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Abstract
TCP has been proved to be working well in a variety

of situations. However, in links of large bandwidth
products, e.g., satellite links, TCP might underutilize the
link and degrade the reliability. A number of revised
algorithms have been proposed to improve TCP
performance. In this paper, we propose a new algorithm
to improve TCP throughpt without modifying TCP
protocol. Since TCP uses the acknowledgments (ACKs)
to adjust the sending rate, the basic idea of our scheme
is to delay (or shape) ACKs traveling through a node
where its forward connection is congested. The algorithm
aims to fully eliminate packet loss caused by buffer
overflow. We implement this scheme in the intermediate
nodes connecting satellite links and make a simulation
study on its effect. In addition, we test the proposed
algorithm in real world. The results of both simulation
and test show that the proposed scheme improves the
TCP throughput by effectively controlling the
acknowledgment flow.

1. Introduction

Internet plays an important role in the information
infrastructure. Since satellites have distinctive
advantages such as remote coverage, rapid deployment,
distance insensitivity and immunity to terrestrial
disasters, satellite networks will benefit the construction
of global information networks [1]. However, satellite
links possess some special characteristics such as higher
transmission error and long propagation delay. In
general, the propagation delay ranges from 25 ms to 250
ms for a one-way path. Satellite links have large
bandwidth delay products and a significant impact on
TCP performance. To achieve high performance, TCP is

extended by adding some options, e.g., window scale
option, timestamps option and selective acknowledgment
(SACK) option [2][3]. Moreover, to guarantee the
reliability, an additional scheme called Protect Against
Wrapped Sequence Numbers (PAWS) is proposed to
reject old duplicate segments that might corrupt an open
TCP connection. These mechanisms have been proved to
have great improvement on TCP performance and are
necessarily required to carry TCP over satellite links
[1][4].

Recently, a number of TCP mechanisms related to
satellite have been summarized and generally discussed
in [4][5]. These mechanisms focus on various aspects of
TCP. For slow start algorithm, schemes of large initial
window and byte counting are proposed to reduce the
time needed to increase the window size to an
appropriate level; For loss recovery, schemes of forward
acknowledgement (FACK) and explicit congestion
notification (ECN) are proposed to recover from loss
quickly. Even spoofing and snooping that might damage
the rule of TCP end-to-end control are presented. All
these algorithms appear promising to improve TCP
throughput in satellite networks, however, their
efficiency and robustness need careful evaluation before
they are exploited in real networks.

In this paper, we propose a traffic control scheme used
in the routers adjacent to satellite links. The basic idea of
this scheme relies on the fact that TCP uses ACKs to
determine its traffic sending to the networks. Once
congestion or overload is detected in the forward path,
ACKs are delayed in the backward direction, which
could slow down the source traffic rate. As a result, it is
possible to quickly relieve the congestion and fully avoid
packet loss. The original work was done in Nokia
Research Center by Jian Ma etc. and presented in [6][7].



In section 2, we explicitly present the background and
motivation of our work. Section 3 presents the prototype
of this scheme and discusses issues on its
implementation. In section 4, we show the simulation
model and the implementation of the scheme in the
access router. We make a simulation study in section 5.
Finally, the conclusions are given in section 6.

2. Motivation

Satellite networks yield huge fat pipes. In order to
achieve good performance, TCP is extended to use larger
maximum window size to match the fat pipe. On the
other hand, TCP adjusts its window size according to a
series of algorithms, e.g., slow start, congestion
avoidance. These algorithms increase windows closely
related to the round trip time (RTT). In a long delay
environment, it takes a long time for TCP to increase
window sizes to the appropriate level. As a result, TCP
throughput might be significantly degraded during the
period of slowly increasing window size. Table 1
illustrates the required large window to fully utilize the
bandwidth on a MAN link (typically 5ms one-way delay),
a LEO link (100ms one-way) and a GEO link (250ms
one-way delay) respectively. The table also indicates how
long a slow start takes to get to full link speed (assuming
1KB datagram) and how much data is transferred during
the slow start phase. From the table, it shows that the
links are underutilized for a relatively long time in links
of large bandwidth delay products and consequently the
throughputs are low in these cases.

Table 1. Summary of satellite and TCP interactions
1.5Mb/s

MAN LEO GEO

Bandwidth delay
product

15kb 300kb 375kb

Required large windows No No Yes
Slow start time 0.01s 1.8s 5.6s
Slow start data (in bytes) 1.7K 76.7K 197.8K
Efficiency (%) 9.06 2.27 1.88

45Mb/s

MAN LEO GEO

Bandwidth delay
product

450kb 9Mb 22.5Mb

Required large windows No Yes Yes
Slow start time 0.2s 3.5s 9.8s
Slow start data (in bytes) 115.9K 2.4M 6M
Efficiency (%) 10.3 12.2 10.88

155Mb/s

MAN LEO GEO

Bandwidth delay
product

155kb 31Mb 77.5Mb

Required large windows Yes Yes Yes
Slow start time 1.9s 4.1s 11.3s
Slow start data (in bytes) 4.1M 8.3M 20.6M
Efficiency (%) 11.1 10.44 9.41

On the other hand, once packet loss occurs in a TCP
connection, TCP will decrease its window size sharply
and resume the slow start or congestion avoidance from a
small window size. This will severely degrade TCP
performance. In satellite networks, packet loss might
happen in two cases: one case is that the packet is
corrupted by the transmission error in the satellite links;
the other is that buffer overflow occurs in the routers
adjacent to the satellite links. Transmission error rates of
satellite links are generally higher than those of
terrestrial links. We will not focus on packet loss caused
by transmission error. However, packet loss caused by
buffer overflow might be eliminated. Therefore, novel
traffic control scheme is really needed.

In this paper, we propose a scheme for delaying ACKs
with the goal of fully preventing packet loss from buffer
overflow [6],[7]. Since TCP is close-loop control based
on feedback of ACKs, it is possible for congested nodes
to avoid or alleviate congestion quickly by delaying
ACKs. A typical deployment of delaying ACKs is shown
in Figure 1. Apparently, the control loop is shortened by
using this mechanism in the access routers. In the
following parts, we call this mechanism Fast TCP.

It should be noted that our Fast TCP scheme differs
from the scheme of spacing ACKs presented in [5]. Our
scheme is implemented in routers rather than TCP
sources. Its goal is to quickly relieve congestion while
keeping the semantics of TCP. In addition, it is kept
active at all time instead of only during the absence of
ACKs.

3. Prototype of Fast TCP

Figure 2 shows the prototype of Fast TCP exploited in
routers. For clarification, we separate the algorithm into
three parts, i.e, congestion detection, ACK identification
and delaying ACKs. Congestion detection is used to
notify congestion before buffer overflow happens. ACK
identification is required to separate ACK flow from
normal data traffic. Delaying ACKs adjusts the rate of



ACK flow. Next, we discuss the implementation of these
parts respectively.
3.1 Congestion detection

Router is usually designed on the basis of packet store
and forward, which is in need of a huge buffer capacity to
accommodate the burst of data flow. Congestion might be
detected by means of supervising the queue length.
Congestion is detected when the queue length exceeds a
prefixed threshold. Moreover, some advanced traffic
prediction methods might be employed.

3.2 ACK identification

To identify an ACK, a router should check the ACK
bit in TCP/IP packet. However, ACK information might
be piggybacked in data packets which are prohibited to
delay. Thus, it is necessary to separate the ACK
information from the data packets. We could clear the
ACK bit in the data packets and generate new ACK
packets by copying the ACK information from the data
packets. By using Fast TCP, IP packets are monitored
and ACKs are filtered. As shown in Figure 2, a separate
buffer is employed to accommodate filtered ACKs.

3.3 Delaying ACKs

The flow of filtered ACKs is shaped according to the
policy of delaying ACKs. In our method, the leaking rate
is calculated explicitly, and ACKs are spaced according
to the rate. On the other hand, because slow start scheme
and congestion avoidance scheme increase window size
in different ways, they do not have the same effect on
delaying ACKs. For illustration, in slow start phase,
upon receiving an ACK, window size increases by the
size of one data packet and as a result two packets are
released, thus, ACKs should be spaced with an interval
larger than that in congestion avoidance phase. In [8], it
is suggested that the intermediate nodes follow the
window sizes of TCP sources in order to explicitly delay
ACKs. However, in real networks, it is difficult for
routers to keep pace with window sizes of TCP sources
due to various implementation of TCP sources.
Therefore, we propose to just consider slow start because
it is more aggressive than congestion avoidance.

3.4 Implementation Challenge

In fact, there are some factors in real networks that
might invalidate the employment of Fast TCP. Some of
them are listed below.

IP networks are connectionless which means that
ACK packets might travel along different paths from the
forward data paths. It seems difficult for routers to
determine whether data packets and relevant ACKs share
the same path. However, in satellite networks, two
routers are usually connected via a single satellite link.
Thus, our Fast TCP scheme can be used. Particularly,
this mechanism might be implemented in the routers as
an enhanced policy and can be optionally enabled
depending on the location of the routers deployed.

In TCP, delayed ACKs [10] allow data receivers to
refrain from sending ACK for every incoming data
segment. Although a delayed ACK can reduce the
number of segments sent by the receiver, excessive delay
on ACK can disturb the round-trip timing and inherent
self-clocking of TCP. Because Fast TCP uses ACK flow
to control data traffic in the forward direction, ACK flow
disturbed by delayed ACK might affect the efficiency of
Fast TCP.

Since multiple TCP connections might travel along
the satellite link, it remains an open issue that whether
Fast TCP controls ACKs of different TCP connections
separately. We believe that classifying different types of
TCP connections will produce an effective control
because different TCP connections possess distinguishing
traffic patterns and have different effects on networks.
For example, TCP connections of file transfer service
have greater impact on networks than those of telnet or
rlogin. However, this requirement is hardly fulfilled due
to its complexity and the increasing workload of routers.
Therefore, we propose the general Fast TCP to control
ACKs without identifying TCP connections.

In summary, although Fast TCP might be held back
by the above issues, it truly brings about quite a few
distinct advantages, e.g., reducing buffer requirement,
smoothing source traffic and fully avoiding buffer
overflow etc. These advantages will definitely contribute
to the network performance and will be examined by
simulation study in the next part.

4. Simulation Model and Implementation of
Fast TCP

4.1 Simulation model and configuration

As shown in Figure 3, we use a simple network
configuration in which a single TCP connection is
established between a pair of workstations through two
routers and one satellite link. We just consider one-way
data transfer where TCP source delivers data packets and
TCP destination replies by ACKs. It is assumed that all



links are symmetric links which have identical
bandwidth and propagation delay in both directions. The
satellite link is configured to 30 Mbps and its
propagation delay is set to 130ms as in a Medium Earth
Orbit (MEO) environment. The terrestrial links between
the workstations and the adjacent routers are configured
with the rate of 150 Mbps (i.e. five times than that of
satellite link) and with the propagation delay of 1 ms.
Thus, the Bandwidth-Delay Product (BDP = Bandwidth
* RTT) of the channel between source and destination is
approximately 1 M bytes.

The Maximum Segment Size (MSS) of TCP is defined
as 536 bytes, the default value in most situations. In order
to fill up the large pipe, we enlarge the Maximum
Window Size to 1M bytes by using the window-scale
option. We also set the initial threshold discriminating
slow start phase from congestion avoidance phase to the
same value as the Maximum Window Size. Thus,
congestion might be aroused by aggressively increasing
window in slow start phase. On the other hand, it should
be mentioned that although algorithms of PAWS and
SACK are essentially required in satellite networks, we
omit them to simplify our implementation. We believe
the results obtained in this paper could be naturally
extended to the general cases with these algorithms.
Additionally, to focus on our objective, we assume all the
physical links including the satellite link to be ideal links
without bit error.

4.2 Implementation of Fast TCP

The Fast TCP scheme is implemented in the routers
adjacent to satellite link. It monitors data traffic in the
forward channel and control ACKs in the backward
channel. We use a simple method to detect congestion,
which is that congestion is notified when the buffer
occupancy exceeds a fixed threshold. Here, we set a small
threshold of 50Kbytes. ACK identification is easy in our
configuration because no data packets traverse in the
backward path. A simple policy of delaying ACKs is
given, that is, when no congestion occurs, ACKs leak at a
normal rate, otherwise, at a fraction of the normal rate.
We set the normal rate equal to the service rate of the
data packet in the forward buffer. The fraction is set to
half so that the leaking rate is halved when congestion
happens.

5. Simulation Study *

5.1 Case 1 : large buffer capacity

In this case, we set the buffer size to 1M bytes which
is large enough to avoid packet loss whether Fast TCP is
working or not. However,  it is possible for Fast TCP to
avoid buffer overflow in smaller buffers and we will show
it in the next case.

We first present the figures depicting congestion
window size, forward queue length and backward queue
length in the cases of with/without Fast TCP. As shown
in Figure 4, there are aggressive bursts in the forward
buffer in the case without Fast TCP. The bursts become
larger and larger with the growth of window size, then
reaches approximately half of the maximum window
size. The bursts are obviously caused by slow start
algorithm of TCP protocol. On the contrary, as shown in
Figure 5 of the case with Fast TCP (note the scale),
bursts in the forward queue length are truncated by Fast
TCP to a very low level about 50K bytes, which is the
fixed threshold. Therefore, in order to avoid packet loss,
the forward buffer capacity in the case without Fast TCP
should be much bigger than that in the case with Fast
TCP. In fact, Fast TCP greatly decreases the forward
buffer occupancy at the cost of a little increase of
backward queue length.

Then, we show the forward queue length and the
sequence number of data packets sent by TCP with Fast
TCP enhancement in Figure 6. Clearly, when queue
length of the forward buffer exceeds the fixed threshold,
the TCP source slows down its sending rate. As a result,
the queue length decreases. It can be seen that the
forward queue length oscillates around the center of the
fixed threshold so that it is kept within a small value.
Apparently, the source traffic is smoother.

5.2 Case 2 : small buffer capacity

In this case, we use the routers with small buffer
capacity. The buffer capacity is 250K bytes which is
much smaller than that of the previous case.

The capacities of the buffers in routers are smaller
than BDP. Normally it will cause low utilization of the
bandwidth and packet loss will probably happen caused
by buffer overflow and packet discard when Fast TCP
does not work. By using Fast TCP, the probability of
buffer overflow and packet discard is significantly
reduced. The buffer capacity minus the fixed threshold is

                                                       
* The simulation tool is OPNET.



large enough to accommodate the packets remaining at
the links in the loop from Router 1 to Source and return
to Router 1. As a result, the congestion window of the
source is not reduced and the bandwidth utilization as
well as throughput is improved. In Figure 7, the forward
queue length with is compared to that without Fast TCP.
It can be seen that Fast TCP reduces the bursts
significantly and no overflow happens. In Figure 8, the
total buffer occupancy with Fast TCP is compared to that
without Fast TCP. It can be seen that backward queue
length increases only a little. And the total buffer
occupancy is smoother. In Figure 9, received segment
number of destination with Fast TCP is compared to that
without Fast TCP. It shows that Fast TCP improves the
throughput. In Figure 10, received ACK number of
source with Fast TCP is compared to that without Fast
TCP. It can be seen that the arriving rate of ACKs from
14 to 14.6 second when Fast TCP is enabled is smaller
than that when Fast TCP is disabled. The subtle shaping
of ACK flow greatly change the behavior of forward data
flow.

6. Test on Internet

In order to get more experience and see how the Fast
TCP works in the real world, we have managed to
implement it in UNIX user space and have gained some
primary results so far. Our program serves as a router in
which the Fast TCP mechanism can be enabled or
disabled. Thus we can compare the performances.

6.1 Network topology and test environment

The topology is simple as shown in figure 11.
The traffic is generated by Netperf, a well-known

network benchmark. TCP connection are established
between source and destination. The two machines are
running 4.4 BSD with Fast Retransmit and Fast Recovery
Algorithms. (TCP is robust with FRR which the
simulation tool has not implemented.)

And we do not send data from destination to source
and thus avoid ACK piggyback. All the packets from
source are data and should be put into a data FIFO queue.
All the packets from destination are ACKs and should be
put into an ACK FIFO queue.

The RTT (Round Trip Time) is about 600
milliseconds. Our program goes all out to catch packets
and put them into the queue, but it forwards them at
certain intervals. Thus, packets in buffer begin to
accumulate and congestion occurs. During the test, we
varied some parameters to see Fast TCP's performance in

different environments, such as traffic load, MSS
(Maximum Segment Size), test duration, router's
forwarding rate, etc. Here, we give three scenes to
demonstrate the principle of Fast TCP.

6.2 Case 1: single connection

This is a single connection test which lasts 50
seconds. The MSS is set to 256 bytes. The send and
receive window size is set to 17K bytes. The router's
forwarding rate is constant which equals 20
packets/second.

Delay algorithm:
interval=0.1 second
if buffer < threshold, then delay ack by interval;
if buffer >= threshold, then delay ack by 2*interval;
(If Fast TCP is disabled, every interval, we launch 2

packets, one from forward buffer, one from backward
buffer.)

We disable Nagle algorithm in TCP (set
TCPNODELAY in socket) as most HTTP servers and
FTP servers do.

Table 2. Test result of single connection case
No Fast  TCP Fast TCP

Max queue length
(packets)

45 45

Threshold (packets) N/A 42
Throughput (kbits/sec) 12.70 18.91

The buffer is counted by packet number, so 17K bytes
sending buffer and 256 bytes MSS cause a buffer
utilization less than 66. Some packets can be in Internet
pipe. In our test, the queue length reached 55. Here we
set the max queue length to 45 to make it congested.
From this table, we can see that Fast TCP improved the
throughput of a single TCP connection by 48.9%. In this
case, Fast TCP is very successful at congestion control.

From figure12, we can see it completely avoids buffer
overflow and packets dropping, while normal router
drops 12 packets continuously because of the
unawareness of congestion.

In figure 13, Fast TCP curve shows that the buffer
occupation keeps around the threshold, which is 42, till
the end of connection. High buffer occupation indicates
that the data sender does not slow its sending rate.

When Fast TCP is disabled, there are packets dropped,
which cause the data sender to slow down its sending
rate. Thus the buffer occupation decreases to zero and
recovers slowly.



In figure 14, when Fast TCP is disabled, the router
waits for packets coming and even stops forwarding for
some time because of the low buffer occupation. It takes
about 12 seconds for the source to resend all the lost
packets and recover.

Things are different in router with Fast TCP. It keeps
forwarding packets and achieves higher throughput.

6.3 Case 2: multiple connections

This is a multi-connection test which lasts 15 seconds.
The Maximum Segment Size (MSS) is set to 1440 bytes.
The send and receive window size is set to 17K bytes.
The router's forwarding rate is constant which equals 40
packets/second.

Delay algorithm:
Interval=0.05 second
if buffer < threshold, then delay ack by interval;
if buffer >= threshold, then delay ack by 2*interval;
(If Fast TCP is disabled, every interval, we launch 2

packets, one from forward buffer, one from backward
buffer.)

We disable Nagle algorithm in TCP.
In our test, 4 TCP connections are established

successively by UNIX shellscript. They compete for the
shared bandwidth. The result table shows the throughput
of each connection as well as the total one.

We found that in multi-connection, light congestion
will not reduce the total throughput very much because
some connections lose bandwidth while others pick them
up. However, that will cause the unfairness. Figure 15
gives us a intuitionistic impression of improvement in
both throughput and fairness. We have 3 similar views in
figure 16,17 and 18 as those in figure 12,13 and 14,
which show that the traffic is well controlled.

Table 3. Test result of multiple connection case
No Fast TCP Fast TCP

Max queue length (packets) 30 30
Threshold (packets) N/A 25
Connection 1 Throughput
(kbits/sec)

30.81 34.32

Connection 2 Throughput
(kbits/sec)

22.93 36.51

Connection 3 Throughput
(kbits/sec)

27.03 35.33

Connection 4 Throughput
(Kbits/sec)

30.37 34.95

Total Throughput (kbit/sec) 111.14 141.11

6.4 Case 3: multiple connection

In the real world, Fast TCP might not avoid all of the
buffer overflows because of the complexity of network
traffic, but this technique can also be attractive if it can
avoid some congestion, which will also contribute to
network performance.

Here we give an example. The intention is to see the
performance of the Fast TCP under some WWW traffic.
On a UNIX machine, the Apache web server is running
while we use Teleport Pro on another Windows 95
machine to retrieve web pages. Note that ACK piggyback
is ignored. Teleport Pro is a software for offline
browsing, which uses multi-thread technique to
simultaneously transmit a number of files from a web
server. We use it to establish many TCP connections
easily.

The test lasts 150 seconds. More than 100 files are
retrieved and the Fast TCP achieves better throughput. In
the algorithm, the buffer threshold is set a bit higher to
make buffer overflow happen. That means the router with
Fast TCP also drops packets.

From figure 19 and 20, We can catch the following
points:

1. There are many strong bursts during the process.
2. With Fast TCP, the router drops much less packets

than it does without Fast TCP.
3. The bursts are smoothed by the control of the Fast

TCP.

7. Conclusions

The proposed Fast TCP algorithm is a new
enhancement to TCP traffic control. Fast TCP focuses on
traffic control and congestion avoidance in access
routers. It is better than some other existing enhancement
in the following aspects:

Fast TCP is implemented in the intermediate nodes of
networks, e.g. routers, gateways, switches, and does not
need any amendment of terminal implementation of
TCP. So Fast TCP can adapt to various versions of TCP
and is easily deployed in the networks.

Fast TCP reduces the traffic control loop from end-to-
end to the path from the source to the intermediate node
where Fast TCP is implemented and back to the source.
So the reaction of traffic control is quicker and
consequently the control result is better.

The requirement of forward buffer occupancy is
reduced at the cost of a small increase of backward buffer
occupancy, and total buffer requirement is reduced. So by
using Fast TCP, the intermediate nodes of networks with



small buffers can reach the same throughput as those of
large buffers.

The queues in the intermediate nodes of networks are
smoother. So the end-to-end delay as well as the delay
jitter of TCP traffic is reduced. Applications such as Web
Browser can benefit.

The difficulty of the proposed Fast TCP is that the
intermediate nodes need to recognize ACK information
encapsulated in IP packets, and some manipulation of IP
packets may be required. The buffer management is also
more complex. In addition, the threshold and delay time
need to be adjusted to achieve better performance. The
delayed ACK might accumulate and be timeout, which
can have a bad impact on TCP traffic. Our further study
is to develop a self-learning algorithm for Fast TCP.
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