoid signal with wavenumber 30 Km-1 is uniformly sampled 
at 25 Km-1. In addition to the signal samples, the spatial gradient 
samples are available at the same locations. Due to uniform 
sampling, there is hard-aliasing, i.e., exact periodic replicas in the 
spectra of each channel. This is a reconstruction problem that 
cannot be solved by multichannel sinc interpolation [7], since the 
order of aliasing is greater than two. Figure 2 shows the cost 
function to select the optimum wavenumber (negative of the 
generalized Lomb spectrum) at the first iteration. The aliases of 
the correct wavenumber can be clearly seen. However, 
simultaneous use of the multichannel measurements in the 
optimization process results in the correct wavenumber being 
selected.  

III. APPLICATION TO MULTICHANNEL SAMPLING  
Due to logistical and cost constraints, marine seismic 

acquisition systems can be deployed to acquire data only along a 
limited number of parallel lines (i.e., towed streamers) that are 
coarsely spaced in the crossline direction. Streamers are towed 

typically with crossline spacing of 75-100 m, resulting in coarse 
wavefield sampling that contrasts with adequate (non-aliasing) 
wavefield sampling of 6.25 m along the streamers (inline). 
Consequently, they do not adequately capture the full spatial 
bandwidth of the subsurface-scattered wavefield, leading to 
limitations in accurate subsurface imaging. Furthermore, 
conventional (pressure-only data) acquisition systems suffer from 
the ghost effect. The ghost is the reflection from the sea surface 
that interferes constructively or destructively with the upgoing 
wavefield (the signal of interest for imaging), reducing the 
seismic bandwidth at the low and high ends of the spectrum. 

To address these critical limitations, a multimeasurement 
marine seismic acquisition platform was recently introduced. It is 
equipped with hydrophones to measure the pressure wavefield 
(P) and accelerometers to measure the particle acceleration vector 
(A). The latter represents the vector spatial gradient of pressure as 
derived through the particle equation of motion, ∇P=−ρA, where 
ρ is the fluid density [8]. 

A. Example: Reconstructing P  from Aliased (P, Py) Data  
An important problem is to reconstruct (interpolate) the total 

pressure wavefield P at any desired position in the crossline 
direction from sparse samples of itself and its crossline gradient. 
P is the sum of the upgoing and downgoing (ghost) wavefields. 
For this problem, the unknown signal is s(f,kx,ky)=P(f,kx,ky); the 
measurement vector is 

 ( ) ( )( , , ) , , , , , 1,2, , ,
T

l l y lt x y P t x y P t x y l L = = m   (7) 

where Py  is the crossline gradient of the pressure wavefield; the 
number of streamers (L) is typically 8-12. The forward linear 
operator is 

 ( , , ) 1 .
T

x y yf k k jk =  H  (8) 

Here, f is the temporal frequency; kx and ky are the inline and 
crossline wavenumbers, respectively. As the data are well 
sampled in the temporal (t) and inline (x) coordinates, we can 
operate the GMP algorithm outlined in Section 2 for fixed values 
of f and kx.  The particular form that GMP takes for this 
reconstruction problem is referred to as MIMAP (Multichannel 
Interpolation by Matching Pursuit) [9].  

Figure 3 shows a simple example reproducing linear events 
with energy up to 65 Hz and various incidence angles first 
decimated at 75 m and then reconstructed using different 
techniques. At every receiver position we modeled both the 
synthetic signal and its horizontal gradient. For the selected 
geometry, an event propagating horizontally generates first order 
alias at 10 Hz, and second order alias at 20 Hz, as shown in 2(b). 
Since MIMAP does not assume that the data comprise linear 
events in the implementation used for this example, the presence 
of high orders of aliasing presents a significant challenge for 
reconstruction.  

To show the impact of the antialiasing capabilities of 
MIMAP, we interpolated the data with two standard techniques in 
addition to MIMAP: the sinc interpolation, and the multichannel 
sinc interpolation [7]. Results are shown in Figure 3. In Figure 
3(a) we can see a region of the input time-space gather describing 
the pressure synthetics, sampled at 75 m, and the frequency-
wavenumber transform of the overall gather. The high order of 
aliasing is clearly visible in the f-k domain. Figures 3(c) and 3(d) 
show the results of the single-component conventional sinc 

Fig. 2. Cost function for the optimum wavenumber in a hard-aliasing 
problem resulting from insufficient uniform sampling. 
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interpolator, bandlimited in the spatial sampling bandwidth. As 
expected, only frequencies up to 10Hz are not subject to aliasing, 
and only the events with an incident angle close to zero can be 
properly interpolated (e.g., the event at 2.6 s). All the rest of the 
reconstructed information, in fact, corresponds to aliased replicas 
remapped to incorrect wavenumber positions. 

Figures 3(e) and 3(f) show the result of the multichannel sinc 
interpolation, bandlimited to twice the spatial Nyquist. In this 
case, we can see that more events are reconstructed correctly in 
the t-y plot (e.g., events at around 2.4 s, 2.5 s and 2.6 s), and that 
all the events are reconstructed correctly up to 20 Hz. What is 
also interesting is that the multicomponent sinc seems to amplify 
the aliased events that cannot be reconstructed, as visible in the 
f-k gather above 20 Hz. Moreover, the shape of the region not 
affected by the alias, or affected by a first-order alias only, is 
clearly recognizable as the properly reconstructed area. Finally, in 
Figures 3(g) and 3(h), we can observe the results produced by 
MIMAP, and the removal of aliasing up to very high frequencies 
can be appreciated. All the events are well reconstructed.  

B. Example: Reconstructing Pup from Aliased (P, Py, Pz) Data 
Using P, Py, and Pz data that can be recorded by a 

multimeasurement streamer, another and more challenging 
problem would be to reconstruct Pup at any desired position 
without having access to any direct samples of it. This is called 
the joint interpolation and deghosting problem [10], where the 
task of separating the wavefield into its down- and upgoing 
components is performed simultaneously with the task of 
reconstructing it at any desired position. For this problem, the 

unknown signal is s(f,kx,ky)=Pup(f,kx,ky); the measurement vector 
is 

( ) ( ) ( )( , , ) , , , , , , , 1,2, , ,
T

y zt x y P t x y P t x y P t x y l L = = m  (9) 

and the forward linear operator that links the measurements to the 
unknown signal is the ghosting operator defined by 

( ) ( ) ( )2 2 2( , , ) 1 1 1 .z z z
Tj k Z j k Z j k Z

x y y zf k k e k e jk eξ ξ ξ = + + − H
  

(10) 

Here, kz is the vertical wavenumber, Z is the depth of the 
streamer, and ξ is the reflection coefficient of the sea surface. 
Through the ghost model, the Pz component brings independent 
new information on the unknown upgoing wavefield in the 
crossline direction, which is crucial for this application [10]. 

Figure 4 shows the application of the GMP technique to 
solve the joint interpolation and deghosting problem in the 
crossline direction using synthetic data. The data set was created 
by finite-difference modeling and simulates a 3D 
multimeasurement survey over a complex geological structure. 
The source signature spectrum is flat up to 30 Hz. The streamer 
depth is 50 m; the unusual depth was chosen to place the pressure 
ghost notch within the 30-Hz bandwidth. Given total P, Py and Pz 
data sampled at 150 m where the data are severely aliased, the 
reconstructed upgoing pressure wavefield sampled at the desired 
25-m interval show both the dealiasing and the deghosting 
capabilities of this approach.  

Figure 4(a) shows the f-kx-ky transform of the total pressure 
wavefield before decimation, with pressure sampled over a 25-m 
x 25-m spatial grid. We can recognize the lack of energy in the 
low wavenumbers in the 15-Hz slice, and a circularly shaped 
notch in the 20-Hz and 25-Hz slices. The events that are not 

Fig. 3. Example with simple synthetics: close-up of a region of the t-y domain and f-k transforms of the whole dataset.  (a, b)  Input pressure, sampled at 75 m; 
(c, d) pressure reconstructed by using a sinc interpolator; (e, f) pressure reconstructed by using a multichannel sinc interpolator, also having as input the 
crossline gradients at the samples positions; (g, h) pressure reconstructed with MIMAP, also having as input the crossline gradients at the samples positions. 

(a) (b) (c) (d)

(e) (f) (g) (h)
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affected by the notch are still affected by the constructive 
interference of the ghost. Figure 4(b) shows the f-kx-ky transform 
of the reference upgoing pressure wavefield, sampled over a 25-
m x 25-m spatial grid. The  f-kx-ky transform of the total pressure 
wavefield after decimation of the data to 150 m in the crossline 
direction is shown in Figure 4(c). The first-order alias starts just 
above 5 Hz and the order of the alias grows significantly with 
frequency. Figure 4(d) shows the f-kx-ky transform of the upgoing 
pressure wavefield reconstructed by GMP, to a 25 m x 25 m 
spatial grid. The ghost notch is filled and the dealiasing impact of 
GMP is evident if we compare the output shown here with the 
spectrum of the input in the previous figures at high frequencies. 
Comparison of Figures 4(b) and 3(d) confirms the accuracy of 
joint interpolation and deghosting achieved by GMP.   

IV. SUMMARY AND CONCLUSIONS 
 The problem of reconstructing a bandlimited signal from 

highly aliased multichannel samples was considered and a 
solution proposed in the form of Generalized Matching Pursuit. 
GMP proceeds by modeling the target signal as a sum of 
parametric basis functions that are matched to the multichannel 
data in a simultaneous and iterative fashion through application 
of the respective linear operators. It was shown that under quite 
general conditions GMP can achieve high-quality reconstructions 
of signals aliased by orders significantly higher than the number 
of different measurements, including the notoriously difficult 
case of regular undersampling, and signals for which no direct 
measurements are available.  

We should emphasize that the results shown in this paper 
were obtained without using any priors (e.g., using a low-
frequency solution, which is assumed to be unaliased, to 
constrain a high-frequency solution), which are commonly 
utilized to interpolate aliased data. In the same vein, the 
reconstructions were carried out independently at each temporal 
frequency, i.e., without making any assumptions on local 
wavefronts being planar.  

During the presentation, we intend to show results obtained 
using real data acquired by multimeasurement towed-streamer 
seismic data acquisition technology; we had to omit them from 
this paper due to lack of space. 

ACKNOWLEDGEMENT 
The synthetic data set was generated as part of collaborative 

projects between Schlumberger, Lawrence Livermore National 
Laboratory, and Statoil; we thank Shawn Larsen of Lawrence 
Livermore National Laboratory and Martin Musil and Clément 
Kostov of Schlumberger. We thank our colleagues Johan 
Robertsson, Tony Curtis, Smaine Zeroug, Ed Kragh, Phil 
Christie, Everhard Muyzert, and Ralf Ferber for stimulating 
discussions. We also thank Statoil for permission to show the 
synthetic data. 

REFERENCES 
[1] A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circ. Syst., 

vol. 24, pp. 652-654, Nov. 1977. 
[2] J. L. Brown, Jr., “Multi-channel sampling of low-pass signals,” IEEE 

Trans. Circ. Syst., vol. 28, pp. 101-106, Feb. 1981. 
[3] J. L. Brown, Jr., and S. D. Cabrera, "Multi-Channel Signal Reconstruction 

Using Noisy Samples," Proc. IEEE Int. Conf. Acoust. Speech Sig. Proc., 
vol. 3, pp. 1233 – 1236, Albuquerque, NM, April 1990. 

[4] N. R. Lomb, “Least squares frequency analysis of unequally spaced data,” 
Astrophysics and Space Science, vol. 39, pp. 447–462, 1976. 

[5] J. D. Scargle, “Studies in astronomical time series analysis II. statistical 
aspects of spectral analysis of unevenly sampled data,” Astrophysical 
Journal, vol. 263, pp. 835–853, 1982. 

[6] K. Özdemir, A. Özbek, and M. Vassallo, “Interpolation of irregularly 
sampled data by matching pursuit,” Proc. EAGE Conference, paper 
G025, Rome, June 2008. 

[7] D. A. Linden, “A discussion of sampling theorems,” Proc. IRE, vol. 47, 
pp. 1219-1226, 1959.  

[8] J. Robertsson, I. Moore, M. Vassallo, A. K. Özdemir, D.-J. Van Manen, 
and A. Özbek, “On the use of multicomponent streamer recordings for 
reconstruction of pressure wavefields in the crossline direction,” 
Geophysics, vol. 73, pp. A45–A49, 2008. 

[9] M. Vassallo, A. Özbek, K. Özdemir, and K. Eggenberger, “Crossline 
wavefield reconstruction from multicomponent streamer data: Part 1 - 
Multichannel interpolation by matching pursuit using pressure and its 
crossline gradient,” Geophysics, vol. 75, pp. WB53–WB67, 2010. 

[10] A. Özbek, M. Vassallo, K. Özdemir, D.-J. Van Manen, and K. 
Eggenberger, “Crossline wavefield reconstruction from multicomponent 
streamer data: Part 2 - Joint interpolation and 3D up/down separation by 
generalized matching pursuit,” Geophysics, vol. 75, pp. WB69–WB85, 
2010.  

Fig. 4. Seismic synthetics in the 3D spectrum (f-kx-ky ) domain. (a) reference total pressure wavefield, sampled over a 25- x 25-m grid; (b) reference upgoing 
pressure wavefield, sampled over the same grid; (c) input total pressure wavefield at 150-m crossline spacing; (d) upgoing pressure wavefield, reconstructed 
over a 25- x 25-m grid by GMP, processing P, Py, and Pz at 150 m in the crossline. 
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