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ABSTRACT

Blind system identification (BSI) and equalization algorithms have
been applied to multichannel systems with high order such as found
in acoustic impulse responses. Studies on the performance of such
algorithms in the presence of near-common zeros have been limited
to low order systems. In this work, we propose two high order clus-
tering algorithms which efficiently extract clusters of near-common
zeros within a specified pairwise distance in the z-plane. Using these
algorithms, we then quantify the number of common zeros that ex-
ist in acoustic systems. In addition, we show how these algorithms
can be applied to study of BSI and equalization algorithms in the
presence of near-common zeros for such acoustic systems.

Index Terms— blind system identification, channel equaliza-
tion, near-common zeros, acoustic array

1. INTRODUCTION

Blind system identification (BSI) and equalization are of importance
for acoustic dereverberation where the main aim is to recover the
source signal using channel equalizers derived from the inverse of
the estimated impulse responses. Several BSI [1, 2] and equaliza-
tion [3] algorithms based on second-order statistics have been shown
to identify and equalize high order acoustic impulses of length in the
order of hundreds of coefficients for realistic applications. One of
the identifiability conditions for these algorithms is that the channels
are coprime, i.e., they do not share common zeros [4]. If common
roots exist across all channels, BSI algorithms, for example, fail to
identify the channels correctly as they cannot distinguish whether the
common terms are due to the input signal or the acoustic channels.

The notion of near-common zeros was introduced recently
in [5, 6]. It has been shown that, for a simple two-channel system
each having three coefficients, the rate of convergence of an adap-
tive BSI algorithm [4] reduces with the reduction of the Euclidean
distances between zeros of different channels. Studies pertaining to
the effect of near-common zeros on the performance of BSI algo-
rithms have generally been limited to two channels with small num-
ber of zeros. Although an algorithm for estimating zeros that are
exactly common has been proposed for two-channel systems [5], no
algorithm exists however for the clustering of near-common zeros
in high order multichannel systems. Identifying clusters of near-
common zeros in such systems is therefore important and, in this
work, we develop two clustering algorithms which will provide a
quantification of how close to being common these zeros are for an
acoustic system so as to study how these near-common zeros affect
BSI and channel equalization algorithms. The propose algorithms
can also aid the design of algorithms robust to near-common zeros
for multichannel high order system identification and equalization.

We first describe conditions whereby zeros can be considered
near-common. We explain why, under these conditions, classical
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Fig. 1. An example of two clusters for a three-channel system in the z-plane.

clustering algorithms will not operate effectively in this context. Us-
ing a novel approach, we compute a dissimilarity matrix contain-
ing the Euclidean distances between zeros across any two channels
as presented in Section 3. Utilizing this matrix, two algorithms
namely (i) the Divide-and-Conquer (DC) and (ii) the Search-and-
Trim (ST) are proposed in Section 4 for the identification of clusters
of near-common zeros. We present, in Section 5, simulation results
depicting the performance of these algorithms in terms of their com-
putational times. In addition, we illustrate how the proposed algo-
rithms can be applied to study the performance of BSI and chan-
nel equalization algorithms for acoustic channels in the presence of
near-common zeros.

2. CONDITIONS FOR CLUSTERING

For a multichannel system, clusters of near-common zeros must sat-
isfy two conditions: (i) the number of zeros within each cluster must
correspond to the number of channels for that system with each
channel contributing exactly one zero and (ii) all possible pairs of
zeros in a cluster must lie within a vicinity δ in terms of their Eu-
clidean distances where δ ≥ 0 is defined as the tolerance. The first
condition results from the definition of zeros being near common
across all channels. Condition (ii) defines the closeness between
pairs of near-common zeros. It is worthwhile noting that the chan-
nel disparity depends on these pairwise distances [7] and any zero
can be a member of more than one cluster. This implies that classi-
cal clustering algorithms such as the k- and c-means algorithms [8]
cannot be employed for our application since the k-means algorithm
requires a priori knowledge of the number of clusters and it assumes
that each zero belongs to only one cluster. The c-means algorithm
on the other hand violates condition (i) since it does not appropri-
ately constrain the number of zeros within a cluster. Figure 1 shows
an illustrative example of two clusters of near-common zeros in the
z-plane for a three-channel system satisfying the above conditions.
Symbols ", ! and ◦ represent zeros for each channel and they lie
within pairwise δ vicinity from each other.
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3. EUCLIDEAN DISTANCES BETWEEN ZEROS FOR TWO
CHANNELS

Extraction of clusters of near-common zeros in a multichannel sys-
tem involves the computation of the Euclidean distances between
any pair of zeros from different channels. We describe a novel ap-
proach to compute these distances between any two channels. We as-
sume that each of these high order polynomials has been factorized
using efficient factorization algorithms presented in [9]. Defining
hm = [hm(0) hm(1) . . . hm(L)]T as the mth channel impulse
response of length L + 1, with [·]T being the transposition operator,
we can then express for z = ei2πf and i =

√
−1,

Hm(z) = hm(0) + . . . + hm(L)z−L = K
L∏

p=1

(
z − zm(p)

)
,

where f is the normalized frequency and K is the gain constant.
The term zm(p) = xm(p) + iym(p) is the pth zero and its location
in the z-plane is defined by xm(p) and ym(p) along the real and
imaginary axis of the unit circle respectively. It has been shown [10]
that as L increases, the radii of these zeros tend toward unity while
their angles tend toward a uniform distribution.

The rate of convergence for adaptive BSI algorithms reduces
with the reduction of Euclidean distances between the zeros [6].
In addition, the relationship between channel disparity and pair-
wise distances of the zeros has been established in [7]. To quantify
these pairwise distances, we introduce an L×L dissimilarity matrix
D{m,n} defined between channels m and n where the pth row and
qth column element is given by

D{m,n}(p, q) = |zm(p) − zn(q)|

=
√[

xm(p) − xn(q)
]2

+
[
ym(p) − yn(q)

]2

(1)

for p, q = 1, . . . , L and m '= n. Unless the zeros are exactly
common, (i) the diagonal elements of D{m,n} are non-zero and
(ii) D{m,n} is not symmetric. We next define two L × 1 vectors

zm = [zm(1) zm(2) . . . zm(L)]T , (2)

zn =
[
zn(1) zn(2) . . . zn(L)

]T (3)

containing L zeros of the mth and nth channel respectively. Defin-
ing Z̃m = Zm ( Zm with ( being the Hadamard product, Zm =
zm1T , Zn = 1zT

n and 1L×1 = [1 1 . . . 1]T , computation of (1)
for all p and q can be efficient using

D{m,n} =
[∣∣∣Z̃m − 2zmzT

n + Z̃n

∣∣∣
]◦ 1

2
, (4)

with [·]◦ 1
2 and | · | being the Hadamard square root and elemental

absolute respectively. To illustrate the validity of (4), we write

Z̃m − 2zmzT
n + Z̃n

=





(
zm(1) − zn(1)

)2 · · ·
(
zm(1) − zn(L)

)2

...
. . .

...(
zm(L) − zn(1)

)2 · · ·
(
zm(L) − zn(L)

)2



 . (5)

Let a = xm(p) − xn(q) and b = ym(p) − yn(q). Invoking Euler’s
identity a + ib = reiθ where r =

√
a2 + b2 and θ = tan−1(b/a),

we have
∣∣(a + ib)2

∣∣ =
∣∣r2ei2θ

∣∣ = r2, from which we obtain the
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Fig. 2. The GMC-DC algorithm.

important result

D{m,n} =
[∣∣Z̃m − 2zmzT

n + Z̃n
∣∣
]◦ 1

2

=





√
|(zm(1) − zn(1))2| · · ·

√
|(zm(1) − zn(L))2|

...
. . .

...√
|(zm(L) − zn(1))2| · · ·

√
|(zm(L) − zn(L))2|





hence verifying the validity of (4). For m '= n, since all pairwise
distances are computed only once, no computational redundancy oc-
curs making this computation efficient.

4. GENERALIZED MULTICHANNEL CLUSTERING

We now propose two algorithms for identifying clusters of near-
common zeros in multichannel systems. For the two-channel case,
clusters can be obtained from D{1,2} by selecting indices p and q for
which D{1,2}(p, q) ≤ δ. We generalize this approach by employing
D{m,n} with the aim of extracting clusters for M -channel systems
from which elements in {z1 z2 . . . zM} satisfy conditions as
described in Section 2.

Employing D{m,n} between any two out of M channels, con-
sider the case where there are cmn clusters of near-common zeros
between channels m and n. We next define a sub-cluster group ma-
trix C{m,n} containing these cmn clusters. This cmn × 2 matrix can
be obtained by searching within elements in D{m,n} for indices p
and q such that

C{m,n} = arg D{m,n}(p, q) ≤ δ (6)

is satisfied. We next denote ct as the total number of clusters for
the M -channel system. We define cluster matrix C{1:M} of dimen-
sion ct ×M for the whole system where each row contains a cluster
with M elements each containing indices corresponding to elements
in {z1 z2 . . . zM} for the respective channels 1 to M . We em-
ploy (6) across each pair of channels selected from M . The aim
of the proposed Generalized Multichannel Clustering (GMC) algo-
rithm is to obtain C{1:M} using sub-cluster groups C{m,n}. This can
be achieved using two approaches as described below.

4.1. The Divide-and-Conquer Algorithm

The GMC Divide-and-Conquer (GMC-DC) algorithm compares two
channels in a binary tree fashion as depicted in Fig. 2. Stage 1
computes sub-cluster groups C{1,2}, C{3,4}, . . . using (4) and (6).
The second stage then extracts sub-cluster groups C{1:4}, C{5:8}, . . .
from Stage 1 and this process is repeated until comparisons between
all branches of the binary tree have been completed. Condition (ii)
requires that any pairwise distances greater than tolerance δ are ex-
cluded from the cluster during each stage. The number of stages
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Table 1. The GMC-ST algorithm

10 Compute C{m,n}, Get C{ms,ns} using (7)
20 for each row of C{ms,ns}, initialize R = 01×M

30 set r(ms) = p, r(ns) = q
40 while R contains no empty elements
50 for each row r in R
60 find all elements of r within C{m,n}
70 if found k values invoke (8)
80 else delete row
90 if R has < 1 row GOTO 20
100 else
110 for each row of R
120 Check if all pairwise elements ∈ C{m,n}
130 if yes GOTO 110, else delete row
140 end for
150 end for
160 end while
170 R ∈ C{1:M}
180 end for

required for this approach corresponds to +log2(M) + 1, while the
computation of D{m,n} using (4) is required a total of M −1 times.

4.2. The Search-and-Trim Algorithm

The GMC Search-and-Trim (GMC-ST) algorithm, given in Ta-
ble 1, first computes D{m,n} for all possible pairs of channels with
m = 1, . . . , M − 1 and n = m + 1. This employs (4) a total of
0.5M(M − 1) times. Invoking (6), this algorithm then aims to ex-
tract C{1:M} from these 0.5M(M − 1) sub-cluster groups C{m,n}
using an efficient search technique. This is achieved by first selecting
the sub-cluster group

C{ms,ns} = min
cmn

{
C{1,2} C{1,3} ... C{M−1,M}

}
, (7)

having the smallest cmn as a reference group. This is equivalent
to finding the two channels ms and ns having the smallest num-
ber of sub-clusters. Since near-common zeros must satisfy condi-
tion (i), GMC-ST begins its search from C{ms,ns}. For each row of
C{ms,ns}, GMC-ST initializes a row vector R = [r(1) . . . r(M)]
with only two non-empty elements r(ms) = p and r(ns) =
q where p and q are two elements obtained from each row in
C{ms,ns}. The next stage is to search, for row vector r of R, the
remaining M − 2 empty elements. This search space is confined
within

{
C{1,2} C{1,3} ... C{M−1,M}

}
excluding C{ms,ns} since,

from (6), only zeros within these groups are all within tolerance δ.
If k elements are found, then R is updated as

R̃ = 1k×1r, R = [R̃T RT ]T , (8)

where 1k×1 = [1 . . . 1]T . This implies that the zeros belong to k
different clusters. The trimming process then ensures that all pair-
wise elements for each row in R can be found within the search
space

{
C{1,2} C{1,3} ... C{M−1,M}

}
in order to satisfy condi-

tion (ii). If this condition is violated, the entire row is deleted and
the search-and-trim process is repeated until every element in each
row of R is found or all rows have been deleted.
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Fig. 3. Number of clusters found using the proposed algorithms against
tolerance δ with different number of channels M .
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Fig. 4. Search time against tolerance δ using GMC-ST and GMC-DC for an
example case of M = 4.

5. SIMULATIONS

We demonstrate the performance and illustrate the use of GMC-ST
and GMC-DC using simulated acoustic impulse responses generated
by the method of images [11] with a linear array of M = 8 micro-
phones in a room of dimension 10 × 10 × 3 m. The source is lo-
cated 1 m in front of the microphone array with uniform microphone
spacings of 8 cm. The sampling rate was 16 kHz with each channel
impulse response having 512 coefficients. A set of 160 impulse re-
sponses are then generated by placing this source-sensor configura-
tion in different positions of the room. Results are then obtained by
spatial averaging over all positions in the room using the generated
set of impulse responses.

We first analyze how the total number of clusters ct vary with
tolerance δ for different number of channels M . Clusters of near-
common zeros are found using the proposed GMC-ST and GMC-
DC algorithms. Figure 3 shows the number of clusters found in each
M -channel system for various δ. It can be seen that ct increases
with δ as expected. More importantly, for each δ, the number of
clusters reduces with increasing M . The number of clusters found
using GMC-ST is the same as GMC-DC. For all cases of M , there
are no clusters of zeros which are exactly common (δ = 0).

We now compare, for an example case of M = 4, the effi-
ciency of GMC-ST and GMC-DC in terms of their simulation times
in MATLAB on a 2 GHz processor with 2 GB of memory. Fig-
ure 4 shows the time required to extract clusters C{1:M} across var-
ious δ. The simulation times for both algorithms increase with δ
since ct increases with δ. The search time of GMC-ST increases
less significantly compared to GMC-DC. This is because when ct
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Fig. 5. Performance of NMCFLMS [4] against number of channels with
different ct for BSI application using WGN input and simulated impulse re-
sponses.

is large, the dimensions of C{m,n} are large. Consequently, dis-
similarity matrices D{m,n} used for the next stage of processing
in GMC-DC are large. These matrices propagate along the differ-
ent stages of GMC-DC resulting in a significant increase in com-
putational times. Although GMC-ST computes D{m,n} a total
of M(M − 1)/2 times initially, it confines its search within the
search space

{
C{1,2}, C{1,3}, ..., C{M−1,M}

}
and it does not com-

pute D{m,n} again. This reduces the computational times signifi-
cantly compared to GMC-DC.

We illustrate application examples of how the proposed algo-
rithms can be used to study the effect of near-common zeros for both
BSI and channel equalization. We used the normalized multichannel
frequency-domain least-mean-square (NMCFLMS) algorithm [4]
with a step-size of 0.5 and a signal-to-noise ratio of 60 dB for BSI. A
high SNR is used to avoid the misconvergence problem [2]. We em-
ploy the normalized projection misalignment (NPM) [12] to quan-
tify the BSI estimation error. The number of clusters ct found for
δ = 6 × 10−3 in each case of M is as shown in Fig. 5. It can be
seen that the performance of NMCFLMS increases with M since
ct reduces with increasing M . The performance of the MINT algo-
rithm [3], quantified using the signal-to-distortion ratio (SDR) [13]
measure, for channel equalization across different number of chan-
nels is shown in Fig. 6. Its performance can be seen to increase with
M since ct reduces with increasing M . These results indicate that
the performance of BSI and equalization algorithms improve with
reducing number of near-common zeros brought about by introduc-
ing more channels to the system. In particular, the dependence of the
performance of BSI and equalization algorithms can now be quanti-
fied using our near-common zero clustering algorithms.

6. CONCLUSION

We proposed two efficient algorithms for the clustering of near-
common zeros in multichannel systems. These algorithms employ
an efficient approach to compute the dissimilarity matrix, based on
which the GMC-DC algorithm extracts clusters using a binary tree
approach whereas the GMC-ST algorithm concentrates on search-
ing solutions within sub-cluster groups. The GMC-ST algorithm has
computational times of the order 5 s on a typical MATLAB imple-
mentation for a four-channel system with 512 coefficients per chan-
nel. We showed how the proposed algorithms can be applied for the
study of BSI and channel equalization algorithms in the presence of
near-common zeros.
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