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ABSTRACT
We derive a sufficient condition for a square FIR MIMO system to
have a causal and stable IIR inverse. The condition requires that the
spectral norm of the normalized channel impulse response (i.e., the
first tap is the identity matrix) is below a certain bound. Intuitively,
this means that the system has a strong first tap. This condition
often is easier to check than the usual minimum-phaseness, where
the roots of the systems determinant have to be computed. Simple
approximations of the bound are found. Furthermore, we also give
a negative result: the Wiener Filter, which approximates the inverse
under low noise conditions, nevertheless always is non-causal. We
apply our results to two inversion problems with causality and
stability constraint. These problems arise in oversampled noise-
shaping subband coding and residual interference cancellation in
precoded systems, respectively.

Index Terms— MIMO Systems, Equalizers, IIR digital filters,
Causality, Stability

I. INTRODUCTION
The problem of inverting a square finite impulse response (FIR)

multiple-input multiple-output (MIMO) system

H(z) =
K∑

k=0

Hkz
−k (Hk ∈ C

q×q)

arises in various situations. A popular example is filter-bank design,
where inverses are called perfect reconstruction filter banks [1].
Often, it is desirable to have a FIR inverse

GFIR(z) =
M∑

m=0

GFIR
m z−m s.t. GFIR(z)H(z) = I,

because FIR inverses are inherently stable and simple to compute
[2]. It is well-known that the inverse is FIR iff det[H(z)] = c ∈
C\{0} [1], [3]. However, recent results show that a square FIR
MIMO system is generically (“almost surely”) not FIR invertible
[4]. Thus, we cannot expect FIR invertibility of MIMO systems, in
general. Infinite impulse response (IIR) invertibility, i.e., existence
of a stable and causal inverse, is less restrictive. A stable IIR inverse
(i.e., all poles are contained in the open unit disc |z| < 1 [5])

G(z) =
∞∑

m=0

Gmz−m stable s.t. G(z)H(z) = I,

exists iff det[H(z)] �= 0 for all 1 ≤ |z| ≤ ∞ [6], [3]. However,
this condition is not trivial to check because it requires finding
the roots of the systems determinant. Moreover, given typical
characteristics of a FIR MIMO system, e.g., a power profile, it
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is usually impossible to say apriori whether the system will be
IIR invertible or not. A simpler IIR invertibility condition, which
is more compatible with standard system characteristics, would be
useful. Thus, we make the following contributions.
• We derive a novel condition for IIR invertibility of square FIR

MIMO systems. The condition is intuitive (strong first tap),
and can be checked from standard system characteristics.

• Besides, we show that although the Wiener Filter approxi-
mates the inverse in environments with high signal-to-noise
ratios, there can be no similar result for the Wiener Filter.
The Wiener Filter is non-causal as soon as the channel is
frequency-selective and IIR invertible.

• Finally, we give two applications of our results. First, we
derive a sufficient condition that ensures that the feedback
filter in oversampled noise-shaping subband coding results in
a stable feedback loop. Second, we give a safety margin on
the errors in the feedback loop of a wireless system with
precoding that guarantees that the precoded channel (with
perturbed precoder) still is invertible.

The main tools in our derivation will be state-space techniques
which are especially popular in control [5], but are also commonly
used in filter bank design [1]. In particular, we use results from
robust stabilization [7] to analyze a a state-space realization of a
certain inner-outer factorization [8].

The paper is structured as follows. In Section II, we derive
and discuss our novel sufficient invertibility condition. The non-
causality of the Wiener Filter is discussed in Section III. Finally,
in Section IV, we give some applications.

Notation: The spectral norm ‖Φ‖2 of a scalar matrix Φ ∈ C
n×n

is given by its largest singular value, the Frobenius norm by
‖Φ‖2F = tr{Φ∗Φ}. We denote the set of rational matrices by
Rn×n, and the subset of causal and stable (i.e., all poles are
contained in |z| < 1) rational matrices by RHn×n

∞ . The L2

norm of a rational matrix Ψ ∈ Rn×n is given by ‖Ψ‖2L2
=´ 2π

θ=0
‖Ψ(eiθ)‖2F

dθ
2π

. We use the usual shorthand[
E F
G H

]
= H +G(zI − E)F ∈ Rn×n

to denote the transfer function of a state-space system [5]. The tilde
operator Ψ∼(z) := Ψ(z̄−1)∗ denotes the para-hermitian. Finally,
a inner-outer factorization of a stable rational matrix Ψ ∈ RHn×n

∞

is a factorization Ψ = ΨiΨo, where Ψi,Ψo,Ψ
−1
o ∈ RHn×n

∞ and
Ψ−1

i = Ψ∼i .

II. SUFFICIENT INVERTIBILITY CONDITION

We consider a q×q FIR MIMO channel H(z) =
∑K

k=0 Hkz
−k

with H0 invertible.1 This goal of this section is to prove the
following sufficient invertibility condition.

1This means no loss of generality. If H−1 is causal then H0 is invertible.
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Proposition 1. Suppose that H0 is invertible, and∥∥∥∥∥∥∥

⎡
⎢⎣

H1H
−1
0

...
HKH−1

0

⎤
⎥⎦
∥∥∥∥∥∥∥
2

<
1

CK
, (1)

where

CK :=

∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎣

(−1)0 (−1)1 . . . (−1)K−1

. . .
. . .

...
. . . (−1)1

(−1)0

⎤
⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥
2

. (2)

Then, the inverse H−1 is causal and stable.

Remark 2. We point out that the upper bound does only depend on
the number of taps K, but not the taps size q. Numerical evaluation
of CK has shown that CK grows approximately linearly with K.
A good approximation in the range K = 2, . . . , 1000 is C̃K :=
0.254 + 0.683K. Moreover, we have verified numerically that

1

C̃K

<
1

CK
for all K = 2, . . . , 1000.

Thus, if the channel length is below 1000, we can use 1/C̃K instead
of 1/CK as upper bound Proposition 1. We have plotted both the
exact and the approximate upper bound for different K in Fig. 1.

Before we can prove Proposition 1, some results on inner-outer
factorization of H(z) have to be established.

II-A. Inner-Outer Factorization of H

In this section, we establish state-space realizations for a special
inner-outer factorization of H(z). Let us first consider z−1H(z).
We introduce a state-space realization

z−1H(z) =

[
A B
C 0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0q Iq H0

. . .
. . .

...
. . . Iq HK−1

0q HK

Iq 0q . . . 0q 0q

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Suppose X = X∗ is the unique stabilizing solution to the discrete-
time algebraic Riccati equation [9]

A∗XA−X −A∗XB(B∗XB)−1B∗XA+ C∗C = 0, (3)

i.e., the eigenvalues of the matrix A + BR, where R :=
−(B∗XB)−1B∗XA, are contained inside the complex unit circle
|z| < 1. Introduce a second matrix S := (B∗XB)1/2. Then, a
inner-outer factorization of z−1H(z) = I1(z)O(z) is given by [8]

I1(z) :=

[
A+BR BS−1

C 0

]
,O(z) :=

[
A B

−SR S

]
,

We can transform the inner-outer factorization z−1H(z) =
I1(z)O(z) into a inner-outer factorization of H(z). Since I1 is
strictly causal, we can absorb the inner factor z−1 into I1,

I(z) := zI1(z) =

[
A+BR BS−1

C(A+BR) CBS−1

]
. (4)

Then, H(z) = I(z)O(z) is a inner-outer factorization of H(z).

Fig. 1. Plot of the upper bound 1/CK and its approximation 1/C̃K .

II-B. Sufficient Condition for X1 being the Stabilizing Solution
In this section, we derive a sufficient condition for

X1 = X∗
1 =

[
Iq

0

]
(5)

being the stabilizing solution to the Riccati equation (3). It is simple
to check that X1 does always solve the Riccati equation,

A∗X1A−X1 −A∗X1B(B∗X1B)−1B∗X1A+ C∗C

= A∗X1A−A∗X1B(B∗X1B)−1B∗X1A

= A∗X1A−A∗
[

H0(H
∗
0H0)

−1H∗
0 0

0 0

]
A = 0.

However, this solution is not always stabilizing. The matrix X1 is a
stabilizing solution to the Riccati equation if and only if A+BR1

is stable (i.e., all eigenvalues are located inside the open unit disc
|z| < 1), where

R1 := −(B∗X1B)−1B∗X1A =
[
0 −H−1

0 0 . . . 0
]
.

(6)
A sufficient condition for

A+BR1 =⎡
⎢⎢⎢⎢⎣

0q 0q
0q Iq
...

. . .
0q Iq
0q 0q

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:Γ1(q,K)∈C(K+1)q×(K+1)q

+

⎡
⎢⎢⎢⎢⎢⎣

0q 0q
−H1H

−1
0 0q

...
. . .

−HK−1H
−1
0 0q

−HKH−1
0 0q

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:Γ2(q,H)∈C(K+1)q×(K+1)q

(7)
being stable is [7]

‖Γ2(q,H)‖2 =

∥∥∥∥∥∥∥

⎡
⎢⎣

H1H
−1
0

...
HKH−1

0

⎤
⎥⎦
∥∥∥∥∥∥∥
2

<
1

‖(eiθI(K+1)q − Γ1(q,K))−1‖2
,

∀θ ∈ [0, π].
(8)

The next lemma shows that the right-hand side of this inequality is
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independent of θ and q. The proof is a simple extension of Lemma
1 in [10]. Thus, we give no proof.

Lemma 3. The singular values of eiθI(K+1)q−Γ1(q,K) coincide
for all θ ∈ [0, π] and q ∈ N.

II-C. Proof and Discussion of Proposition 1

We are now ready to prove our main result.
Proof: (of Prop. 1) Suppose (1) holds. Since

CK
(CK≥1)

=

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

1
(−1)0 (−1)1 . . . (−1)K−1

. . .
. . .

...
. . . (−1)1

(−1)0

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥
2

= ‖(ei0I(K+1)1 − Γ1(1,K))−1‖2,

Lemma 3 implies that (8) holds. Thus, the results in Section II-B
show that X1 given in (5) is the stabilizing solution to the Riccati
equation (3). Therefore, I and O given in Section II-A constitute
a inner-outer factorization of H(z). Now, note that in (4), we have

C(A+BR1)

= [ Iq 0 ]

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
−H1H

−1
0 I

... 0
. . .

−HK−1H
−1
0

. . . I
−HKH−1

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
= 0

because of (6) and (7). Using that S1 := (B∗X1B)1/2 =
(H∗

0H0)
1/2, we see that the inner-outer factorization reduces to

I(z) = CBS−1
1 = H0(H

∗
0H0)

−1/2,

O(z) = I∼(z)H(z) = (H∗
0H0)

−1/2H∗
0H(z).

The proposition now follows from H−1 = O−1I∼ because O−1

is stable and causal by definition of the inner-outer factorization,
and I∼ = I−1 is a scalar matrix.

The alert reader probably wonders at this point whether computa-
tion of the inner-outer factorization actually was necessary because
state-space formulas for inverses are well known [5, Lem. 3.15],

H−1(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−I I −I

−H1H
−1
0 0

. . . −H1H
−1
0

...
. . . I

...
−HKH−1

0 0 −HKH−1
0

H−1
0 0 . . . 0 H−1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Therefore, note that our sufficient condition cannot be achieved
from this realization of the inverse. To see this, decompose the state
transition matrix of this realization in two ways, (A − X1) + P1

and A+ P2, where⎡
⎢⎢⎢⎢⎣

−I I

0
. . .
. . . I

0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=A−X1

,

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0

−H1H
−1
0

...
...

...
...

...
−HKH−1

0 0 . . . 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:P1

,

Fig. 2. Oversampled noise-shaping subband coder

⎡
⎢⎢⎢⎢⎣

0 I
. . .

. . .

. . . I
0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=A

,

⎡
⎢⎢⎢⎢⎣

−I 0 . . . 0

−H1H
−1
0

...
...

...
...

...
−HKH−1

0 0 . . . 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:P2

.

Then, we cannot consider P1 as a perturbation of A−X1 because
the matrix A − X1 is not stable. This prevents application of the
robust stabilization results in [7]. On the other hand, when we
consider P2 as a perturbation of the stable matrix A, then there is
a problem with the obtained condition

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

I
H1H

−1
0

...
H0H

−1
0

⎤
⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥
2

<

∥∥∥∥∥∥∥∥∥∥
I −

⎡
⎢⎢⎢⎢⎣

0 I
. . .

. . .

. . . I
0

⎤
⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥

−1

2

.

The left hand side is always larger than one, but in numerical
experiments the right-hand side was always lower than one.

III. NON-CAUSALITY OF THE WIENER FILTER
In this section we consider the question whether the Wiener

Filter, which is a regularization of the inverse and approximates it
in low noise environments, can become causal and stable, too. The
next proposition shows that this can only happen in the trivial case,
i.e., flat fading channels.

Proposition 4. Suppose that the inverse H−1 is causal and stable,
and σ > 0. Then, the Wiener Filter (H∼H+σ2I)−1H∼ is causal
and stable if and only if the system is flat-fading, i.e., H(z) ≡ C.

Proof: The ” ⇐ ” part of the proof is trivial, we only treat
the ” ⇒ ” part. Consider HΔ := H + σ2H−∼, and note that

H−1
Δ = [H−∼(H∼H + σ2I)]−1 = (H∼H + σ2I)−1H∼

is the Wiener Filter. The Wiener Filter H−1
Δ is causal, thus also

H−1
Δ H = [H−1(H + σ2H−∼)]−1 = [I + σ2(H∼H)−1]−1,

is causal. However, H−1
Δ H is also (non-strictly) anti-causal because

H−1
Δ H = (H−1

Δ H)∼. Thus, H−1
Δ H and in particular H∼H =: C1

are constant scalar matrices. This shows that the inverse H−1 =
C−1

1 H∼, which is causal, also is anti-causal. Again, this implies
that H−1 and therefore H are constant scalar matrices.

IV. APPLICATIONS
IV-A. Oversampled Noise-Shaping Subband Coders

Oversampled noise-shaping subband coders have been intro-
duced in [11] as a combination of oversampled noise-shaping A/D
converters and perfect reconstruction filter banks (see Fig. 2). Given
perfect reconstruction analysis and synthesis filter banks E(z) and
R(z) the task is to design an optimal FIR feedback filter F (z). In
order to obtain a tractable optimization problem, the quantization
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Fig. 3. Wireless communications system

noise v − vq is modeled as additive random noise with spectral
density W (z)W∼(z). Then, computation of an optimal feedback
filter is to find a system F (z) =

∑K
k=0 Fkz

−k such that

‖R(I − z−1F )W‖L2 (9)

is minimized. An explicit expression for the optimal FIR feedback
filter is obtained in [11]. However, as noted in [11, p. 168], [12], the
solution in [11] has a shortcoming. While most internal signals in
Fig. 2 are always stable, the stability of some signals does depend
on the stability of [I − z−1F (z)]−1. E.g., we have

v(z) = w(z)− z−1F (z)[vq(z)− v(z)]

⇒ v(z) = [I − z−1F (z)]−1[w(z)− z−1F (z)vq(z)],

which is only stable if [I − z−1F (z)]−1 is stable. However, the
solution in [11] does not guarantee stability of [I − z−1F (z)]−1.
Proposition 1 can be used to obtain a sufficient stability condition.

Corollary 5. Suppose F (z) =
∑K

k=0 Fkz
−k satisfies∥∥∥∥∥∥∥

⎡
⎢⎣

F0

...
FK

⎤
⎥⎦
∥∥∥∥∥∥∥
2

<
1

CK+1
(10)

for CK+1 given by (2). Then, [I−z−1F (z)]−1 is causal and stable.

IV-B. Residual Interference Cancellation in Precoded Systems
In wireless systems, a precoder can be used to predistort the data

signals such that after transmission through the wireless channel
the undistorted data signals are received by the receiver. Therefore,
the transmitter requires knowledge about the wireless channel,
which may be obtained e.g. using reciprocity in TDMA systems or
via a low-rate feedback channel. However, the channel data used
by the transmitter to compute the precoder usually is erroneous
e.g. due to channel estimation errors, out-dating, or quantization.
Thus, there is residual interference in the channel, which may be
canceled by applying a channel inverse to the precoded channel.
Of course, therefore the precoded channel has to be causally and
stably invertible. In the following, we will design a bound on the
disturbance that guarantees invertibility of the precoded channel.

Consider the wireless communications system depicted in Fig.
3. The input-output relation of the system is

y(z) = G(z)[H(z) + Δ(z)]P (z)u(z) +G(z)n(z),

where
• H(z) =

∑K
k=0 Hkz

−k is the channel,
• Δ(z) =

∑K
k=0 Δkz

−k is a perturbation,
• P (z) =

∑M
k=0 Pkz

−k is a precoder, i.e., ‖P‖L2 = 1 and
HP = cI for some c > 0, and

• G = [(H +Δ)P ]−1 cancels the residual interference.
Now, let

R(z) :=

K+M∑
k=0

Rkz
−k := [H(z) + Δ(z)]P (z) = cI +Δ(z)P (z)

denote the precoded channel. Proposition 1 shows that G = R−1 is
stable and causal if R holds (1). The left-hand side of (1) is upper
bounded by

∥∥∥∥∥∥∥

⎡
⎢⎣

R1R
−1
0

...
RK+MR−1

0

⎤
⎥⎦
∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

Δ0P0

R1

...
RK+M

⎤
⎥⎥⎦
∥∥∥∥∥∥∥∥
2︸ ︷︷ ︸

≤‖...‖F=‖ΔP‖L2

∥∥R−1
0

∥∥
2︸ ︷︷ ︸

≤‖R−1
0 ‖F

≤ c−1‖Δ‖L2 ‖P‖L2︸ ︷︷ ︸
=1

‖ (I + c−1Δ0P0)
−1︸ ︷︷ ︸

=R−1
0

‖F

≤
‖Δ‖L2

c

⎛
⎜⎝ ∞∑

k=0

c−k‖Δ0‖
k
F ‖P0‖

k
F︸ ︷︷ ︸

≤1

⎞
⎟⎠ ≤

‖Δ‖L2

c− ‖Δ0‖F
.

Thus, we obtain the following sufficient condition.

Corollary 6. Suppose that H−1 is stable and causal, and

‖Δ0‖F <
c

2
, ‖Δ‖L2 =

K∑
k=0

‖Δk‖F <
c

2CK
,

where CK is given by (2). Then, G = [(H + Δ)P ]−1 is causal
and stable.
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