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ABSTRACT

Neuromorphic vision sensors (event cameras) simulate bio-
logical visual perception systems and have the advantages of
high temporal resolution, less data redundancy, low power
consumption, and large dynamic range. Since both events
and spikes are modeled from neural signals, event cameras
are inherently suitable for spiking neural networks (SNNs),
which are considered promising models for artificial intelli-
gence (AI) and theoretical neuroscience. However, the uncon-
ventional visual signals of these cameras pose a great chal-
lenge to the robustness of spiking neural networks. In this
paper, we propose a novel data augmentation method, View-
Point Transform and SpatioTemporal Stretching (VPT-STS).
It improves the robustness of SNNs by transforming the rota-
tion centers and angles in the spatiotemporal domain to gen-
erate samples from different viewpoints. Furthermore, we in-
troduce the spatiotemporal stretching to avoid potential infor-
mation loss in viewpoint transformation. Extensive experi-
ments on prevailing neuromorphic datasets demonstrate that
VPT-STS is broadly effective on multi-event representations
and significantly outperforms pure spatial geometric transfor-
mations. Notably, the SNNs model with VPT-STS achieves
a state-of-the-art accuracy of 84.4% on the DVS-CIFAR10
dataset.

Index Terms— Spiking Neural Networks, Neuromor-
phic Data, Data Augmentation, ViewPoint Transform and
SpatioTemporal Stretching

1. INTRODUCTION

Inspired by the primate visual system, neuromorphic vision
cameras generate events by sampling the brightness of ob-
jects. For example, the Dynamic Vision Sensor (DVS) [1]
camera and the Vidar [2] camera are inspired by the outer
three-layer structure of the retina and the foveal three-layer
structure, respectively. Both of them have the advantages of
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University of Science and Technology (2020kfyXGYJ114). (Corresponding
author: Tianjiang Wang.)

high temporal resolution, less data redundancy, low power
consumption, and large dynamic range [3]. In addition, spik-
ing neural networks (SNNs) are similarly inspired by the
learning mechanisms of the mammalian brain and are con-
sidered a promising model for artificial intelligence (AI) and
theoretical neuroscience [4]. In theory, as the third generation
of neural networks, SNNs are computationally more powerful
than traditional convolutional neural networks (CNNs) [4].
Therefore, event cameras are inherently suitable for SNNs.

However, the unconventional visual signals of these cam-
eras also pose a great challenge to the robustness of SNNs.
Most existing data augmentations are fundamentally designed
for RGB data and lack exploration of neuromorphic events.
For example, Cutout [5] artificially impedes a rectangular
block in the image to simulate the impact of occlusion on
the image. Random erasing [6] further optimizes the erased
pixel value by adding noise. Mixup [7] uses the weighted
sum of two images as training samples to smooth the transi-
tion line between classes. Since neuromorphic data have an
additional temporal dimension and differ widely in imaging
principles, novel data augmentations are required to process
the spatiotemporal visual signals of these cameras.

In this paper, we propose a novel data augmentation
method suitable for events, ViewPoint Transformation and
SpatioTemporal Stretching (VPT-STS). Viewpoint transfor-
mation solves the spatiotemporal scale mismatch of samples
by introducing a balance coefficient, and generates samples
from different viewpoints by transforming the rotation cen-
ters and angles in the spatiotemporal domain. Furthermore,
we introduce spatiotemporal stretching to avoid potential in-
formation loss in viewpoint transformation. Extensive exper-
iments are performed on prevailing neuromorphic datasets.
It turns out that VPT-STS is broadly effective on multiple
event representations and significantly outperforms pure spa-
tial geometric transformations. Insightful analysis shows that
VPT-STS improves the robustness of SNNs against different
spatial locations. In particular, the SNNs model with VPT-
STS achieves a state-of-the-art accuracy of 84.4% on the
DVS-CIFAR10 dataset.

Furthermore, while this work is related to EventDrop [8],
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NDA [9], there are some notable differences. For example,
NDA is a pure global geometric transformation, while VPT-
STS changes the viewpoint of samples in the spatiotemporal
domain. EventDrop is only experimented on CNNs, it intro-
duces noise by dropping events, but may cause problems with
dead neurons on SNNs. VPT-STS is applicable to both CNNs
and SNNs, maintaining the continuity of samples. In addition,
EventDrop transforms both temporal and spatial domains, but
as two independent strategies, it does not combine the spa-
tiotemporal information of the samples. To our knowledge,
VPT-STS is the first event data augmentation that simultane-
ously incorporates spatiotemporal transformations.

2. METHOD

2.1. Event Generation Model

The event generation model [3, 4] is abstracted from dynamic
vision sensors [1]. Each pixel of the event camera responds to
changes in its logarithmic photocurrent L = log(I). Specifi-
cally, in a noise-free scenario, an event ek = (xk, yk, tk, pk)
is triggered at pixel Xk = (yk, xk) and at time tk as soon
as the brightness variation |∆L| reaches a temporal contrast
threshold C since the last event at the pixel. The event gener-
ation model can be expressed by the following formula:

∆L(Xk, tk) = L(Xk, tk)− L(Xk, tk −∆tk) = pkC (1)

where C > 0, ∆tk is the time elapsed since the last event at
the same pixel, and the polarity pk ∈ {+1,−1} is the sign
of the brightness change. During a period, the event camera
triggers event stream E :

E = {ek}Nk=1 = {(Xk, tk, pk)}Nk=1 (2)

where N represents the number of events in the set E .
As shown in Figure 1, an event is generated each time

the brightness variances reach the threshold, and then |∆L| is
cleared. The event stream can be represented as a matrix:

Mε =

 y1 x1 t1 1
...

...
...

...
yN xN tN 1


4×N

(3)

For convenience, we omit the unconverted polarity p.

2.2. Motivation

This work stems from the observation that it is difficult to
maintain absolute frontal view between the sample and cam-
eras, which easily leads to a slight shift of the viewpoint. Con-
sidering this small offset distance, we use viewpoint rotation
to approximate the deformation of samples in space and time.
In addition, since events record the brightness change of sam-
ples, especially changes of the edge, variations of the illumi-
nation angle will also cause the effect of viewpoint transfor-
mation, which suggests that we can enhance the robustness of
SNNs by generating viewpoint-transformed samples.

L

pulse t

t

θ

ON spikes

OFF spikes

Fig. 1. Event generation model.

2.3. The Proposed Method.

To generate viewpoint-transformed samples, we draw on the
idea of spatio-temporal rotation. For viewpoint transforma-
tion (VPT), we introduce translation matrices Tb, Ta, which
represent the translation to the rotation center (xc, yc, tc) and
the translation back to the original position, respectively.

Tb =


1 0 0 0
0 1 0 0
0 0 1 0
−yc −xc −tc 1

, Ta =


1 0 0 0
0 1 0 0
0 0 1 0
yc xc tc 1


(4)

Suppose that rotate along the y and t planes with x as the
axis, we can easily derive the rotation matrix RY Tr :

RY Tr =


cosθ 0 sinθ 0

0 1 0 0
−sinθ 0 cosθ 0

0 0 0 1

 (5)

where θ is the rotation angle. In practice, Eq 5 is an un-
balanced matrix due to the mismatch between the time and
space dimensions in the Mε matrix. Therefore, we introduce
a balance coefficient τ to scale the space and time dimension,
which results in a better visual effects. The balanced matrix
RY Tbr can be formulated as:

RY Tbr =


cosθ 0 τsinθ 0

0 1 0 0
− 1
τ sinθ 0 cosθ 0
0 0 0 1

 (6)

Set xc = 0, the viewpoint transformation matrix MY T
br

can be formulated by calculating TbRY Tbr Ta:
cosθ 0 τsinθ 0
0 1 0 0

− 1
τ
sinθ 0 cosθ 0

−xccosθ + 1
τ
tcsinθ + xc 0 −τxcsinθ − tccosθ + tc 1


(7)

Similarly, the viewpoint transformation matrix MXT
br in



Table 1. Performance of VPT-STS on SNNs and CNNs with various representations.

Datasets Method Accuracy (%)

SNNs EventFrame EventCount VoxelGrid EST

CIFAR10-DVS Baseline 83.20 78.71 78.85 77.47 78.81
VPT-STS 84.40 79.58 79.12 79.62 79.37

N-Caltech101 Baseline 78.98 73.08 73.66 77.08 78.41
VPT-STS 81.05 76.96 76.38 79.13 78.88

N-CARS Baseline 95.40 94.44 94.76 93.86 94.97
VPT-STS 95.85 94.60 94.81 94.30 94.99

the x and t dimensions can be formulated as:
1 0 0 0
0 cosθ τsinθ 0
0 − 1

τ
sinθ cosθ 0

0 −xccosθ + 1
τ
tcsinθ + xc −τxcsinθ − tccosθ + tc 1


(8)

Therefore, the viewpoint-transformed matrix MY T
V PT and

MXT
V PT can be formulated as:

MY T
V PT = MεM

Y T
br

MXT
V PT = MεM

XT
br

}
(9)

Furthermore, since events beyond the resolution will be
discarded during the viewpoint transformation, we introduce
spatiotemporal stretching (STS) to avoid potential informa-
tion loss. STS stretches the temporal mapping in the VPT by
a coefficient 1

cosθ while maintaining the spatial coordinates
unchanged. Therefore, by setting tc = 0, we get the trans-
formed (t)Y TSTS and (t)XTSTS from Eq. 7 and Eq. 8:

(tk)Y TV PT = (tk)− τtanθ · ((yk)− yc)
(tk)XTV PT = (tk)− τtanθ · ((xk)− xc)

}
(10)

The time of STS is advanced or delayed according to the
distance from the center |x − xc| (|y − yc|), causing event
stream to be stretched long the time axis according to the spa-
tial coordinates.

3. EXPERIMENTS

3.1. Implementation

Extensive experiments are performed to demonstrate the
superiority of the VPT-STS method on prevailing neuro-
morphic datasets, including CIFAR10-DVS(CIF-DVS) [10],
N-Caltech101(N-Cal) [11], N-CARS [12] datasets. N-
Caltech101 and CIFAR10-DVS datasets are generated by
neuromorphic vision sensors on the basis of traditional
datasets, while N-CARS is collected in the real world. For the
convenience of comparison, the model without VPT-STS with
the same parameters is used as the baseline. STBP [13] meth-
ods are used to train SNN-VGG9 network, other parameters

Table 2. Performance of VPT-STS and previous SOTAs on
CIFAR10-DVS and N-CARS datasets.

Methods References Accuracy (%)

CIF-DVS N-CARS

HATS[12] CVPR 2018 52.40 81.0
Dart[19] TPAMI 2020 65.80 -

Dspike [20] NeurIPS 2021 75.40 -
STBP [13] AAAI 2021 67.80 -

AutoSNN [21] ICML 2022 72.50 -
RecDis [22] CVPR 2022 72.42 -
DSR [23] CVPR 2022 77.27 -
NDA [9] ECCV 2022 81.70 90.1

VPT-STS - 84.40 95.85

mainly refer to NDA [14]. For example, the Adam optimizer
is used with an initial learning rate of 1e − 3. The neuron
threshold and leakage coefficient are 1 and 0.5, respectively.
In addition, we also evaluate the performance of VPT-STS
on various event representations with the Resnet9 network,
including EST [15], VoxelGrid [16], EventFrame [17] and
EventCount [18] representations.

3.2. Performance on various representations

Extensive experiments are conducted to evaluate the perfor-
mance of VPT-STS method on different event representa-
tions, covering SNNs and CNNs. As shown in Tab. 1, SNNs
with VPT-STS methods achieve significant improvements on
three prevailing datasets. And VPT-STS also performs well
on four representations commonly used by CNNs. It is worth
noting that EST maintains the most spatiotemporal informa-
tion from neuromorphic data and thus performs best overall.
Furthermore, since the samples of N-CARS are collected in
the real world, its initial viewpoint diversity is already en-
riched compared to the other two datasets. Considering the
high baseline on N-CARS, VPT-STS still further imporves
the robustness of SNNs.
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(a) Baseline accuracy.
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(b) VPT-STS accuracy.
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Fig. 2. Performance of VPT-STS and Baseline under different perturbations.

3.3. Compared with SOTAs

As shown in Tab. 2, we compare VPT-STS with recent state-
of-the-art results on neuromorphic datasets. The results show
that VPT-STS achieves substantial improvements over previ-
ous SOTAs. It is worth noting that VPT-STS significantly
outperforms NDA, which is an ensemble of six geometric
transformations. The experimental results demonstrate the
superiority of combining spatiotemporal information for data
augmentation. Since VPT-STS is orthogonal to most training
algorithms, it can provide a better baseline and improve the
performance of existing models.

3.4. Ablation Studies on VPT-STS

As shown in Fig. 3, the performance of VPT-STS with differ-
ent rotation angles is evaluated on the N-Caltech101 dataset.
It turns out that a suitable rotation angle is important for the
performance of data augmentation, which can increase data
diversity without losing features.

3.5. Analysis of VPT-STS

To gain further insight into the workings of VPT-STS, we
add different strategies on the baseline to analyze the effective
components of VPT-STS. As shown in Table 3, spatial rota-
tion (Rotation) is performed as a comparative experiment for
VPT-STS. It turns out that both VPT and STS including spa-
tiotemporal transformations are significantly better than pure
spatial geometric transformations on all three datasets, which
illustrate the importance of spatiotemporal transformations.

Table 3. Comparison of Different Strategies.

Methods Accuracy (%)

CIF-DVS N-Cal N-CARS

Baseline 83.20 78.98 95.40
Rotation 83.90 80.19 95.46

VPT 84.40 81.05 95.56
STS 84.30 80.56 95.85
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Accuracy at different angles

Fig. 3. Performance of VPT-STS at different angles.

While VPT and STS are implemented with operations simi-
lar to rotation, it actually improves the robustness of SNNs to
different viewpoints. Furthermore, we evaluate the robustness
of SNNs to viewpoint fluctuations by adding different de-
grees of spatiotemporal rotation to the test data. Figures 2(a)
and 2(b) show the performance of the baseline model and the
model trained by VPT-STS under different disturbances, re-
spectively. The results show that the general trend of the ac-
curacy change is to decrease with the increase of the perturba-
tion amplitude. In addition, Fig. 2(c) shows the difference in
the accuracy reduction of the VPT-STS compared to baseline.
As the perturbation amplitude increases, the difference in the
accuracy reduction of the two models is less than zero, and the
absolute value grows, which illustrate that the accuracy reduc-
tion of baseline is larger than that of VPT-STS. Experimental
results show that the model trained with VPT-STS generalize
better and improves the robustness of SNNs against spatial
location variances.

4. CONCLUSION

We propose a novel data augmentation method suitable for
events, viewpoint transformation and spatiotemporal stretch-
ing (VPT-STS). Extensive experiments on prevailing neuro-
morphic datasets show that VPT-STS is broadly effective on
multiple event representations and significantly outperforms
pure spatial geometric transformations. It achieves substan-



tial improvements over previous SOTAs by improving the ro-
bustness of SNNs to different viewpoints.
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