
IMPROVING ERROR RESILIENCE OF SCALABLE H.264 (SVC) VIA DRIFT CONTROL

Wai-tian Tan, Andrew Patti

Multimedia Communications and Networking Lab
Hewlett Packard Laboratories, Palo Alto

ABSTRACT

Common error concealment schemes mitigate errors for

frames in which losses occur only, even though errors prop-

agate to future frames. Drift control is generally challenging

due to lack of reliable basis for determining what needs to be

corrected and how. In this paper, we show that for scalable or

multi-layer video, an available base-layer can serve as such

basis to allow continous error drift checking and correction of

higher layers even when the base-layer is of much lower spa-

tial resolution. The associated algorithm is low-complexity,

incurs no additional bit cost, and experiments using SVC

reference software show PSNR improvement of up to 5 dB
over concealment methods without drift control.

Index Terms— Scalable video, Error resilience, Error

concealment, Drift control

1. INTRODUCTION

The use of scalable video compression is an attractive solu-

tion to many video communication tasks involving multiple

clients of heterogeneous bandwidth and display sizes, where

each client receives a number of layers commensurate with its

available resources. The latest and most promising scalable

compression standard is H.264 SVC, for which an overview

can be found in [1]. Nevertheless, scalable compression itself

does not necessarily provide a more error resilient bit-stream.

Instead, the separation of compressed data into multiple lay-

ers makes it easier to strategically offer more protection to the

more important lower layers to possibly achieve better sys-

tem error resilience. Differential protection can be realized

by available network QoS mechanisms, or emulated by dif-

ferential application of intra-coding or error control codes.

For a client that receives multiple layers, presumably with

more losses for higher layers, one strategy is to only use the

lower layers with insignificant losses, and discard other lay-

ers. Obviously, this avoids catastrophic image breakup com-

monly associated with high packet loss rates. Nevertheless,

discarding of correctly received data is clearly suboptimal, es-

pecially when the discarded layers are of substantial bit-rate.

Along these lines, an overview of H.264 SVC error re-

silience strategies, including inter-layer techniques, as well as

those requiring multi-loop decoding, can be found in [2]. One

approach, referred to as BLSkip, is to employ inter-layer error

concealment where missing information in a desired layer is

estimated from lower layers. Under BLSkip, a missing block

is concealed by the texture of the corresponding base-layer

block if it is intra-coded. Otherwise, a motion vector and

residue is interpolated from the base layer and applied to an

decoded enhancement frame. More elaborate concealment,

e.g., those that employ decoder search algorithms to obtain

better motion correspondence, is also possible [3].

The concealment schemes above are typically applied to

the location of loss, without detection and correction of sub-

sequent drift. It is worth mentioning that the new SP and

SI slice types of H.264 represent possible resynchronization

points that can be reconstructed perfectly from one of mul-

tiple reference frames. They are complementary to our ap-

proach, and do not provide a measure of drift or allow cor-

rection of drifts in non SP/SI slices. The distributed source

coding approaches such as [4] can sometimes provide even-

tual drift-free reconstruction in face of loss, but requires new

coding tools and structures.

In this paper, we propose the additional use of the lower

layer image as bounds for what a drift-afflicted higher layer

frame could be, and perform continuous detecting and cor-

recting for larger drift errors for improved video quality. The

rest of this paper is organized as follows. An overview of our

scheme is provided in Section 2.Evaluation results are given

in Section 3 follow by a conclusion.

2. DRIFT DETECTION AND CORRECTION FOR
SCALABLE VIDEO

For the sake of brevity and clarity, we assume a two-layer

video with spatial scalability only. Extensions to more layers,

and forms of scalability follows a similar argument. Let f
and F be the decoded base and enhancement layer frames,

respectively. Assuming no loss in base layer, we have,

f = f c
e + fo

where fo is the base layer original, and f c
e is the loss-free com-

pression noise. Similarly,

F = Fc
e + Fd

e + Fo

2302U.S. Government Work Not Protected by U.S. Copyright ICASSP 2010

where Fd
e summarizes error from losses and drift. Only the

quantities f and F are available at the decoder, and our goal

is to construct from them a better approximation to Fo than F
alone provides.

The basic strategy to decode only loss-free layers calls for

simple upscaling:

F̂(1)
o = up(f)

which, as we will show later in Section 3, may not be prefer-

able to F. A better approximation can be obtained as follows.

Since the original image fo is derived from Fo by image re-

sizing, a loss-pass filter LP can be constructed such that

LP (Fo) = up(fo)

Assume for the moment that distortions from compression are

negligible, i.e., Fc
e = 0 and f c

e = 0. Then,

LP (Fd
e) = LP (F)− LP (Fo)

= LP (F)− up(f)

which relates the observables f and F to the drift error Fd
e we

wish to determine. Whether a pixel (i, j) in F is afflicted by

drift can be determined by hypothesis testing. Specifically,

we form the consistency map C by checking for each pixel

(i, j) whether |LP (Fd
e)| is smaller than some threshold δ:

C(i, j) =
{

1 if |LP (F)(i, j)− up(f)(i, j)| < δ
0 otherwise

(1)

A better approximate to the loss-free enhancement frame can

be obtained by copying the parts of F that are consistent:

F̂∗
o(i, j) = C(i, j)F(i, j) + [1−C(i, j)]up(f)(i, j). (2)

The condition in (1) explicitly poses a bound on which higher

layer pixels can deviate from a base layer pixel, and is used

for drift detection. Drift correction is performed in (2) by

copying from up(f). This frame F̂∗
o is then taken as the final

decoded frame for display and future reference.

Notice that an error signal Fd
e that resides entirely in the

null space of the filter LP cannot be detected. In other words,

the scheme makes an inherent assumption that drift errors

have some low frequency components. Generally though, as

errors propagate over time, it is unlikely that they always re-

main in the same frequency bands.

More generally when the compression noises are not neg-

ligible, it is easy to verify that:

LP (F)− up(f) = LP (Fd
e) + LP (Fc

e) + up(f c
e) (3)

and the map C given by (1) would be inaccurate due to er-

rors from compression noises. Nevertheless, the characteris-

tics of compression noises are such that their energy distribu-

tion tend to sparse, e.g., concentrated near edges rather than

uniform. As a result, one effective way to compensate for the

error in C caused by compression noises is to remove small

regions of inconsistency (smaller than 8 by 8 pixels) and only

keep the larger regions. The final despeckled map

C′ = despeckle(C) (4)

is employed in (2) in place of C. Since there is no way to de-

termine if a small inconsistent region is caused by drift error,

compression error, or both, the despeckling process can in-

advertently cause small regions of significant drift error to be

ignored. Nevertheless, the small spatial support of the speckle

means the visual impact of such errors is small. Furthermore,

if error propagation cause the error to grow in spatial support

over time, it can be captured by the same drift detection and

correction methods in (1) and (2).

Since compression errors are dependent on bit-rate or QP

employed, it follows from (3) that the optimal δ for (1) should

also be chosen according to QP, which is available to a de-

coder. Specifically, δ should be allow to change spatially ac-

cording to changing QP, even though the simpler approach of

using a constant δ = 9 is taken in this paper.

In general, computational requirements for our proposed

drift detection and correction methods are low since only sim-

ple filtering operations are required. Nevertheless, unlike typ-

ical error concealment method that are invoked only at the

instance of loss, any drift detector needs to be in operation

continously. Our techniques outlined in (1) to (4) requires

only the decoded pixels (texture) in f and F, and is generally

applicable to all types of scalable compression methods. It

should be noted however, that H.264 SVC are designed with

a “single-loop decoding” feature [1, 2], that does not require

generation of base-layer pixels when decoding at enhance-

ment layer quality. As a result, extra decoding efforts are nec-

essary to fully decode the base layer. Such overhead is not

expected to be significant, especially when the base layer is

of lower spatial resolution.

3. RESULTS

In this Section, we first illustrate the effectiveness of our drift

detection and correction method by showing an example in

which drift is allowed to build up, and then our technique is

applied to one single frame only. We then show PSNR traces

when continous drift detection and correction are in effect.

Two sequences Mobile Calendar and Jeff of enhancement and

base resolutions of 1280×704 and 320×176, respectively, are

used, and are compressed using JSVM 9.9 software using a

constant QP of 28. In all cases, only an intial I-frame is em-

ployed, and all subsequent frames are P-frames. The Mobile
Calendar sequence is a challenging sequence with fine texture

and complex motion, whereas Jeff is a typical video confer-

ence sequence with a large stationary background.

In all cases, the base layer is assumed to have been re-

ceived losslessly, and losses in enhancement layers are con-

cealed using BLSkip [2], which is found to be far superior to

the other concealment methods available in JSVM.

2303

Fig. 1. Serious error develops from multiple earlier losses

even after effective error concealment method BLSkip is ap-

plied for every loss (top). The corrupt frame is compared

with base-layer reconstruction to obtain the despeckled con-

sistency map (middle), where black indicates inconsistency.

Finally, the corrected picture (bottom) is computed by selec-

tively merging the consistent parts of the top frame. PSNR

improves from 20.42 dB to 24.04 dB.

3.1. Single Frame Correction Example

In this example, the enhancement layer of Mobile Calendar
sequence is subjected to 5% random frame loss, and our drift

correction technique is applied to frame 160 only. The results

are shown in Fig. 1.

First, we see that the bottom corrected picture is clearly

much preferable to the drift-afflicted picture at the top. This

is remarkable given that available “side information” or base-

layer is only 1/16 the size of the full frame. We see that the

significant color errors in both the wallpaper and calendar are

corrected. Those errors originate from small imperfections in

0 1 2 3 4 5 6 7
20

25

30

35

40

time (s)

P
S

N
R

 (d
B

)

proposed
BLSkip
no loss (enh)
no loss (base)
loss location

0 1 2 3 4 5 6
26

28

30

32

34

36

38

40

time (s)
P

S
N

R
 (d

B
)

proposed
BLSkip
no loss (enh)
no loss (base)
loss location

Fig. 2. PSNR traces for Mobile Calendar (top) and Jeff (bot-

tom) when subjected to 5% enhancement frame loss.

error concealment that are continously copied as the calendar

moves. These types of errors with large magnitude and area

are readily corrected by our methods.

Next, we see that the corrected picture still contains non-

uniform color in the calendar background, and some contours

are visible. This is a direct consequence of the use of thresh-

olding in (1). This may be corrected by changing (1) to use

consistency probability, and is a subject of future research.

We also see uncorrected scratches on the right part of the

frame with wallpaper. Those are artifacts of the despeckling

process, which cannot detect drift errors with small areas.

3.2. Continuous Drift Correction

We next apply continous drift correction to control drift for

every frame so that unlike the exaple above, drift error never

gets large before they are corrected. The comparison with

and without continous drift correction for 5% enhancement

frame loss rate is shown in Fig. 2 for both sequences Mobile
Calendar and Jeff.

First, we see that the use of continuous drift correction

never reduce quality. This is a consequence of our design to

apply changes only when certain. Second, we see that the

PSNR gain for continous drift correction can be large, ex-

ceeding 5 dB at places for Mobile Calendar. The PSNR gain

for Jeff is more subdue because it contains a large stationary

background, that any obtained gain are averaged over. Figs. 3

2304

Fig. 3. Frame 160 of Mobile Calendar sequences without

(top) and with (bottom) continuous drift correction. PSNR

improves from 20.42 dB to 25.30 dB.

and 4 shows selected frames from the sequences. In partic-

ular, the corrected Mobile Calendar frame using continuous

drift correction achieves 25.30 dB in PSNR, about 1.3 dB
better than when the same technique is only applied once in

Fig. 1. Generally, tradeoff between computation and quality

can be achieved by not performing checking on every frame.

We notice that when continuous drift correction is not ap-

plied for Mobile Calendar, it is possible for the additional de-

coding of enhancement layer to result in a lower PSNR than

discarding the lossy enhancement layer (“no loss (base)”).

This suggest some quality indication, such as our drift de-

tection, is necessary to guarantee positive quality return for

decoding a lossy enhancement layer, even if such detection is

only performed occasionally. In contrast, continous drift cor-

rection always perform better than dropping the enhancement

layer.

Finally, we see that the PSNR obtained by “no loss (base)”

is particularly low for Jeff, reaching a difference of 6 to 10 dB
at places. This is again due to the large stationary background

that is easily concealed, but whose fine textures are discarded

when the enhancement layer is dropped. This argues against

the dropping of enhancement layers even when they are lossy.

4. CONCLUSION

In this paper, we introduce a simple yet effective drift detec-

tion and correction method for scalable video, and show via

Fig. 4. Frame 40 of Jeff sequences without (top) and with

(bottom) continuous drift correction. PSNR improves from

32.55 dB to 33.37 dB.

experiments that PSNR gains of up to 5 dB can be obtained

for H.264 SVC video. The approach does not require addi-

tional bit overhead or changes to video compression method.

There are a number of possible extensions, including

more general detection than given by the binary decisions of

(1), and better correction method than given by (2), e.g., by

using decoder motion search as in [3], or by fusing different

frequencies from f and F [5].

5. REFERENCES

[1] H. Schwarz, Detlev Marpe, and T. Wiegand, “Overview of the

scalable video coding extension of the H.264/AVC standard,”

IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 9, pp.

1103–1120, September 2007.

[2] Y. Guo, Y. Chen, Y. Wang, H. Li, M. Hannuksela, and M. Gab-

bouj, “Error resilient coding and error concealment in scalable

video coding,” IEEE Trans. Circuits Syst. Video Technol., vol.

19, no. 6, pp. 781–795, June 2009.

[3] C. Yeo, W. Tan, and D. Mukherjee, “Receiver error concealment

using acknowledge preview (recap) - an approach to resilient

video streaming,” in Proceedings ICASSP. IEEE, April 2009,

pp. 785–788.

[4] A. Sehgal, A. Jagmohan, and N. Ahuja, “Wyner-ziv coding of

video: an error-resilient compression framework,” IEEE Trans.
Multimedia, vol. 6, no. 2, pp. 249–258, April 2004.

[5] F. Brandi, R. Queiroz, and D. Mukherjee, “Super-resolution of

video using key frames and motion estimation,” in Proceedings
ICIP, October 2008.

2305

