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ABSTRACT

We propose Gaussian process dynamical models (GPDMs)
as a new paradigm in acoustic models of speech. By using
multidimensional, continuous state-spaces, the technique can
overcome familiar limitations of discrete-state, HMM-based
speech models. The added dimensions allow the state to rep-
resent and describe more than just temporal structure as sys-
tematic differences in mean, rather than as mere correlations
in a residual (as HMMs with dynamics or AR-HMMs do).
Owing to their basis in Gaussian processes, the models avoid
restrictive parametric or linearity assumptions on signal struc-
ture. We outline GPDM theory, and describe model setup and
initialization schemes relevant to speech applications. Exper-
iments demonstrate subjectively better quality of synthesized
speech than from comparable HMMs. In addition, there is ev-
idence for unsupervised discovery of salient speech structure.

Index Terms— acoustic models, stochastic models, non-
parametric speech synthesis, sampling

1. INTRODUCTION

Hidden Markov models (HMMs) [1] constitute the dominant
paradigm in model-based speech recognition and synthesis
(e.g., [2]). HMMs are probabilistic, allowing them to deal
with uncertainty in a principled manner, and strike an attrac-
tive balance between complexity and descriptive power: they
avoid restrictive assumptions such as limited memory or lin-
earity, but can still be trained efficiently on large databases.

Unfortunately, HMMs are not satisfactory stochastic rep-
resentations of speech feature sequences [3]. Sampling from
HMMs trained on speech acoustic data reveals several short-
comings of the model, in that durations are incorrect and the
sound is warbly and unnatural. Contemporary model-based
speech synthesis systems, HMM-based or not, therefore never
sample from stochastic models for signal generation.

In this paper we introduce a new paradigm for nonpara-
metric, nonlinear probabilistic modelling of speech based
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on Gaussian process dynamical models (GPDMs). This ap-
proach has the potential to overcome all principal issues with
HMMs and provide more realistic acoustic models. Like
HMMs, they may later be used as building blocks which can
be concatenated to form arbitrary speech utterances. In the
remainder of the text, we motivate and describe GPDMs in
the context of speech signal modelling, and present concrete
results from a synthesis application.

2. BACKGROUND

We here explain the benefits of moving from Markov chains
to continuous, multidimensional state-spaces, and introduce
GPDMs as nonparametric dynamical models for speech.

2.1. Continuous, multidimensional state-spaces

Let Y =(Y 1 . . .Y N ) be a sequence of observations, here
speech features, and letX=(X1 . . .XN ) be the correspond-
ing sequence of unobserved latent-state values. The features
are typically continuous and real, yt∈RD, with D between
10 and 100. We consider Y a D×N matrix-valued RV.

HMMs have a discrete state-space, xt∈{1, . . . , M} ∀t.
This is sufficient to model piecewise i.i.d. processes, but is not
a good fit for speech since 1) HMMs have stepwise constant
evolution, while speech mostly changes continuously, and 2)
the implicit geometric state-duration distribution of the un-
derlying Markov chain has much greater variance than nat-
ural speech sound durations. Dynamic features and hidden
semi-Markov models [4] have been proposed to deal with is-
sues 1) and 2) separately, respectively. Both shortcomings
can however be addressed simultaneously, by considering a
continuous state-space to represent incremental progress and
intermediate sounds [5]. This is the approach explored here.

Typical speech HMMs use left-right Markov chains to en-
code long-range dependencies between features at different
times, specifically the sequential order of sounds in an utter-
ance. Other dependence-modelling is less structured. Short-
range time-dependencies can be described as time-correlated
deviations from the state-conditional feature mean, e.g., us-
ing dynamic features [3]. This enables gradual changes in ex-
pected value. Variation between comparable times in distinct



realizations is usually only modelled as Gaussian deviations
from a single state-conditional mean value.

In practice, these correlation-based approaches fail to cap-
ture important structure in speech variation, and do not pro-
duce realistic speech samples [6]. The sampled speech has
a rapidly-varying, warbly quality to it due to the large mag-
nitude of the noise-driven deviations from the feature mean.
To obtain more pleasant-sounding output, speech synthesiz-
ers therefore generally avoid sampling, and only generate the
most likely output sequence. This is known as maximum like-
lihood parameter generation (MLPG) [7].

The models considered here can use multidimensional
state-spaces xt∈RQ to represent structured differences be-
tween realizations. The added state-space dimensions may
for instance track different pronunciations for the same utter-
ance, e.g., stress-dependent pitch and formant evolution.

As both the continuous state-space and the extra dimen-
sions give us flexibility to explain more empirically observed
variation as systematic differences in mean, less variability
will be attributed to residual, random variation. The estimated
noise magnitude will thus decrease, making samples less war-
bly and more realistic. We now consider a specific model on
such state spaces, based on Gaussian processes.

2.2. Gaussian process dynamical models

A dynamical model for Y is defined by 1) an initial state dis-
tribution fX1

(x1), 2) a stochastic mapping fXt+1|Xt
(xt+1 |

xt) describing state-space dynamics, and 3) a state-conditional
observation distribution fY t|Xt

(yt | xt). In speech, we think
of xt as representing the state of the speaker—most impor-
tantly the sound currently being produced—while yt are the
current acoustic features.

In a simple HMM describing a speech utterance or phone
(for synthesis), fXt+1|Xt

is usually a left-right Markov chain.
The output fY t|Xt

is often Gaussian for synthesis tasks, but
GMMs are common in recognition. In this paper, however,
both fXt+1|Xt

and fY t|Xt
will be modelled as continuous-

valued densities, using stochastic regression based on Gaus-
sian processes (GPs). (For a review of Gaussian processes
please consult [8].) The resulting construction is known as a
Gaussian process dynamical model, GPDM [9, 10].

For the output mapping fY t|Xt
, GPDMs use a tech-

nique known as Gaussian process latent-variable models
(GP-LVMs) [11]. These assume the output is a product of
Gaussian processes, one for each yt-dimension, with a shared
covariance kernel kY (x, x′) that depends on latent variables
Xt. The processes are conditionally independent given xt,
similar to assuming diagonal covariance matrices in conven-
tional HMMs. The conditional output distribution becomes

f(y|x,β,w)= 1√
(2π)DN |KY (x,β)|D

·
∏D
d=1 wd exp(− 1

2w
2
dydK

−1
Y (x,β)yd

T ), (1)

where the kernel matrix has entries (KY )t, t′ = kY (xt, xt′ |
β), β being a set of kernel hyperparameters. The scale fac-
tors wd compensate for different variances in different output
dimensions. The entries ofX are assumed Gaussian and i.i.d.

Using GP-LVMs for the output mapping essentially as-
sumes that acoustic features yt have similar characteristics
(mean and standard deviations) for similar speech states xt,
e.g., the same phone being spoken, though the details depend
on the chosen kY . This is similar in principle to HMMs, but
is more flexible and does not assume that xt is quantized.

GP-LVMs were designed as probabilistic, local, nonlinear
extensions of principal component analysis (PCA), and MAP
estimation in a GP-LVM will therefore attempt to attribute as
much as possible of the observed acoustic y-variation as due
to variations in the underlying speaker stateXt.

GP-LVMs assume X is i.i.d., and have no memory to
account for context or to smooth estimated latent-space po-
sitions over time. GPDMs endow the GP-LVM states with
simple, first-order autoregressive dynamics f∆Xt|Xt

, so that
∆Xt=Xt+1−Xt is a stochastic function of Xt. (Higher-
order dynamics and other constructions are also possible [9].)
Specifically, the next-step distributions for the ∆Xt compo-
nents are assumed to be given by separate Gaussian processes
(with a shared kernel kX(x, x′)), conditionally independent
of other dimensions and of Y given xt. The joint probabil-
ity distribution is more involved than for the GP-LVM, as the
dynamics map a space onto itself. It can be written

f(x|α)=fX1
(x1) 1√

(2π)Q(N−1)|KX (x,α)|Q

· exp(− 1
2 tr(∆xK−1

X (x,α)∆xT )) (2)

where ∆x=(x2−x1, . . . , xN −xN−1). This distribution is
not Gaussian asKX depends onx, and fair sampling requires
Metropolis-type algorithms. An approximation called mean
prediction [9] exists for sequentially generating latent-space
trajectories of high likelihood, analogous to MLPG.

Using GPs to describe state dynamics represents an as-
sumption that the state of the speaker, and thus the acoustic
output, evolves similarly when the state is similar, quite like
how HMMs work but without the discretization.

By endowing all hyperparameters with priors, a fully
Bayesian nonparametric dynamical model is obtained.

2.3. Parameter estimation in GPDMs

GPDMs have a number of unobserved variables—α, β, W ,
andX—which have to be inferred from data. In principle, we
would like to integrate out these unknowns. [10] shows con-
vincingly that integrating out the latent trajectories X (“two-
stage MAP” in their supplemental video) produces highly re-
alistic sampled data. However, this required stochastic inte-
gration with sampling from fX as the integrals are intractable.

A faster alternative is to use MAP estimation by guess-
ing some initial trajectories and then performing scaled con-
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jugate gradient ascent (SCG). However, there are many local
optima and MAP-estimated latent-space trajectories are typi-
cally noisy and random, as the GPDM tries to place as much
variation as possible in the latent space. To get smooth dy-
namics, one may choose a fixed α with low noise, and only
estimate the remaining unknowns, as we do here.

3. IMPLEMENTING GPDMS FOR SPEECH

GPDMs were first introduced to model motion capture data,
and we are unaware of any prior applications to speech. The
closest approximation familiar to us is speech-driven facial
animation [12]. We here discuss specific issues in using
GPDMs as speech acoustic models, and propose an initializa-
tion scheme for sequential signals such as speech utterances.

3.1. Feature representation

To create speech features suitable for GPDMs we employed
the STRAIGHT system [13], widely used in speech synthe-
sis. STRAIGHT generates three outputs: 1) an F0 contour,
with pitch zero in unvoiced frames, 2) a filter spectrum, and
3) an aperiodicity spectrum. To get a more compact feature
set, we represented the two spectra by 10 and 40 MFCCs, re-
spectively, and downsampled the data to 100 fps. We also
removed the mean of each component over the dataset.

The relative scale of the STRAIGHT outputs is arbitrary.
Even though the scaling factorsw in (1) can in principle com-
pensate for different feature SNRs, we normalized all dimen-
sions to have unit noise magnitude, as this is beneficial for
PCA-based initialization schemes. Component SNRs were
estimated by fitting a third-order AR-process to each dimen-
sion and looking at the standard deviation of the driving noise.

The HTS system [2] uses a mixture of continuous and
discrete distributions to represent voiced pitch or unvoiced
excitations. This is unsuitable for GPs, which are designed
for continuous data spaces. For simplicity, we have restricted
ourselves to voiced speech in this initial work.

3.2. Covariance functions

Because the feature data mean has been removed it is appro-
priate to only consider zero-mean GPs. We then only need to
specify kX and kY to have a fully defined model.

For the dynamics, we chose a simple squared exponential
(RBF) kernel with a noise term,

kX (x, x′) = α1 exp
(
−α2

2
‖x− x′‖2

)
+ α−1

3 δx,x′ . (3)

Linear and higher-order kernel terms are left as future work.
A similar RBF kernel with a noise term is an appealing

choice also for kY , to model smooth output with some resid-
ual variation. Rapid changes and localized discontinuities
such as plosives can be modelled with advanced kernels such
as the Gaussian cdf Φ, though that has not been pursued here.

3.3. Advanced initialization

As the likelihood function for the latent x has many local op-
tima, the starting position x(0) in MAP is highly influential
in determining the quality of the final model. We hence went
to some lengths to compute a starting position that well ex-
presses our expectations on process behaviour.

Initializing the latent-space variable trajectory by PCA, as
in [10], ignores the time dimension of the data and produces
a model where acoustically similar frames will evolve simi-
larly regardless of utterance position, like in a (non-hidden)
Markov chain. This is precisely what we strive to avoid.

As the most important variation in speech occurs along
the time dimension, we initialized the first latent coordinate
by the time from utterance start, as an indicator of progress
through the sentence. Multiple training utterances were
aligned by dynamic time warping. Remaining x-dimensions
were initialized by PCA, so that points at comparable times
were spaced closer or farther according to acoustic similarity.

As the scale of the first latent dimension is arbitrary rel-
ative to other axes, it was rescaled according to

∣∣∆x1
(0)

∣∣
2

= 1
Q−1

∥∥∆x2:Q
(0)

∥∥
2
, to have comparable RMS ∆x-magni-

tude to the remaining dimensions. Finally, the mean was
removed and all axes were rescaled equally so that

∥∥x(0)
∥∥

2
=DN , to match the Gaussian prior mean and variance.

4. EXPERIMENTS

In order to assess the properties of GPDMs as stochastic mod-
els of speech, we performed several experiments with utter-
ance synthesis and speech representation, and contrasted the
results against comparable HMMs.

4.1. Speech synthesis

For synthesis applications, we are interested in the quality of
samples and maximum probability output of our speech mod-
els. Two experiments were conducted on a data set containing
the fully-voiced utterances “I’ll willingly marry Marilyn” and
“our lawyer will allow your rule,” each spoken three times
by a single, male speaker. GPDMs were trained with 1000
SCG iterations on the voiced frames of each of the two utter-
ances, with dynamics hyperparameters fixed at 20 dB SNR to
get smooth dynamic trajectories. Corresponding HMMs with
40 states per second were Baum-Welch-trained on the same
data. Mean-predicted and sampled GPDM output was then
compared in a listening test against the voiced sections of raw
database utterances, speech resynthesized from training-data
features, and MLPG and sampled output from the HMMs. In
the test, eight subjects were asked to rate the resulting sig-
nal sources on a scale from 0 (completely unnatural) to 100
(completely natural) using a MUSHRA-like interface.

In the first experiment, GPDMs with one-dimensional
state spaces were compared against HMMs without dynamic



Output type Mean St. dev. t-test p-value
Deterministic 12 14 0.002

Sampled 9.7 15 0.014

Table 1. GPDM vs. HMM opinion score difference.
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Fig. 1. Latent-space trajectories separated in 3D.

features. Thus no model could pass any information between
frames beyond the current utterance position. In this scenario,
subjects judged GPDM output as more natural than that of
HMMs, both in the case of sampling and MLPG (table 1).
The differences are significant according to paired t-tests.
GPDM duration modelling, in particular, is noticeably better.

In the second experiment, GPDMs with Q=3 were com-
pared against HMMs with delta and delta-delta features. Both
these models can pass additional information between frames.
With latent trajectories initialized from training data trajecto-
ries and then optimized to attain maximum probability, lis-
teners judged mean GPDM output as significantly better than
MLPG from the HMMs (p=).

4.2. Speech representation

In a final experiment, we explored how the additional state-
space dimensions in GPDMs can represent multimodal distri-
butions and speech variability. For this, we used the utterance
“our lawyer will allow your rule,” thrice pronounced with the
stress on “lawyer,” and thrice more stressing the word “allow.”

If not spotted and handled properly, such data inconsis-
tency can degrade the quality of traditional speech synthesis
systems. However, a GPDM with Q=3 trained on this data
correctly separates the two prosodic variations in the latent
space, as seen in figure 1, and can represent both varieties
simultaneously. Note that this structure was not imposed be-
forehand (as is typically necessary to model the situation with
an HMM), but was recovered automatically from the data.

5. CONCLUSIONS AND FUTURE WORK

We have described how models with continuous, multidimen-
sional state-spaces can avoid the shortcomings of traditional,

discrete-state hidden Markov models of speech. Furthermore,
Gaussian process dynamical models possess these advantages
and can model speech without restrictive parametric assump-
tions. The advantages of GPDMs, including automatic struc-
ture discovery, are affirmed by experimental evidence.

Further efforts are needed, particularly for the training
stage, to realize the full potential of the models and to apply
them as building blocks in arbitrary speech synthesis. Work
is presently underway to address these limitations.
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