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ABSTRACT

Spatiotemporal predictive learning (ST-PL) aims at pre-
dicting the subsequent frames via limited observed sequences,
and it has broad applications in the real world. However,
learning representative spatiotemporal features for prediction
is challenging. Moreover, chaotic uncertainty among consec-
utive frames exacerbates the difficulty in long-term predic-
tion. This paper concentrates on improving prediction quality
by enhancing the correspondence between the previous con-
text and the current state. We carefully design Detail Context
Block (DCB) to extract fine-grained details and improve the
isolated correlation between upper context state and current
input state. We integrate DCB with standard ConvLSTM and
introduce Motion Details RNN (MoDeRNN) to capture fine-
grained spatiotemporal features and improve the expression
of latent states of RNNs to achieve significant quality. Ex-
periments on Moving MNIST and Typhoon datasets demon-
strate the effectiveness of the proposed method. MoDeRNN
outperforms existing state-of-the-art techniques qualitatively
and quantitatively with lower computation loads.

Index Terms— Spatiotemporal prediction, Recurrent
neural network, MoDeRNN, fine-grained details

1. INTRODUCTION

Spatio-Temporal Predictive Learning (ST-PL) is challenging
with broad applications in predictive learning, e.g., physi-
cal object movement [1, 2, 3, 4], meteorological prediction
[5, 6, 7, 8]. It aims to predict future sequences based on
limited observed frames. The difficulty of ST-PL lies in the
chaotic motion trends and profound dynamic changes. Hence
it’s necessary and crucial to build a proper corresponding be-
tween current input frames and previous observations, and in-
tegrate the motion trends for subsequent prediction.

Recent years have achieved impressive progress in ST-PL,
plenty of novel approaches [5, 9, 10, 11, 12, 7, 13, 14] are pro-
posed for long-term prediction. As one of the most popular
branches, RNN [15] or LSTM [16] plays an important role

∗Corresponding Author

as a mainstream model. These methods have shown impres-
sive results in ST-PL and made persistent progress. RNN and
LSTM based models predict subsequent frames in an auto-
regressive mode, i.e., stacked RNN layers embed input fea-
tures obtained by CNN layers into latent states and update
hidden states by the elaborate designed process to obtain out-
put states, and decode to obtain the next timestamp frames.

However, when rethinking the calculation process of Con-
vLSTM [5, 9] and its extensions [10, 12, 7, 14], it’s intuitive
that the input state and upper context state show isolated cor-
respondence in the process of RNN layers. The two states
in previous models are only correlated by CNN layers and
channel-wise addition operation. Hence models confront the
two severe dilemmas that will lead to worse prediction results
in long-term prediction: 1. The increasing models’ depth and
complexity exacerbate the declination of correlations between
the current input and upper context, making it even difficult to
build correct correspondence between the current frame and
upper context. 2. CNNs can hardly capture fine-grained fea-
tures that contain abundant details for prediction, limiting the
ability to consider detailed features of latent states.

On top of the aforementioned, the current frame states are
highly correlated to its neighbors of specific regions, i.e., the
next timestamp frames in a region are related to both itself and
its neighbor subject movements. The fine-grained local infor-
mation is crucial for long-term prediction. To improve the
correlation and the detailed local information between input
and context, we propose Motion Details RNN (MoDeRNN)
to tackle the above challenges in ST-PL effectively.

MoDeRNN contains the carefully designed Detail Con-
text Block (DCB), which weights input and context states to
highlight the spatiotemporal details for subsequent prediction.
In specific, to obtain latent spatiotemporal trends among dif-
ferent neighbors, DCB utilizes various perceptual fields CNN
layers to capture regions corresponding to input states and
context states, and updates the corresponding context state
and input state iteratively with rich correlations. As a result,
the proposed MoDeRNN enables to capture fine-grained lo-
cals to persist correlations among RNN layers and achieves
remarkable satisfactory prediction performance.
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Fig. 1: Overview of the proposed Method. (a): mainstream architecture for ST-PL; (b): pipeline of DCB; (c): pipeline of the
proposed MoDeRNN.

In summary, our main contributions are two-fold:

• We construct Detail Context Block to capture fine-grained
local details and update context states with dense correla-
tions. We analyze the essential of context attention over
fine-grained regions for prediction, and propose MoD-
eRNN towards fined-grained detailed prediction quality.

• We validate that the proposed MoDeRNN well captures
trend regions of given frames to obtain better context and
input correlations, and achieves distinguish performance
gains compared to previous methods with fewer params on
two representative datasets.

2. METHODOLOGY

2.1. Model Architecture

The RNN-based models are universally used approaches for
ST-PL, with common Encoder-RNN-Decoder architecture
[5, 10, 12, 7, 14] as Fig.1(a) shows. The given frames are
encoded by 2D CNN [17] encoder E in step-by-step mode,
then the obtained features [F̂1:T ] serve as the input ofN -layer
LSTMs denoted asM to generate high-order spatiotemporal
features of given sequences and output states [F̂T+1:T+K ].
Ultimately, the output states are decoded by 2D CNN de-
coder D iteratively and thus generate the next K frames
[X̂T+1:T+K ]. The mathematics pipeline is illustrated as Eq.1.

[X̂1:T ] = E([X1:T ])

[F̂T+1:T+K ] =M([X̂1:T ])

[X̂T+1:T+K ] = D([F̂T+1:T+K ])

(1)

In this paper, we keep the encoder E and decoderD consistent
with previous work mentioned above([10, 14], etc.). Namely,
they are both 1 × 1 kernel CNN layers. The crucial target is
to make representative high-order spatiotemporal features on
RNNs, while there are issues worthy of consideration.

2.2. The proposed DCB

The abundant context feature is hard to obtain due to the lim-
ited operation between the current input and the previous con-
text state in RNNs. In naı̈ve ConvLSTM, the correlation of in-
put state and context state is operated by CNN layers and add
operation, while the subsequent state updates don’t involve
the interaction of the two states. Therefore, their relationship
remains independent in the following operation, which eas-
ily leads to the loss of information in the prediction results.
Intuitively, the output frames will get increasingly worse pre-
diction quality, especially in detail parts.

Considering the importance of improving the correlation
between neighbors and context states, we propose Detail Con-
text Block (DCB) to extract fine-grained local features of cur-



rent input state Xt and context state Ht−1, and utilize the
proposed context interaction approach to improve the corre-
lations between the upper context state and current input state.
The detailed architecture of DCB is illustrated in Fig.1(b).

In specific, to extract fine-grained local features, we uti-
lize CNN layers with different perceptual fields to compre-
hensively focus on detailed motion regions of context state
and input state, respectively, and use iterative weight corre-
late operations to improve the isolated correlation between
the two states. DCB consists of the following steps:
Step 1. To obtain specific regions in current input state Xt

that are essential for prediction, we comprehensively consider
the influence of locals by generating an attention weight map
AttnH of upper context via multi-kernel CNN layers that cap-
ture the context features, then obtain the mean local features
that indicates the potential movement trend in the following
timestamp. We adopt Sigmoid function σ to normalize the
weight map into (0, 1), and reweight the input feature Xt by
the Hadamard product to highlight the important part of the
input state. Finally, we multiply the weight map by a constant
scale factor s to avoid getting increasingly smaller.
Step 2. We encourage upper context Ht−1 updates by con-
sidering the trends of current input, i.e., enforce Ht−1 en-
lighten the fine-grained motion details and weaken the neg-
ligible parts with lower expression simultaneously. We up-
date Ht−1 by multiplying an input-related attention weight
map AttnX to extract motion concentration for prediction by
Hadamard product. The weight map is calculated the same
as Step 1, i.e., capture the detailed context motion features by
multi-kernel size CNN layers and activation function σ with
scale factor s. Then, the updated context state Ĥt−1 and input
state X̂t are obtained with rich spatiotemporal features.

2.3. Overview of MoDeRNN

Considering improving the expression ability in detail re-
gions for ST-PL, we integrate DCB with naı̈ve ConvLSTM
to compose the proposed MoDeRNN as Fig.1(c), a new spa-
tiotemporal prediction model towards fine-grained details.
Formally, MoDeRNN can be expressed as follows:

Firstly, we utilize DCB to capture fine-grained detail spa-
tiotemporal features and update current input stateXt and up-
per context state Ht−1. Then, to further improve the correla-
tions between the two states, we use m stacked DCB with
kernel size varies from k ∈ {3, 5, 7} to improve the expres-
sion ability of MoDeRNN with more details.

AttnH = σ

(
k∑
i

W i×i
h ? Ht−1/|k|

)
X̂t = s×AttnH ×Ht−1

AttnX = σ

(
k∑
i

W i×i
x ? X̂t−1/|k|

)
Ĥt−1 = s×AttnX × X̂t−1

(2)

where W i×i
h and W i×i

x represent i× i kernel CNN layers for
Ht−1 and X̂t, respectively. s represents the scale factor and
σ indicates Sigmoid activation function.

Secondly, we utilize the updated X̂t and Ĥt−1 to obtain
the detailed output state Ht and memory state Ct. In the last
layer of MoDeRNN, the final output state Ht is decoded to
generate the final output frame of the next timestamp.

gt = tanh(Wxg ? X̂t +Whg ? Ĥt−1 + bg)

it = σ(Wxi ? X̂t +Whi ? Ĥt−1 + bi)

ft = σ(Wxf ? X̂t +Whf ? Ĥt−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ gt
ot = σ(Wxo ? X̂t +Who ? Ĥt−1 + bo)

Ht = ot ◦ tanh(Ct)

(3)

whereWxg,Whg,Wxi,Whi,Wxf ,Whf are 5×5 kernel CNN
layers for gate operation.

3. EXPERIMENT

3.1. Experiment Details

We implement the proposed model by Pytorch [18], train and
test it on a single RTX 2080Ti. For fair comparisons, we use
4-layer MoDeRNN units with 64-dim hidden states consistent
with previous work. We set the mini-batch as 32 with the ini-
tial learning rate as 0.001. We also adopt scheduled sampling
[19] and layer normalization [20] for better results. During
training, we use L1 + L2 loss with AdamW [21] optimizer.
Code is avaliable at https://github.com/czh-98/MoDeRNN.

3.2. Dataset

Moving MNIST. Moving MNIST [22] is a widespread
benchmark for depicting 2 digits’ movement with constant
velocity. It contains 64 × 64 × 1 consecutive frames with 10
for input and 10 for prediction, 10, 000 randomly generated
sequences for training and 10, 000 fixed parts for testing.
Typhoon. Typhoon dataset is a meteorology radar data re-
leased by CEReS [23]. We resize the images into 64× 64× 1
resolution and normalize to [0, 1], then split the generated se-
quences into train and test sets. We use the given 8-hour
observation data to predict the next 4 hours, with 1, 809 se-
quences for training and 603 sequences for testing.

3.3. Comparisons on Moving MNIST

We set 80, 000 iterations consistent with previous work ([10]
etc.). We use PSNR, SSIM, MSE, and MAE for quanti-
tative comparisons. The higher SSIM / PSNR and lower
MSE / MAE indicate better performance. Results in Tab.1
demonstrate the superiority of our method on Moving MNIST
dataset in all above metrics, improving 9.62% and 2.52%
on PSNR and SSIM, and reducing 12.03% and 27.46% on
MSE and MAE respectively compared with SA-ConvLSTM

https://github.com/czh-98/MoDeRNN


Fig. 2: Qualitative comparisons of previous SOTA models on
Moving MNIST test set at 80, 000 iterations.

Models # Params PSNR ↑ SSIM ↑ MSE ↓ MAE ↓
DDPAE [24] - 21.170 0.922 38.9 90.7
CrevNet [25] - - 0.928 38.5 -
PDE-Driven [26] - 21.760 0.909 - -
PredRNN [10] 13.799 M 19.603 0.867 56.8 126.1
PredRNN++ [12] 13.237 M 20.239 0.898 46.5 106.8
MIM* [7] 27.971 M 20.678 0.910 44.2 101.1
E3D-LSTM [13] 38.696 M 20.590 0.910 41.7 87.2
SA-ConvLSTM [14] 10.471 M 20.500 0.913 43.9 94.7

MoDeRNN (ours) 4.590 M 22.472 0.936 30.6 68.7

Table 1: Quantitative comparisons of previous SOTA models
on Moving MNIST test set. All models predict 10 frames by
observing 10 previous frames.
[14], while achieving lower computational loads. Fig.2 shows
that MoDeRNN well preserves the variation details over
digits, especially deals with the trajectory of overlaps and
maintains the clarity over time. In contrast, other methods
confront severe blurry challenges and are incapable of dealing
with overlapped digits.

Fig.3 illustrates the weight map over consecutive times-
tamps. MoDeRNN focuses on fine-grained local details for
subsequent prediction and can even handle overlap scenarios.

3.4. Comparisons on Typhoon

We train the proposed models for 100, 000 iterations and
make fair comparisons with previous methods [5, 10, 12, 7,

T=1 3 5 7 9 11 13 15 17 19

Weight 
map

Weight 
map

Fig. 3: Visualization of MoDeRNN on Moving MNIST test
set of the last layer, the warm colors indicate higher weights.

Fig. 4: Qualitative comparisons of previous SOTA models on
Typhoon test set at 100, 000 iterations.

Models PSNR ↑ SSIM ↑ MSE ↓ MAE ↓
ConvLSTM [5] 26.353 0.851 10.43 119.6
PredRNN [10] 27.637 0.887 7.71 107.3
PredRNN++ [12] 28.287 0.891 6.72 114.5
MIM* [7] 26.721 0.893 9.14 132.2
SA-ConvLSTM [14] 28.456 0.898 7.07 94.2

MoDeRNN (ours) 29.446 0.910 6.06 83.1

Table 2: Quantitative comparisons of previous SOTA models
on Typhoon test set. All models predict the next 4 frames via
8 observed meteorological data.

14]. Frame-wise PSNR, SSIM, MSE, and MAE are adopted
to evaluate these models’ performance qualitatively and quan-
titatively, corresponding to Fig.4 and Tab.2.

Tab.2 and Fig.4 demonstrate the proposed method out-
performs existing techniques quantitatively and qualitatively.
MoDeRNN is the only model that performs well in the de-
tail texture of over timestamps, which enables to preserve and
predict the potential trend of meteorological information.

4. CONCLUSION

This paper introduces the novel MoDeRNN for ST-PL, which
focuses on tackling the challenging motion trends towards
detailed prediction. We propose MoDeRNN to capture fine-
grained spatiotemporal latent features to improve the predic-
tion quality in long-term prediction.

In detail, we propose DCB to make latent states well in-
teracted with fine-grained motion details and ensure the pre-
diction results keep consistent clarity. We demonstrate that
MoDeRNN achieves satisfactory performance compared to
mainstream methods with the lower computational load on
2 representative datasets.
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