
Accurate Mapping of RNNs on Neuromorphic Hardware with
Adaptive Spiking Neurons

Gauthier Boeshertz
gauthier.boeshertz@gmail.com

ETH Zurich, Switzerland

Giacomo Indiveri
giacomo@ini.uzh.ch

Institute of Neuroinformatics, University of Zurich and
ETH Zurich, Switzerland

Manu Nair*
manu@synthara.ai

Synthara, Switzerland

Alpha Renner*
a.renner@fz-juelich.de

Forschungszentrum Jülich, Germany

ABSTRACT
Thanks to their parallel and sparse activity features, recurrent neu-
ral networks (RNNs) are well-suited for hardware implementa-
tion in low-power neuromorphic hardware. However, mapping
rate-based RNNs to hardware-compatible spiking neural networks
(SNNs) remains challenging. Here, we present a ΣΔ-low-pass RNN
(lpRNN): an RNN architecture employing an adaptive spiking neu-
ron model that encodes signals using ΣΔ-modulation and enables
precise mapping. The ΣΔ-neuron communicates analog values us-
ing spike timing, and the dynamics of the lpRNN are set to match
typical timescales for processing natural signals, such as speech.
Our approach integrates rate and temporal coding, offering a ro-
bust solution for the efficient and accurate conversion of RNNs to
SNNs. We demonstrate the implementation of the lpRNN on Intel’s
neuromorphic research chip Loihi, achieving state-of-the-art clas-
sification results on audio benchmarks using 3-bit weights. These
results call for a deeper investigation of recurrency and adaptation
in event-based systems, which may lead to insights for edge com-
puting applications where power-efficient real-time inference is
required.

KEYWORDS
Neuromorphic computing, Neuromorphic engineering, Sigma-delta
neuron, Edge Computing, Audio classification, Recurrent neural
networks (RNNs), Spiking neural networks (SNNs), Intel Loihi

1 INTRODUCTION
Neuromorphic computing [18] aims to build computing systems us-
ing principles derived from neural systems of animal brains. Its com-
mon design features, geared toward improved efficiency compared
to conventional architectures, are massive parallelism, near- or
in-memory computation, and asynchronous communication using
unary events (spikes). Recurrently connected networks (RNN) that
have a state that evolves over time make the best use of these prin-
ciples [8]. After being initially sidelined by the Transformer’s [32]
* equal contribution

This paper was accepted at the IEEE/ACM International Conference on Neu-
romorphic Systems, July 30–Aug 2, 2024, Arlington, VA

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

strong performance in natural language processing (NLP) [5], RNNs
are now experiencing a revival [16, 23] due to their linear scaling
with the number of inputs.

Despite methods like surrogate gradients [2, 21] and training
frameworks [13] overcoming initial issues, translating Artificial
Neural Network (ANN) progress to SpikingNeural Networks (SNNs)
and neuromorphic hardware remains challenging [25]. Two main
approaches exist:

1) Directly training SNNs inherently accounts for constraints like
quantization and enables efficient spike timing codes [21, 29, 37].

2) ANN-SNN conversion converts trained ANNs to SNNs [13],
which allows leveraging the most recent advances in ANNs, such
as regularizers or network structures.

While conversion works well for feedforward convolutional
networks in computer vision [12], for RNNs, where small deviations
accumulate, conversion approaches are rare [11].

In this work, we extend and validate an RNN conversion ap-
proach [19] on Intel’s digital neuromorphic research chip Loihi [7].
The approach solves the RNN conversion issue in two ways: First,
the sigma-delta (ΣΔ) spiking neuron model [19, 20, 24, 35, 36], anal-
ogous to adaptive linear integrate-and-fire (aLIF) models [3, 4, 20],
provides a precise way to map analog activations to spikes, allowing
an approximation with a controlled error. The ΣΔ-neuron combines
aspects of rate and temporal coding, representing signals through
spike timings rather than just firing rates. Second, we integrate
the ΣΔ-neurons into a low-pass recurrent neural network (lpRNN)
architecture. The lpRNN’s slower dynamics make RNN to SNNmap-
ping easier and cheaper, matching typical timescales in speech and
biomedical applications. Finally, we test the model in non-spiking
and spiking simulation and on Intel’s neuromorphic research chip
Loihi on two benchmark datasets and set a new state-of-the-art for
on-chip speech classification.

2 MODEL
2.1 The ΣΔ-spiking neuron model
In this work, we adapt the aLIF/ΣΔ-neuron [3, 19, 24, 35, 36] and
implement it on the Loihi [7] neuromorphic chip. Due to its four
state variables, the model requires two compartments on Loihi 1.
ΣΔ-neurons communicate analog signals by transmitting spikes
only when the difference between an internal state and the input
exceeds a threshold. It can be described on Loihi with the following

ar
X

iv
:2

40
7.

13
53

4v
1 

 [
cs

.N
E

] 
 1

8 
Ju

l 2
02

4

https://orcid.org/0000-0002-7109-1689
https://orcid.org/0000-0002-0182-8358
https://orcid.org/0000-0002-0724-4169


Gauthier Boeshertz, Giacomo Indiveri, Manu Nair, and Alpha Renner

discrete-time dynamics equations, adapted from the aLIF [19]:

𝐼𝑚𝑒𝑚 (𝑡 + 1) = 𝐼𝑚𝑒𝑚 (𝑡) − 𝐼𝑚𝑒𝑚 (𝑡)
𝜏𝑚𝑒𝑚

+ 𝑖 − 𝑠 (1)

𝑠 (𝑡 + 1) = 𝑠 (𝑡) − 𝑠 (𝑡)
𝜏𝑠

+𝑤 𝑓 𝑏𝛿𝑖 (2)

𝑖 (𝑡 + 1) = 𝑖 (𝑡) − 𝑖 (𝑡)
𝜏𝑖

+ 𝑢 (𝑡) (3)

𝑢 (𝑡 + 1) = 𝑢 (𝑡) − 𝑢 (𝑡)
𝜏𝑢

+
𝑁∑︁
𝑛=1

𝛿𝑛𝑊
𝑆𝑁𝑁
𝑛 (4)

Where 𝐼𝑚𝑒𝑚 represents the neuron’s membrane potential, 𝑠 is the
adaptation/feedback current, i is the input current, 𝑏𝑆𝑁𝑁 is the bias,
u is the weighted (by𝑊 𝑆𝑁𝑁

𝑛 ) and filtered input from presynaptic
spike trains (𝛿𝑛) or from an analog input signal (not shown), and
𝜏𝑚𝑒𝑚, 𝜏𝑠 , 𝜏𝑖 , 𝜏𝑢 are time constants. The neuron spikes when 𝐼𝑚𝑒𝑚

exceeds a threshold, at which point 𝐼𝑚𝑒𝑚 is reset to 0. This spike
is transmitted to postsynaptic neurons and recursively added as
a feedback spike train 𝛿𝑖 weighted by 𝑤 𝑓 𝑏 to 𝑠 . This mechanism
allows 𝑠 to track 𝑖 and serve as the neuron’s internal activation state
corresponding to an ANN activation value. Intuitively, whenever
s diverges from i too much, a spike is produced to correct it (see
Fig. 1b). This activation state can either be read out directly from 𝑠

or reconstructed by the output spikes. The model as a block diagram
is shown in Fig. 1a.

2.2 The low-pass RNN model
The ΣΔ-neuron model’s feedback current 𝑠 corresponds to an ANN
activation value 𝑦, enabling the mapping of RNNs to SNNs. More-
over, the additional filtering of the input current 𝑖 implements a
low-pass behavior, leading to a longer memory and, therefore, bet-
ter performance than vanilla RNNs on specific tasks. Therefore, we
term this the low-pass RNN (lpRNN), with non-spiking dynamics
described by:

𝑦𝑡 = 𝛼 ⊙ 𝑦𝑡−1 + (1 − 𝛼) ⊙ 𝜎 (𝑊𝑟𝑒𝑐 · 𝑦𝑡−1 +𝑊𝑖𝑛 · 𝑥𝑡 + 𝑏) (5)

where 𝜎 is a non-linearity, ⊙ the element-wise (Hadamard) product,
and ·matrix multiplication. 𝑥𝑡 the input vector,𝑦𝑡 the output vector,
the subscripts indicate the time step,𝑊𝑟𝑒𝑐 and𝑊𝑖𝑛 the recurrent and
input weight matrices, and 𝑏 the biases. Here, 𝛼 , a (reciprocal) time
constant, is a fixed hyperparameter optimized by hyperparameter
search but could be trained individually.𝛼 can bemapped to the time
constants of the Spiking Neural Network (SNN) by 𝜏 =

−𝑇𝑠
log𝛼 where

𝑇𝑠 is the duration of the ANN algorithmic timestep or sampling
interval of the input data-stream fed to the recurrent ANN. The
nonlinearity 𝜎 is a clamped ReLU as spiking neurons naturally
implement a ReLU by not allowing a negative 𝑠 [3, 35]. It is clamped
to 𝐼𝑖𝑛 because the Low-Pass Filter (LPF) property of the ΣΔ-neuron
limits the maximum activity to 𝐼𝑖𝑛 .

While the ANN time resolution is given by the data sampling
rate, the SNN requires a finer time resolution because the timing
and the number of spikes matter. Therefore, the time constants are
scaled by the ratio of the ANN and SNN algorithmic time steps,
𝜏𝑆𝑁𝑁 =

𝑇𝐴𝑁𝑁

𝑇𝑆𝑁𝑁
𝜏𝐴𝑁𝑁 . Due to constraints in the maximal neural state

values on the Loihi chip, we use only 3 of the available 8-bit weight
precision. Consequently, we train the ANN using 3-bit quantized

Table 1: Top-1 Accuracy comparison on HD and SHD (20
classes).

Method
Weight
precision
(bits)

Acc. (%)

SHD
SNN RadLIF [2] 32 94.6

Learned Delays [17] 32 95.1

HD

ANN liBRU [2] 32 99.96
GRU [2] 32 99.91
lpRNN [this work] 3 99.69

SNN RLIF [2] 32 99.35
lpRNN [this work] 3 99.69

Loihi Speech2Spikes [30] 7 97.5
lpRNN [this work] 3 99.33

weights in a quantization-aware manner via a straight-through
estimator (STE) [1].

The architecture used in this work, shown in Fig. 2, consists of
a feedforward low-pass layer to encode input signals into spikes,
followed by two recurrent low-pass layers and an output layer. This
compact size was chosen to avoid overfitting on the given datasets.

3 RESULTS
We evaluate on two audio benchmark datasets commonly used
for ANNs and SNNs: The Heidelberg Digits (HD) [6] and Google
Speech Commands (GSC) [33]. For both datasets, we follow the
same preprocessing, training, and testing procedure. The audio is
transformed into Mel spectrograms, a common non-linear trans-
formation [10, 17, 34] emphasizing lower frequencies where useful
sounds reside [9]. We train the ANN weights and then transfer the
network to an SNN for inference on the unseen test set. The input
data is encoded into spikes using Brian2 [31], simulating the input
to the low-pass feedforward layer. The recurrent and output layers
are run on Loihi and, as a baseline, in a Brian2 simulation. Further
details are provided in the Methods and code (to be released).

The Heidelberg Digits (HD) [6] contains 10,000 recordings of 20
classes of digits in English and German. Instead of using the pro-
vided Spiking (SHD) version with spikes from an artificial cochlear
model, we encode the raw audio Mel spectrograms using the ΣΔ-
neuron model. This approach produces fewer spikes (around 5600
vs. 8230 per test sample) while achieving better accuracy. As shown
in Table 1, the lpRNN outperforms the only previous neuromorphic
approach [30] and matches state-of-the-art ANN and SNN methods.
However, the near-perfect results indicate this dataset may not
ideally differentiate model performance.

The Google Speech Commands (GSC) [33] contains one-second
audio recordings of spoken words to be classified. We evaluate three
variants: GSCv1 with 36 words and GSCv2 with 12 or 36 classes.
To improve ANN-SNN mapping, we apply pruning [14] to reduce
mismatch from low-activity neurons when 𝐼𝑖𝑛 >> 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦. Table 2
compares results. The lower performance on GSCv2-36, compared
to the best SNNs, is potentially due to using only 3-bit weights
without batch normalization. The lpRNN again outperforms the
previous neuromorphic approaches.



Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons

+

-

x(t) y(t)

s(t)

H(s)

+
+

n(t)

F(s) Spike generation

Neuron = Asynchronous ΣΔ Encoder

Feedback filter

e(t)i(t)

E(s)

Synaptic 
Filtering 

Pulse Δ Encoder 

Input filter

Imem

(a) (b)

Figure 1: a. Block diagram of a ΣΔ-neuron. b. Evolution of the feedback signal 𝑠 (𝑡) following the the input. Whenever it decays
too far below the input, the neuron generates a spike (𝑦 (𝑡)) which increases the feedback current. Panels from [19].

Input 
Low-pass
feeforward Low-pass

recurrent 

Readout 

Figure 2: Architecture of the lpRNN network.

Table 2: Top-1 accuracy comparison on the variants of the
Google Speech Commands dataset

Weight
precision
(bits)

v1-36w v2-12w v2-35w

Non-spiking
Att RNN [10] 32 94.3 96.9 93.9
AS Transformer [15] 32 98.1
lpRNN ANN [this work] 3 93.56 95.07 94.03

Spiking 32
SRNN [34] 32 92.1
LSNN [28] 32 91.2
SLAYER [22] 32 91.74
RLIF [2] 32 93.58
RadLIF [2] 32 94.51
Learned Delays [17] 32 95.29
lpRNN SNN [this work] 3 93.19 93.13 93.33

Neuromorphic Hardware
Speech2Spikes [30] 7 71.1
Spinnaker2 Eprop [26] 32 91.12
lpRNN Loihi [this work] 3 92.08 92.8 92.4

4 DISCUSSION
The lpRNN using ΣΔ-neurons allows faithful conversion from
Recurrent Neural Network (RNN) to SNN. We present one of the

first results on a neuromorphic chip achieving comparable perfor-
mance to RNN and SNN implemented on standard computing archi-
tectures. We demonstrate state-of-the-art results in the HD dataset
in the SNN setting and strong results on GSC. This is achieved by
training the network using backpropagation through time (BPTT)
with the standard pipeline for ANNs and then transferring it to
neuromorphic hardware with constraints on the quantization of
weights (3-bit) and timesteps.

These results provide additional evidence that synaptic dynamics
and neuronal adaptation are important mechanisms for encoding
natural data with the ΣΔ-mechanism. Most SNNmethods in Table 2
use adaptive neuron models [2, 28, 34], generally outperforming
non-adaptivemodels. Adaptionmechanisms that change the neuron
spiking threshold, instead of subtracting an adaptation variable
𝑠 (𝑡) from the membrane potential (Eq.2), are equivalent; they both
change the amount of input needed until the threshold is reached.

Compared to ANN models, the lpRNN achieves results compara-
ble to the commonly used gated RNNs (GRU and LSTM) on both
datasets. This suggests that complex models with many parameters
are not needed for time series without fast changes and without
long-term dependencies, such as audio and biomedical data. How-
ever, for much longer sequences like sentences or documents, gated
RNNs, state-space models, or transformers may be more suitable.
Therefore, here, we focus on simple keyword spotting tasks, but the
results encourage further exploration of the ΣΔ-model, indepen-
dently of the network architecture. The ΣΔ-model is of particular
interest for robust encoding and computation in ultra-low power
analog hardware [20, 27]. Training the synaptic delays (as [17])
and time constants 𝛼 individually might broaden the range of time
scales of the network dynamics, making it suitable for additional
applications.

5 METHODS
The ANN simulations were made using Pytorch 1.9 and the SNN
simulations with Brian2 [31]. Loihi experiments were conducted
remotely using NxSDK version 0.9.9 on the Nahuku32 board ncl-
ghrd-01.

On Loihi, neurons can be created from one or more compart-
ments. A compartment’s input current can integrate spikes, and



Gauthier Boeshertz, Giacomo Indiveri, Manu Nair, and Alpha Renner

soma

dend

s

u

Imem

i

+

-

ff (to next layer)

ff (from previous layer)

feedback
(same neuron)

recurrent
(same layer)

Figure 3: Multi-compartment ΣΔ-neuron on Loihi

then this current is further integrated into the membrane potential.
These signals can be relayed between compartments via connecting
dendrites. The low-pass neuron comprises two compartments, as
shown in Fig 3. The ‘dendritic’ compartment integrates the spikes
coming from recurrent and feedforward connections into the in-
put current 𝑢. The ‘membrane potential’ 𝑖 of this compartment is
then added to the membrane potential 𝐼𝑚𝑒𝑚 of the ‘somatic’ com-
partment. This second compartment is connected to itself with an
inhibitory synapse such that the spikes it generates are integrated
into the adaptation/feedback current 𝑠 .

The weights and biases for Loihi are obtained from the ANN as
follows:

𝑊 𝑆𝑁𝑁 =
𝑓𝑊𝐴𝑁𝑁

𝜏𝑢 ∗ 𝜏𝑖 ∗ 64
𝑏𝑆𝑁𝑁 =

𝑓 𝑏𝐴𝑁𝑁

𝜏𝑖
(6)

A factor 𝑓 is used to scale the weights to make the best use of
the precision available on the chip. Because the value of the state
variables is bounded by ±223 (24 bits), 𝑓 cannot be chosen too
large to avoid overflow. A lower 𝑓 , however, leads to lower weight
precision, as weights are constrained to integer values.

ACKNOWLEDGMENTS
The authors thank Intel Labs for providing access to the Loihi re-
search hardware. A.R. discloses support from the University of
Zurich postdoc grant [FK-21-136] and the VolkswagenStiftung
[CLAM 9C854].

REFERENCES
[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or

propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

[2] Alexandre Bittar and Philip N Garner. 2022. A surrogate gradient spiking baseline
for speech command recognition. Frontiers in Neuroscience 16 (2022), 865897.
https://doi.org/10.3389/fnins.2022.865897

[3] Sander M Bohte. 2012. Efficient spike-coding with multiplicative adaptation in a
spike response model. In Advances in Neural Information Processing Systems.

[4] Romain Brette and Wulfram Gerstner. 2005. Adaptive exponential integrate-and-
fire model as an effective description of neuronal activity. Journal of Neurophysi-
ology 94, 5 (2005), 3637–3642. https://doi.org/10.1152/jn.00686.2005

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, Vol. 33. 1877–1901.

[6] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann
Zenke. 2020. The Heidelberg spiking data sets for the systematic evaluation of
spiking neural networks. IEEE Transactions on Neural Networks and Learning
Systems 33, 7 (2020), 2744–2757. https://doi.org/10.1109/TNNLS.2020.3044364

[7] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning.
IEEE Micro 38, 1 (2018), 82–99. https://doi.org/10.1109/MM.2018.112130359

[8] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel
A Fonseca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R Risbud. 2021.
Advancing neuromorphic computing with Loihi: A survey of results and outlook.
Proc. IEEE (2021). https://doi.org/10.1109/JPROC.2021.3067593

[9] Steven Davis and Paul Mermelstein. 1980. Comparison of parametric representa-
tions for monosyllabic word recognition in continuously spoken sentences. IEEE
Transactions on Acoustics, Speech, and Signal Processing 28, 4 (1980), 357–366.
https://doi.org/10.1109/TASSP.1980.1163420

[10] Douglas Coimbra de Andrade, Sabato Leo, Martin Loesener Da Silva Viana,
and Christoph Bernkopf. 2018. A neural attention model for speech command
recognition. arXiv preprint arXiv:1808.08929 (2018).

[11] Peter U Diehl, Guido Zarrella, Andrew Cassidy, Bruno U Pedroni, and Emre
Neftci. 2016. Conversion of artificial recurrent neural networks to spiking neural
networks for low-power neuromorphic hardware. In 2016 IEEE International
Conference on Rebooting Computing (ICRC). IEEE, 1–8. https://doi.org/10.1109/
ICRC.2016.7738691

[12] Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. 2021. Optimal
ANN-SNN conversion for fast and accurate inference in deep spiking neural
networks. arXiv preprint arXiv:2105.11654 (2021).

[13] Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin Wang, Gregor Lenz,
Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu. 2023.
Training spiking neural networks using lessons from deep learning. Proc. IEEE
(2023). https://doi.org/10.1109/JPROC.2023.3308088

[14] Jonathan Frankle andMichael Carbin. 2019. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2019).

[15] Yuan Gong, Yu-An Chung, and James Glass. 2021. Ast: Audio spectrogram
transformer. arXiv preprint arXiv:2104.01778 (2021).

[16] Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling with
selective state spaces. arXiv preprint arXiv:2312.00752 (2023).

[17] Ilyass Hammouamri, Ismail Khalfaoui-Hassani, and Timothée Masquelier. 2023.
Learning Delays in Spiking Neural Networks using Dilated Convolutions with
Learnable Spacings. arXiv preprint arXiv:2306.17670 (2023).

[18] Carver Mead. 1990. Neuromorphic electronic systems. Proc. IEEE 78, 10 (1990),
1629–1636. https://doi.org/10.1109/5.58356

[19] Manu V Nair and Giacomo Indiveri. 2019. Mapping high-performance RNNs to
in-memory neuromorphic chips. arXiv preprint arXiv:1905.10692 (2019).

[20] Manu V Nair and Giacomo Indiveri. 2019. An Ultra-Low Power Sigma-Delta
Neuron Circuit. In 2019 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 1–5. https://doi.org/10.1109/ISCAS.2019.8702500

[21] EmreONeftci, HeshamMostafa, and FriedemannZenke. 2019. Surrogate gradient
learning in spiking neural networks. IEEE Signal Processing Magazine 36, 6 (2019),
61–63. https://doi.org/10.1109/MSP.2019.2931595

[22] Garrick Orchard, E Paxon Frady, Daniel Ben Dayan Rubin, Sophia Sanborn,
Sumit Bam Shrestha, Friedrich T Sommer, and Mike Davies. 2021. Efficient
Neuromorphic Signal Processing with Loihi 2. In 2021 IEEE Workshop on Signal
Processing Systems (SiPS). IEEE, 254–259. https://doi.org/10.1109/SiPS52927.2021.
00053

[23] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gul-
cehre, Razvan Pascanu, and Soham De. 2023. Resurrecting recurrent neural
networks for long sequences. In International Conference on Machine Learning.
PMLR.

[24] Peter O’Connor, Efstratios Gavves, and Max Welling. 2017. Temporally efficient
deep learning with spikes. arXiv preprint arXiv:1706.04159 (2017).

[25] Alpha Renner, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, and Andrew Sorn-
borger. 2021. The Backpropagation Algorithm Implemented on Spiking Neuro-
morphic Hardware. arXiv preprint arXiv:2106.07030 (2021). https://arxiv.org/
abs/2106.07030

[26] Amirhossein Rostami, Bernhard Vogginger, Yexin Yan, and Christian G Mayr.
2022. E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on
neuromorphic hardware. Frontiers in Neuroscience 16 (2022), 1018006. https:
//doi.org/10.3389/fnins.2022.1018006

https://doi.org/10.3389/fnins.2022.865897
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1109/TNNLS.2020.3044364
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/ICRC.2016.7738691
https://doi.org/10.1109/ICRC.2016.7738691
https://doi.org/10.1109/JPROC.2023.3308088
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/ISCAS.2019.8702500
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/SiPS52927.2021.00053
https://doi.org/10.1109/SiPS52927.2021.00053
https://arxiv.org/abs/2106.07030
https://arxiv.org/abs/2106.07030
https://doi.org/10.3389/fnins.2022.1018006
https://doi.org/10.3389/fnins.2022.1018006


Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons

[27] Arianna Rubino, Can Livanelioglu, Ning Qiao, Melika Payvand, and Giacomo
Indiveri. 2020. Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuro-
morphic Intelligence. IEEE Transactions on Circuits and Systems I: Regular Papers
68, 1 (2020), 45–56. https://doi.org/10.1109/TCSI.2020.3035575

[28] Darjan Salaj, Anand Subramoney, Ceca Kraisnikovic, Guillaume Bellec, Robert
Legenstein, and Wolfgang Maass. 2021. Spike frequency adaptation supports
network computations on temporally dispersed information. Elife 10 (2021),
e65459. https://doi.org/10.7554/eLife.65459

[29] Sumit Bam Shrestha and Garrick Orchard. 2018. Slayer: Spike layer error reassign-
ment in time. In Advances in Neural Information Processing Systems. 1412–1421.

[30] Kenneth M Stewart, Timothy Shea, Noah Pacik-Nelson, Eric Gallo, and Andreea
Danielescu. 2023. Speech2spikes: Efficient audio encoding pipeline for real-
time neuromorphic systems. In Proceedings of the 2023 Annual Neuro-Inspired
Computational Elements Conference. 71–78. https://doi.org/10.1145/3584954.
3584995

[31] Marcel Stimberg, Romain Brette, and Dan FM Goodman. 2019. Brian 2, an
intuitive and efficient neural simulator. Elife 8 (2019), e47314. https://doi.org/10.
7554/eLife.47314

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems, Vol. 30.

[33] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209 (2018).

[34] Bojian Yin, Federico Corradi, and Sander M Bohte. 2021. Accurate and efficient
time-domain classification with adaptive spiking recurrent neural networks.
arXiv preprint arXiv:2103.12593 (2021).

[35] Young C Yoon. 2016. Lif and simplified SRM neurons encode signals into spikes
via a form of asynchronous pulse sigma–delta modulation. IEEE transactions on
neural networks and learning systems 28, 5 (2016), 1192–1205. https://doi.org/10.
1109/TNNLS.2016.2526029

[36] Davide Zambrano and Sander M Bohte. 2016. Fast and efficient asynchronous
neural computation with adapting spiking neural networks. arXiv preprint
arXiv.1609.02053 (2016).

[37] Friedemann Zenke and Surya Ganguli. 2018. Superspike: Supervised learning in
multilayer spiking neural networks. Neural computation 30, 6 (2018), 1514–1541.
https://doi.org/10.1162/neco_a_01086

https://doi.org/10.1109/TCSI.2020.3035575
https://doi.org/10.7554/eLife.65459
https://doi.org/10.1145/3584954.3584995
https://doi.org/10.1145/3584954.3584995
https://doi.org/10.7554/eLife.47314
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1109/TNNLS.2016.2526029
https://doi.org/10.1109/TNNLS.2016.2526029
https://doi.org/10.1162/neco_a_01086

	Abstract
	1 Introduction
	2 Model
	2.1 The -spiking neuron model
	2.2 The low-pass RNN model

	3 Results
	4 Discussion
	5 Methods
	Acknowledgments
	References

