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ABSTRACT

The large capacity of neural networks enables them to learn complex
functions. To avoid overfitting, networks however require a lot of
training data that can be expensive and time-consuming to collect.
A common practical approach to attenuate overfitting is the use of
network regularization techniques.

We propose a novel regularization method that progressively pe-
nalizes the magnitude of activations during training. The combined
activation signals produced by all neurons in a given layer form the
representation of the input image in that feature space. We propose
to regularize this representation in the last feature layer before clas-
sification layers. Our method’s effect on generalization is analyzed
with label randomization tests and cumulative ablations. Experimen-
tal results show the advantages of our approach in comparison with
commonly-used regularizers on standard benchmark datasets.

Index Terms— Neural network, feature representation, regular-
ization, generalization, overfitting.

1. INTRODUCTION

Deep neural networks continue to achieve increasingly-better results
on a wide range of tasks; medical image analysis [1], semantic seg-
mentation [2f], finding robust features for audiovisual emotion recog-
nition and object recognition [3|]. Improvements in the underlying
hardware and in parallelization strategies [4, 5] pave the way for ever
larger networks. The size of such networks contributes to the com-
plexity of the functions they can model and thus allows the learning
of richer representations. However, this increase in complexity can
also come at a cost. The capacity of deeper networks increases and
so does their potential to memorize [6]. This problem drives the
need for larger and more varied training datasets. Such datasets in-
crease the training time, and are also expensive and time-consuming
to collect.

To reduce overfitting and improve generalization, various regu-
larization methods are currently used in the training of neural net-
works. Regularizers such as batch normalization [7], dropout [8],
and weight decay [9] are commonly used but are not sufficient [10],
and the neural networks are still capable of simply memorizing an
entire training set [11]. Neural network regularization remains an
open problem [10,11,12}[13]]. A recent method addresses this prob-
lem by proposing to minimize the intra-class entropy of the network
representations [10]. However, the main assumption of intra-class
similarity fails in the presence of incorrect labels, again requiring
the costly perfectly-annotated training datasets.

We propose a simple regularization method that is applied on
the feature representation learned by the neural network. This is the

representation used by the final linear layers for classification. In-
spired by recent findings that neural networks learn general patterns
first [6, 14} [15], we propose an f2-based activation-regularization
loss (AL2) that increases per epoch to progressively regularize the
network and not allow it to memorize the dataset-specific patterns
that lead to overfitting. AL2 directly acts on feature representations
through a loss imposed on the magnitude of their activations.

Label randomization results show that our AL2 regularization
significantly improves the generalization of the baseline convolu-
tional neural network (CNN). AL2 has a significant effect on the
fundamental representation learning, as shown by our canonical cor-
relation analysis [16}17] in Section@ Additionally, we show that
our method combines well with batch normalization, dropout, and
weight decay, which can thus achieve better generalization when
combined with AL2. Besides label randomization, the cumulative
ablation study [12] results in Section@show that our CNN trained
with AL2 has better generalization strength than the different base-
lines, even at epochs where both have roughly equal test accuracy.

Our contributions are summarized as follows. 1) We present
AL2, a progressive regularization method acting on the activations of
the feature representation learned by neural networks before their fi-
nal classification layers. 2) We show that our approach improves the
generalization of the learned representation: first empirically with
label randomization experiments, then using a recent cumulative ab-
lation strategy for assessing the generalization of learned representa-
tions. 3) We analyze the effect of AL2 on the learned representation
through a canonical correlation analysis.

2. RELATED WORK

Generalization. Generalization in neural networks remains an open
question [18}[19]. The sharpness or flatness of the minima found in
weight optimization is commonly used to indicate, respectively, bad
or good generalization [20, 21]. However, this belief is undermined
by the fact that, for different flatness definitions, the value of flat-
ness can be modified without modifying the function learned by the
neural network [22]. Even the performance in terms of error on the
held-out validation or test sets is not always a perfect indicator of
generalization [23|]. One approach to assess the quality of the fea-
ture representation learned by a network is to evaluate how much it
actually memorizes. This can be achieved by training with a portion
of randomized class labels, as the only way the network can learn
to predict these random labels is by memorizing this data [11} 24].
The result is a measure related to the empirical Rademacher com-
plexity [25].

Recently, learning despite the presence of corrupt labels in the
dataset has become popular [26] 27, [28]]. These methods, however,



explicitly aim to solve this noisy-learning problem, by modeling it or
by re-labeling the dataset. This is not our objective in using corrupt
labels. We use the randomization as an assessment tool of the effects
of regularizers on memorization. Another assessment method we use
consists of randomly ablating activation signals at inference time,
and its results correlate well with generalization strength [12].

Regularization. The most commonly-used regularization meth-
ods to reduce network overfitting are batch normalization [7],
dropout [8]], and weight decay [9]. Batch normalization attempts
to stabilize the output of one layer to aid the learning of the follow-
ing one, dropout attempts to increase robustness by forcing random
signal ablations during training, and weight decay reduces network
complexity by penalizing the norm of some or all optimization
weights. It is recently shown that batch normalization and dropout
have disharmonious behaviors [13]], as they have opposite effects on
feature variance between training and inference. Network regular-
ization remains an open problem [10, |11} [12]], along with the study
of generalization.

Representations. Feature representations are not only impor-
tant for transfer learning but also for application-specific feature ex-
traction [1,129]]. Canonical correlation, which we use in our represen-
tation analysis, has been recently shown to be a good distance metric
to measure similarities of learned representations and to obtain more
insights [16L17].

3. METHOD

We present a regularization method that can be applied on standard
classification neural networks. The network architecture is first sep-
arated into a frunk ¢ and a head ). The trunk extracts features from
the input image and creates a representation signal that is passed to
the head. The head then uses the extracted features to perform its
classification and predict a probability for each class. The represen-
tation learned by the trunk should focus on important image features
that can generalize well to unseen data, and not simply extract data-
specific patterns. It is this representation that we regularize using our
AL2 loss.

The regularization loss is the norm of the feature layer’s activa-
tion values, and is added as an auxiliary loss term to the classification
loss. The overall loss for mini-batch 13 is then given at epoch e by
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where (x,y) are (image, label) pairs, © = ©. U ©, is the set of
parameters over which the loss is optimized, and e is a given epoch
in the training. L. is the classification loss, £, is our activation
regularization loss, ¢(-) is the function learned by the trunk to extract
the feature representation, v(-) is the function learned by the head
to perform the prediction, and A is a series of weights. In all our
experiments, L. is the cross-entropy loss, £, is the £2 norm and the
series of weights A is defined as

Ae = Aec1 # (L1 xuld — Ae—1] + 1.01 xu[he—1 —5])  (2)

Ve > 0, where u[] is the Heaviside function. Results are not ex-
tremely sensitive to changes in this series of empirically-chosen
weights as long as they are increasing with an exponential trend,
even when a geometric series (only a single factor) is used. We
thus use this series of weight values with Ay = 0.01 in all our

experiments. Similar to weight decay or other regularizers, the
parameter A can be tweaked for a given dataset or network architec-
ture. The reason it is progressively increasing is that neural networks
learn general patterns first, and then overfit to the data-specific pat-
terns [6L (14} [15]. Therefore, by leaving less and less flexibility to the
network as the training advances, we limit its memorization capacity
in later stages and minimally affect its learning phase in the earlier
stages.

Our auxiliary regularization loss does not directly constrain a
set of weights, whether in the trunk or in the head of the network.
It only constrains the activations of the learned representation. This
makes it more general than weight decay, which, in contrast, directly
acts on a user-specified set of weights. In fact, weight decay has, in
our experiments, the least effect on the trunk’s final activation mag-
nitudes when compared with the other regularizers. Our AL2 does,
however, regularize the network, but while leaving the flexibility to
use any or all of the trunk’s layers to minimize this loss.

4. LABEL RANDOMIZATION EXPERIMENTS

We evaluate our method on a VGG-like (2D convolution, maxpool-
ing, ReLU, and linear layers) CNN architectureﬂ designed to exam-
ine the effects of different regularizers. For reproducibility purposes,
all the details of the network architecture and the training settings are
presented in the supplementary materiaﬂ For weight decay, which
is sensitive to its chosen weight, we run a parameter search and find
the best weight decay value of 5 x le — 4, which is also a value
typically used in practice. This value gives the best performance for
weight decay without AL2.

We carry out the evaluation of network memorization with la-
bel randomization experiments [[11}, 24]. For each training dataset, a
fixed percentage of labels is corrupted with labels chosen uniformly
at random from the set of incorrect labels for a given training image
(symmetric label noise). We then train the baseline (bare) network
with no regularization, the network with batch normalization (BN),
with dropout (DO) or with weight decay (WD) on the same corrupt
dataset and starting from the same weight initialization. We repeat
the training of each of these four networks with our AL2 regular-
ization, again with the same corrupt dataset and starting from the
same weight initialization. Results are reported in Table 1| for the
MNIST dataset and for 75% corrupt random labels. Further results
on MNIST, Fashion-MNIST, and CIFAR10 each with 75%, 50%,
25%, and 0% corrupt random labels are additionally provided in the
supplementary material, totaling 96 different networks trained for
700 epochs each.

The results in Table |1| show the test accuracy (TA), the cross-
entropy loss £. and our regularization loss £, at different epochs
during the network training. We see that using AL?2 significantly im-
proves the generalization of the network assessed at the final epoch,
by limiting the overfitting through regularization. The test accuracy
improvement is of 60 percentage points in the most extreme case
(with weight decay, Table [T). Without using AL2 during training,
the best performance is obtained when using dropout. With dropout,
compared to other network configurations, we note one interesting
phenomenon. The network trained with dropout regularization also
indirectly minimizes L., an order of magnitude smaller than with
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Different metrics evaluated across training epochs (without/with AL2)

Baseline Metric | epoch=100 epoch=200 epoch=300 epoch=400 epoch=500 epoch=600 || epoch=700
TA 84.20/95.25 45.30/94.92 25.25/93.07 23.83/88.76 26.07/79.64 26.45/75.88 || 25.84/68.46
Bare Le 2.15/2.22 1.78/2.19 0.89/2.15 0.19/2.11 0.04/2.08 0.0172.07 0.00/2.08
L, 3.20/0.24 10.93/0.10  26.12/0.06 ~ 54.42/0.03 ~ 74.49/0.02  103.26/0.01 || 119.10/0.00
TA 74.72/95.47 36.65/94.48 26.72/90.20 25.97/85.34 25.88/83.02 25.60/81.53 || 25.55/81.16
BN [7] L. 2.07/12.22 1.48/2.19 0.30/2.15 0.04/2.12 0.01/2.11 0.01/2.12 0.01/2.14
L, 0.84/0.24 2.35/0.10 6.46/0.06 9.25/0.03 10.40/0.01 11.06/0.01 11.51/0.00
TA 96.13/94.43  96.47/95.03  95.93/95.03  92.74/94.79  81.96/92.15  68.12/92.69 || 55.39/91.70
DO [8] Le 2.22/2.23 2.20/2.22 2.17/2.20 2.13/2.20 2.05/2.20 1.94/2.21 1.79/2.23
L, 0.26/0.24 0.30/0.09 0.41/0.04 0.61/0.02 1.00/0.01 1.50/0.00 1.92/0.00
TA 88.91/95.21 50.87/95.47 27.98/95.17 27.66/94.03  25.14/91.42 28.05/89.81 || 25.57/86.98
WD [9] L 2.16/2.22 1.87/2.20 1.06/2.18 0.32/2.16 0.07/2.16 0.04/2.17 0.02/2.19
L, 2.94/0.23 10.52/0.09  26.04/0.05  53.65/0.02  81.53/0.01 84.64/0.00 || 107.80/0.00

Table 1: Test accuracy (TA), training cross-entropy loss L., and our training regularization loss £, which is shown for AL2 multiplied by 100
for readability. We evaluate all metrics at different epochs and with different baselines (no regularization Bare, batch normalization BN [7],
dropout DO [8]], and weight decay WD [9]]), without/with AL2. The networks are trained on the MNIST dataset with 75% corrupt labels.

Area under cumulative ablation curve (/100) evaluated across training epochs (without/with AL2)

Baseline | epoch=100 epoch=200 epoch=300 epoch=400 epoch=500 epoch=600 || epoch=700

Bare 35.44/77.81  19.17/72.67 15.52/69.44 14.73/64.11 15.36/55.08 15.36/51.73 || 15.19/47.65
BN [7] | 35.08/77.01 19.17/71.23 15.80/63.48 15.79/57.42 15.64/55.67 15.69/54.97 | 15.60/54.96
DO [8] | 81.66/78.52 79.90/78.74 76.23/78.80 70.38/78.31 60.17/73.57 49.86/73.30 || 41.39/71.61
WD [9] | 39.50/78.18 20.74/74.83  15.94/74.39 16.09/72.97 15.40/67.62 16.12/64.85 | 15.35/62.63

Table 2: We evaluate the area under the cumulative ablation curve at different epochs and with different baselines, without/with AL2. The
networks are trained on the MNIST dataset with 75% corrupt labels.

batch normalization, and two order of magnitudes smaller than with
weight decay or the bare network. We thus notice that dropout tends
to lead to a smaller £,., which AL2 explicitly penalizes to a much
larger degree. Counter-intuitively, weight decay hardly decreases
the magnitude of the activations in the final feature representation
layer that is created by the trunk of the network. This underlines the
different effects obtained by regularizing activations or regularizing
network weights as done by weight decay.

These observations and insights on experiments with no corrupt
labels are discussed in more detail in the supplementary material. We
also note here that on 75% corrupt data, the bare baseline achieves
a test accuracy of 25.84% but of 68.46% with AL2, while the train-
ing cross-entropy loss is non-zero for the AL2-regularized network.
This indicates that we could correct the labels by re-labeling the
dataset with the AL2-regularized network then repeat the training to
improve the performance. However, our objective is not to classify
data with noisy-label training, but rather to use the randomized label
tests to assess network generalization against memorization strength,
for different regularizers.

5. NEURAL REPRESENTATION ANALYSIS

5.1. Representation analysis with canonical correlation

The representation learned by a neural network depicts how different
neurons respond to the given input data, in terms of their activation
values. We feed forward a data point to the network and collect the

activations of all neurons in a given layer into a vector in R*. Col-
lecting and grouping such vectors for n different data points yields
the matrix R; € R**"™, which holds the representation of that set of
data points by the neural network. Recent methods have proposed to
use canonical correlation by computing a similarity metric from the
series of correlation coefficients, which we briefly review in what
follows.

The canonical correlation coefficient p for two matrices R €
R**™ and Ry € R®*™ is given by

= 3

<UJ{R1, UJ;R2>
max T T 5
(wiw2) €@ &) \ [|w] Ri|| - [|w3 Ral|

and the corresponding canonical correlation directions are wi Ry
and wl Ry. p measures the degree of correlation between these two
direction vectors. One can solve for the next-best p value, which
corresponds to two new direction vectors w{ Ry and wl Ry that are
respectively orthogonal to the corresponding first two vectors. Re-
peating this process, with each vector of the new couple (wi Ry,
w3 Rs) being orthogonal to the vector space spanned by the corre-
sponding previously-found direction vectors, yields a sequence of p
values of size min(a, b). These coefficient values are indicative of
the similarity between R; and R2. The larger the values are, the
more similar are R and Rs.

Both SVCCA [16] and PWCCA [17] compute weighted aver-
ages of the canonical correlation coefficients. To avoid any loss of
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Fig. 1: Canonical correlation coefficients p as a function of neuron dimensions between the learned feature representation ¢(z) at the
beginning of training and at given training epochs ranging from 10 to 750 (illustrated with increasing color intensities), for the three datasets
MNIST, FashionMNIST and CIFAR10. The plots show that AL2 has a significant effect on the representation learning process, confirming
the fundamentally different classification results reported in Table[I] Results are obtained with a training dropout rate of 50 percent and for
the first batch of each dataset. Both networks are initialized with identical weight values for a fair comparison. Best viewed on screen.

information through averaging, we visualize the entire sequences of
p coefficients in our analysis (Fig. |I|)

For each dataset, we obtain a representative sample of correla-
tion coefficients by passing the first random training batch through
the network. We form a matrix of shape 50 x 16,000 for MNIST and
FashionMNIST and 50 x 25,000 for CIFAR10. These matrices con-
sist of the flattened activations at the layer before classification, i.e.
the intermediate activations ¢(x). We can thus obtain 50 correlation
coefficients for the 50 neuron dimensions. We repeat this process at
different training epochs, and compare the representation at a given
epoch with the initial one. Note that all compared networks, without
and with AL2, are initialized with the same set of random weights
for a fair comparison. Since CCA is scale-invariant, this metric only
depicts structural similarities between representations and can thus
provide a good insight into the representation progress. A simple
scaling down of the activation values does not affect the similarity
measure. Figure [T] therefore shows that AL2 significantly modifies
the learning and the final learned representations. As supported by
the results reported in Section [d] including our regularization thus
pushes the network’s learning towards a fundamentally different rep-
resentation, reducing the effect of overfitting.

5.2. Generalization analysis with cuamulative ablations

Analyzing generalization can also be carried out with a different ap-
proach than randomization experiments. A recent approach shows
the correlation between network generalization and the area under
the cumulative ablation curve [[12]. This cumulative ablation curve
is defined by the authors as the accuracy of the pre-trained network
for different percentages of ablations going from zero to 100%, on
the training set. An ablation of 20% consists of systematically set-
ting 20% of the activations in the feature representation layer to zero

during the feed-forward inference of the pre-trained network. These
ablations are also said by the authors to be related to sharpness [20],
which is found to be a good indicator of generalization strength when
combined with a norm metric [24].

We apply cumulative ablations on our pre-trained networks and
report results in Table 2] At inference time, the activations of the
feature representation layer obtained with the trunk ¢(-) of the net-
work are set to zero at increasing rates going from zero to 100%
in steps of 10. We measure the accuracy with each of the ablation
rates, and calculate the area under the curve. We repeat this proce-
dure at an interval of 100 epochs for each of the 8 networks to cre-
ate the results of Table[2] The generalization assessment results are
consistent with those discussed in Section [d and confirm our pre-
vious observations (this is the case across our diverse experiments
and datasets). We also note that even between epochs 300 and 400,
where the dropout network still does not overfit and performs simi-
larly without and with AL2 (Table[l), the area under the cumulative
ablation curve is larger with AL2 training as shown in Table[2]

6. CONCLUSION

We propose a novel progressive activation loss (AL2) to regularize
neural networks. Our loss acts increasingly with epochs on the mag-
nitude of the activation signals of the feature representation layer.
We use canonical correlation analysis to study the effect of AL2
on the learned feature representation throughout the training. This
shows empirically the significant effect of our regularization on the
fundamental representation that is learned by the networks.

We analyze memorization and generalization with randomiza-
tion tests and with a cumulative ablation study to show the improve-
ments of our AL2 method over state-of-the-art regularization tech-
niques on three standard benchmark datasets.
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