
Parallel Passive Testing of System Protocols - Towards a Real-time Exhaustive
Approach

Baptiste Alcalde and Ana Cavalli
Institut National des Télécommunications GET-INT

Evry, France
{baptiste.alcalde, ana.cavalli}@int-evry.fr

Abstract

Passive testing has proved to be a powerful technique for
protocol system fault detection by observing its input/output
behaviors yet without interrupting its normal operations.
Various techniques for passive testing on Extended Finite
State Machine (EFSM) exist such as by invariants and by
interval determination, which are not very costy in terms of
complexity but that also don’t detect every errors. To im-
prove the fault detection capabilities a backward checking
method was proposed. It analyzes in a backward fashion the
input/output trace from passive testing and its past. It effec-
tively checks both the control and data portion of a protocol
system and is able to detect every errors, but with a higher
complexity. The purpose of the present paper is then to pro-
pose possible parallel algorithms and architectures to im-
prove the backward passive testing approach by narrowing
down its maximal time complexity and transforming it into
the first real-time exhaustive passive testing approach. We
present the backward algorithm and its parallel versions,
study their complexity, and report results on various com-
munication and routing protocols.

1. Introduction

Passive testing is an activity of detecting faults in a sys-
tem under test by observing its input/output behaviors with-
out interfering its normal operations. The usual approach of
passive testing consists of recording the trace produced by
the implementation under test and trying to find a fault by
comparing this trace with the specification ([7], [9], [13]).
Other approaches explore relevant properties required for
a correct implementation, which are named invariants, and
then check them on the implementation traces of the sys-
tems under test ([2], [3], [14]). Most of the works on pas-
sive testing are based on finite state machines (FSMs) and
are focused on the control part of the tested systems with-

out taking into account data parts. To cope with protocol
data portions, Extended Finite State Machines (EFSMs) are
used to model the systems, which include parameters and
variables to encode data. In [13] a first approach to per-
form passive testing on EFSMs was proposed. An algo-
rithm based on constraints on variables was developed and
applied to GSM-MAP protocol. However, this algorithm
cannot detect transfer errors. In [6], an algorithm based on
variable determination with the constraints on variables was
presented. This algorithm allows to trace the variables val-
ues as well as the system state, however, every transfer er-
rors still cannot be detected. To overcome this limitation, a
new approach based on backward tracing was proposed in
[1]. This algorithm processes the trace in an antichronologi-
cal order to further narrow down the possible configurations
for the beginning of the trace and to continue the exploration
in the past of the trace with the help of the specification.
This algorithm contains two phases. First, it follows a given
trace backward to find the possible initial configurations at
the beginning of the trace. Secondly, it starts from these
configurations and explore backward every possible path of
the specification, with help of prunning operations and a
transition choice strategy.

As written in [1], the maximal complexity can be consid-
ered as high even if it is in fact low comparatively with other
exhaustive techniques. To reduce this time complexity, and
increase the power of the passive testing approach, we pro-
pose to parallelize this algorithm. A parallel algorithm, as
opposed to a traditional serial algorithm, is one which can
be executed a piece at a time in many different processing
devices, and then put back together again at the end to get
the correct result. Parallel algorithms are valuable because
it is far easier to execute large computing tasks via a paral-
lel algorithm than it is via a serial (non-parallel) algorithm,
given the way all modern processors work. Technically, it
is far more difficult to construct a fast single processor than
have many but slow processors with the same throughput.
There are also certain theoretical limits to the potential of
serial processors [8].

The rest of the paper is organized as follows. Section 2
describes the basic concepts used in the paper. Section 3 re-
minds the concepts of the backward checking algorithm. In
section 4 the parallelized versions are proposed. Complex-
ity of the algorithms is discussed in section 5, and section 6
reports the results of their application to the communication
protocols SCP, INRES, and the routing protocols OLSR,
and OSPF to show their efficiency and the consequences
on the required test architecture.

2. Preliminaries

We first introduce basic concepts needed.

2.1. Extended Finite State Machine

We use Extended Finite State Machine (EFSM) to model
the system protocols.

An Extended Finite State Machine M is a 6-tuple M =
< S, s0, I , O, ~x, T > where S is a finite set of states, s0 is
the initial state, I is a finite set of input symbols (eventually
with parameters), O is a finite set of output symbols (even-
tually with parameters), ~x is a vector denoting a finite set of
variables, and T is a finite set of transitions.

A transition t is a 6-tuple t =< si, sf , i, o, P,A > where
si and sf are the initial and final states of the transition re-
spectively, i and o are the input and the output, P is the
predicate (a boolean expression), and A is the ordered set
(sequence) of actions.

In the present work we consider that a variable is defined
in a finite interval of N , a parameter is a value in N which
will be mapped to a variable, and an action is an affectation
of the variable v of the form : v =

∑n
1 aixi, where ai ∈ N ,

xi ∈ ~x, and n is the number of variables in the set ~x.
The inputs and outputs are the (eventually parametrized)

symbols respectively received or produced by the observed
system. The predicate denotes the condition under which
the transition can be performed.

An event trace is a sequence of I/O pairs. In this paper
we consider that the traces can start at any moment of the
implementation execution.

Given a trace from the implementation under test and a
specification and according to the passive testing litterature,
we can face three types of errors, which are defined as fol-
low :

1. output errors : when the output of a transition in the
implementation differs from the output of the corre-
sponding transition in the specification.

2. transfer errors : when the ending state of a transition
in the implementation differs from the ending state of
the corresponding transition in the specification.

3. mixed errors : when the output and the ending state of
a transition in the implementation differ from the out-
put and the ending state of the corresponding transition
in the specification.

The purpose of this paper is limited to the error detection.
The fault identification and fault localisation topics are not
taken into account in this work. Thus, when an error will be
detected there is no information about its type.

2.2. Candidate Configuration Set

For the passive testing approach we need a structure to
keep information about contraints and location of the stud-
ied traces, which is named Candidate Configuration Set, ac-
cording to [6].

Let M be an EFSM. A Candidate Configuration Set
(CCS), is a 3-tuple (e,R,Assert) where e is a state of M ,
R is an environment, and Assert is an assertion, that is to
say a boolean expression on variables. R records the cur-
rent interval of each variable of ~x. The assertion are used
to record additional information, i.e., bindings with other
variables or excluded values.

In the backward checking approach we interest ourselves
in confirming a set of variables and then we extend the con-
cept of CCS by the following definitions.

A variable v is validated (also called confirmed) when
we find in the processed transition the information saying it
must be in a set of value I and we have the relation : I ⊂ Ic,
where Ic is the current set of values of v.

A variable is called determinant in the past of the trace if
it was not validated yet.

Let M be an EFSM. An Extended Candidate Configura-
tion Set (ECCS) is a 4-tuple (e,R,Assert,D), where e is
a state of M , R is an environment, Assert is an assertion,
and D is a set of determinant variables.

A configuration is validated (also called confirmed)
when it contains no more determinant (the set D is empty).

3. The Backward Checking Approach

3.1. Overview

The Backward Checking algorithm - as it was presented
in [1] is an approach of passive testing on EFSMs derived
from the testing by determination of the intervals of vari-
ables such as the precursor one of [6]. In this kind of passive
testing, the variables are defined in intervals and the goal is
to find inconsistency between these intervals and the infor-
mation given in the trace exploration about these variables.
We consider that we have a system under test on which we
place an observation point. We suppose that this observa-
tion point records the event traces respecting their causal

order. We assume that finding the order of these events is a
well studied and resolved problem.

We also consider that the observation can start at any
moment, without any preliminary operations. In particular
we don’t place the system under test into a known configu-
ration because it would mean that we somehow control the
system. If we control or interact with the system then we
enter in an active testing architecture - the topic of which is
beyond the scope of the present paper - and the problem can
be solved according to the works of this community.

The Backward Checking algorithm is composed of two
main phases. First, it follows a given event trace backward
to find the possible initial configurations at the beginning of
the trace. Secondly, it starts from these configurations and
explore backward every possible path of the specification,
with help of prunning operations and a transition choice
strategy, to reduce as much as possible the search.

Figure 1. Overview of Backward Checking

3.2. In the trace

During the first phase, if an inconsistency is detected it
means that the event trace is not correct, and then an error
had been detected. If, in the end of the event trace analysis,
we didn’t find an inconsistency, it means the studied trace is
possible with the obtained initial configurations. Then, we
launch the second phase, that is to say the exploration of the
past of this trace.

3.3. In the past of the trace

In the second phase we try to confirm the intervals in
which the variables are defined according to the initial con-
figurations. The algorithm finishes with a positive answer
(trace is valid) at the first confirmed configuration, that is to
say the first configuration in which every variables had been
confirmed, or with a negative answer (invalid trace) if every
branch of the exploration tree leads to an inconsistency. We
can say that this algorithm is optimistic in the way that it
will be fast to say that there is no error, but slower to say
that there is one. This fact is coherent with reality because

we suppose that an error in an event trace is an exceptional
behaviour.

The different branches of the exploration tree are the pos-
sible successions of transitions, taken in a backward man-
ner, from the initial configurations resulting from the first
phase.

To avoid loops and reduce the size of the new configu-
rations we use the privation operator. It is defined in [1] as
follows :

Given four ECCS c1 = (e,R1, Assert1, D), c2 =
(e,R2, Assert2, D), ca = (e,Ra, Asserta, D) and cb =
(e,Rb, Assertb, D). Doing c1\c2 produces ca and cb such
that :

1. for ca :

(a) for each variable v, we have got : Ra(v) =
R1(v) ∩ R2(v) where ∩ is the intervals intersec-
tion operator,

(b) Asserta = Assert1 ∧ Assert2, where ∧ is the
boolean “and” operator,

2. for cb :

(a) Rb = R1,

(b) Assertb = Assert1 ∧ (
|V |−1∨
i=0

(vi 6∈ R2(vi)))

where ∧ is the boolean “and” operator, and ∨ is
the boolean “or” operator (be careful of priorities
of parenthesis).

Let E1 and E2 be the cartesian products of the intervals
ofR1 andR2 respectively. The aim of the privation operator
is to obtain the E1 \E2 set - where \ is the set minus sym-
bol - possibly taking into account the assertion constraints.
Therefore the ECCS ca and cb will contain the cases of c1
that were not yet processed in c2. ca deals with the intersec-
tion of c1 and c2 whereas cb is the rest of c1 (cf Fig.2).

Ca

Cb

C1

C2

Figure 2.

3.4. Transition Choice Strategy

In addition the transitions are choosen through a process
of selection depending on several criteria. This strategy is
the following: the transitions are classified by order or pri-
ority where the biggest priority means the most chances this
transition can lead to a verdict. The three criteria are :

- the starting state of the transition is the initial state of
the EFSM. It is obvious that if we arrive at the ini-
tial state of the specification, the variables will be con-
firmed or leading to an inconsistency;

- the starting state of the transition is a state that was
never seen in a former configuration. In this case we
open more paths if the transition is successfully pro-
cessed;

- the transition “determines” a variable, that is to say
there is an action involving the variable v and v is the
left member of the action. It is clearly an attempt to
confirm the variable v.

For each criterion, a weight is given (empirically). Lets con-
sider that the weights are named respectivelely w1, w2 and
w3 for the three criteria seen above and a is the number
of actions in the transition. The global priority Wt is then
given by the following formula :

Wt = w1 + w2 + a.w3

3.5. The main algorithm

Considering all the concepts defined above we can
present in the following the main algorithms. The algo-
rithm for the trace simply consists in backtracking transi-
tions along the trace, and in invaliding it if an inconsistency
is found. The algorithm for the past of the trace is also a
transition backtracking but without guidance of events (no
more trace), associated with the operations to reduce search
space and the Transition Choice Strategy.

4. Parallelized Backward Checking

In this section we discuss the parallel version of Back-
ward Checking algorithm and its benefits on the complex-
ity.

In order to improve furthermore the efficiency of the
backward checking algorithm we present the following al-
gorithms. As we can deduct from the study of the backward
checking algorithm, the first part (the trace) will be treated
in parallel but without reducing the complexity given the
fact that it is closely bound to the trace. Actually, we saw it
is proportional to the length of the trace, so we can only re-
duce the proportion multiplicator with the parallel version.

The most interesting problematic is to parallelize the sec-
ond part of the algorithm (past of the trace). In the previous
sections we presented the process of the algorithm in the
past and we presented the operations on the configurations.
We have to make an important remark at this point of the
paper : the operations provide us a way to get independent
configurations. In fact, if two configurations are dependent
on one another it means that a total or partial inclusion ex-
ists between them - this will be detected by intersection and
privation operations. The study of configurations is then
possible in parallel. First, we present three variants of the
parallel approach, and then we discuss their advantages and
drawbacks.

For each of the following algorithms we have a paral-
lel loop that computes the predecessor set of an ECCS. It
means that if we dispose of a set of ECCS (c1, . . . , cn), all
these configurations are processed in parallel instead of be-
ing processed sequencially. Nevertheless, we must check
out and erase eventual redundancies after obtaining the pre-
decessor set.

We can distinguish two methods to treat the parallelism:
the first is a parallel algorithm by round and the second is
a parallel algorithm without round that we call here direct
algorithm. The method by round treats a set of transitions in
parallel with a system of synchronization after each round
whereas the direct method doesn’t use synchronization.

For the redundancy checking in the method by round
we consider two main ways to do. Either we check each
new configuration with all the configurations seen till the
last round, and then check the configurations of the current
round between themselves, or we do the same in the oppo-
site order.

So, finally, there are three main ways to parallelize the
process : two by round and one direct. Now, we present
these algorithms.

For the following algorithms we consider thatQ is the set
of configuration-transition pairs to be explored, V is the set
of already-seen Extended Configurations, and X is the set
of Extended Configurations seen in the current round. Also
Back past transition(t, c) is a function that takes a con-
figuration c and backtracks transition t returning the new
configuration c′, Check redundancy(c′, V) takes a con-
figuration c′ and checks its inclusions with each configu-
rations of the set V , and Check redundancy till(c′, X, i)
compares c′ only with the i first configurations of the set
X (i excluded). More details about these operations can
be found in [1]. Also, c′.D denotes the determinant set D
of the configuration c′. The algorithms return TRUE if the
trace is correct, FALSE if it is not.

The first presented algorithm is the one proposed for a
processing with rounds and checking first the current round
found configurations with the configurations seen till the
last round, the second one is by round and checking first

the current round found configurations between themselves.
The third presented algorithm is the direct one.

4.1. The first method by round

initialize Q,V,X
whileQ 6= ∅ do

parallely for each i-processor do
take the i-th item < c, t > from Q
c′ ←−Back past transition(t, c)
if c′ 6= ∅ do

if c′.D = ∅ do
return TRUE

c′ =Check redundancy(c′, V)
if c′ 6= ∅ do

X ←− X ∪ c′
parallely for each i-processor do

c′ = Xi
c′ =Check redundancy till(c′, X, i)
if c′ 6= ∅ do

V ←− V ∪ c′
parallely for each transition t

where t.end state = c′.state do
calculate the weight of < c′, t >
insert < c′, t > into Q by its weight

return FALSE

4.2. The second method by round

initialize Q,V,X
whileQ 6= ∅ do

parallely for each i-processor do
take the i-th item < c, t > from Q
c′ ←−Back past transition(t, c)
if c′ 6= ∅ do

if c′.D = ∅ do
return TRUE

X ←− X ∪ c′
parallely for each i-processor do

c′ = Xi c
′ =Check redundancy till(c′, X, i)

if c′ 6= ∅ do
c′ =Check redundancy(c′, V)
if c′ 6= ∅ do

V ←− V ∪ c′
parallely for each transition t

where t.end state = c′.state do
calculate the weight of < c′, t >
insert < c′, t > into Q by its weight

return FALSE

4.3. Direct parallel method

initialize Q, V
while Q 6= ∅ do

parallely for each processor do
take the first item < c, t > from Q
c′ ←−Back past transition(t, c)
if c′ 6= ∅ do

if c′.D = ∅ do
return TRUE

sequencially do
c′ =Check redundancy(c′, V)
if c′ 6= ∅ do

V ←− V ∪ c′
if c′ 6= ∅ do

parallely for each transition t
where t.end state = c′.state do

calculate the weight of < c′, t >
insert < c′, t > into Q by its weight

return FALSE

5. Complexity

In the present section we discuss about the advantages of
the different algorithms and about the complexity of both
normal and parallel algorithms.

5.1. Compared study of the proposed algo-
rithms

In the previous subsection we proposed three algorithms.
Each one has advantages and drawbacks that the present
subsection wants to expose in order to define which method
looks the most interesting according to the specification.

First, we can emit a few comments about the number of
needed processors for the two methods (round and direct).

For a round method, the number of processors can be
limited to the number of transitions of the EFSM. Indeed, at
a given round we can’t have more transitions to backtrace
than the number of transitions contained in the EFSM. So
it’s not usefull to use more than |T | processors (where |T |
is the number of transitions of the EFSM). Neverthless, for
a correct processing the architecture has to prevent a transi-
tion from not having a corresponding processor. Finally, we
say the method by round needs exactly |T | processors.

For the direct method, as there is no synchronization, we
can only limit the number of processors to the number of
ECCS the EFSM can produce. This number is big and such
a requested architecture is surely not available in today’s
world for complex protocols or services. However, we don’t
need so many processors and in the limit case where we
have access to only one processor, the process is equivalent

to the former sequencial process (without any gain in per-
formance). So to have an effective gain we need at least two
processors, and in order to have an optimal gain we propose
to use an architecture with at least max|T ini|, the maxi-
mal number of entering transitions of a state from the EFSM
specification - this to cope with the last parallel loop of the
algorithm.

On the other hand, it is interesting to compare the three
algorithms in order to show which one is the most efficient
in a given situation. Let n be the number of already seen
configurations till the i-th round (for the methods by round)
or at a given time (for the direct method). We know that
in this case the maximal number of transitions to be anal-
ysed is equal to the number of transitions contained in the
EFSM. Let T be this number. The question we want to an-
swer is which technique will take the less time to analyse t
transitions (where t ∈ [0;T]).

For the direct method, we process one transition per pro-
cessor, then we eventually add new non-empty ECCS in
the already seen ECCS set and add the next transitions to
be backtracked according to their priority weight. In other
words, the already seen configuration set increases incre-
mentally after each processed transition that gives a new
non-empty ECCS. Then, the maximal time needed to pro-
cess the t transitions can be given by :

∑t−1
k=0(n+ k) = tn+

∑t−1
k=0 k(= tn+ t(t−1)

2)

For the first method by round (with comparison of ECCS
of the current round between themselves first), the maximal
number of comparison is :

∑t−1
k=0 k + xn(= xn+ t(t−1)

2),

where x is the number of refined ECCS remaining after
comparison with x ∈ [1; t]

For the second method by round the formula is :

tn+
∑y−1

k=0 k(= tn+ y(y−1)
2),

where y is the number of refined ECCS remaining after
comparison with y ∈ [1; t]

On the base of the above statements, we can compare
the different methods. First, we compare the direct method
with the first method by round. The direct method is more
efficient for t transitions iff :

tn+
∑t−1
k=0 k ≤

∑t−1
k=0 k + xn

tn ≤ xn
From the above lines we conclude that the direct method is
never better than the round one.

In the same way we determine that the direct method is
more efficient than the second method by round iff :

tn+
∑t−1

k=0 k ≤ tn+
∑y−1
k=0 k∑t−1

k=0 k ≤
∑y−1

k=0 k
t ≤ y

From these results we deduct that the direct method is al-
ways slower than any method by round.

We must also compare the two techniques by round and
we obtain :

∑t−1
k=0 k + xn ≤ tn+

∑y−1
k=0 k∑t−1

k=y−1 k ≤ (t− x)n
t(t−1)−y(y−1)

2 ≤ (t− x)n

This relation shows us that the first technique is the fastest
since there is at least one refinement (x < t) and n is big.
The number n will increase as the algorithm processes, and
its upper bound can be high. Then the first technique seems
to be more promising. But if x = t (no refinement) then the
first technique is better only if :

∑t−1
k=y−1 k(= t(t−1)−y(y−1)

2) = 0,

that is to say y = t (no refinement in the second technique
also). Unfortunately, there is no way to predict the number
of refinement in first nor second technique, and we count
on experiments to show which one is statistically more in-
teresting.

5.2. Some remarks

First we must note that the techniques by round don’t
really benefit from the Transition Choice Strategy as every
transition of a round is backtracked at the same time. It can
then make a sense if the processors are different and clas-
sified from the most to the less performant. Then the first
transition of the list - the most promissing one - is processed
by the most efficient processor and in case the transition
brings a positive conclusion (TRUE) the parallel algorithm
stops immediately.

The direct method suffers from its sequencial part. On
the other hand we can remark that this method uses opti-
mally the Transition Choice Strategy. In addition, it can
be efficient in case there are lots of unconsistent transitions
since the sequencial part is then not processed.

5.3. Complexity of the sequential Backward
Checking

In the first part of the algorithm (trace) the complexity
depends on the trace. We have according to [1]:

Proposition 5.1 Suppose that the observed event trace is of
length l, then the complexity of the first part of the presented
algorithm is proportional to l.

For the second part (past of the trace) the complexity de-
pends on the number of possible configurations. A configu-
ration includes a state number, interval of definition of vari-
ables, and a list of determinant variables. The complexity
of the second part of the algorithm is :

Proposition 5.2 Let ns be the number of states in the
EFSM of the specification, |R(xi)| the number of val-
ues the variable xi can take (in the interval of defini-
tion), and n the number of variables, then there is in
O(ns(

∏
i |R(xi)|)(2n − 1)) possible configurations.

We must balance this complexity with the power of the
algorithm. The worst case of this algorithm is the case
where there is an error because we must check every path
of the past. When there is no error the backward checking
algorithm gives a sure answer (in constrast with former al-
gorithms) at the first correct path we meet (that is supposed
to be fast using the transition choice strategy). Anyway, the
backward checking - if we consider only the trace analysis
- is an improvement of former algorithm, and has the same
complexity.

5.4. Gain in complexity

Here, we present the maximal complexity of our parallel
algorithm.

Obviously, concerning the trace itself the complexity of
normal and parallel algorithms are comparable. They are
both proportional to the length of the trace. The differ-
ence is that the normal algorithm processes a transition in
Nt where Nt is the number of transitions holding a given
event couple, while the parallel algorihtm does it in 1.

With regards to the past of the trace, the complexity of
the parallel algorithm is much lower. Actually, its maximal
complexity depends on the number of states in the EFSM
because the longest path without loops between two states
goes through all the other states once. Nevertheless, a loop,
in other words the path from a state to the same state through
a non empty sequence of transitions, does not imply that the
two considered configurations are equal. So the complexity
also depends on the values of the variables, and more spe-
cially of the one with the largest definition interval.

Proposition 5.3 Let |R(xi)| be the number of values the
variable xi can take (in the interval of definition), and Ns

the number of states in the EFSM. The complexity of the
parallel algorithm is then given by the following fomula :

max|R(xi)|.Ns

This result is very important because it makes from the
parallel backward checking algorithm the first ever made
linear algorithm for exhaustive error detection on EFSM.
Then a total real-time error detection is possible, and its ap-
plications in terms of implementation correction and also in
certain cases in Intrusion Detection System (IDS) is funda-
mental (cf. [10]).

6. Application examples

In this section we propose to illustrate the theoretical ad-
vantages of the parallel algorithm. For this purpose we in-
troduce four network protocols with various characteristics.
Two of them are small ones : Simple Connection Proto-
col (SCP), and Initiator-Responder Protocol (INRES). The
third, Optimized Link State Routing Protocol (OLSR) is
used in ad-hoc networks, and the fourth is the Open Shortest
Path First Protocol (OSPF) used in wired networks.

Then we present the compared performances of the al-
gorithms, emit remarks and conclude.

6.1. SCP

SCP allows us to connect an entity called upper layer to
an entity called lower layer after a negociation of the Qual-
ity of Service desired for the connection. SCP layer is be-
tween the two layers and has a role of intermediary for the
connection establishment. The upper layer communicates
the desired QoS to SCP layer and SCP layer gives three
tries to the lower layer to accept the QoS. If the three tries
fail, the upper layer must reinitiate the protocol. Elsewise, a
connection is open between the upper and lower layer, and
they can exchange data. An EFSM specification of this pro-
tocol can be found in [3].

6.2. INRES

The INRES System is a simplified service and protocol
- as SCP - that tries to establish a connection followed by
a data exchange between two processes : an initiator and a
responder. We consider in the study the EFSM of the initia-
tor process as described in [5]. In this system, the initiator
sends a first message and waits a limited time after which
it must reinitiate the protocol. If it receives the appropriate
message, the connection is established and the two process
can exchange messages.

6.3. OLSR

The OLSR protocol [11] is a link-state proactive protocol
designed specifically for mobile ad-hoc networks. OLSR
manages to diffuse routing information through an efficient
flooding technique. The key innovation of this protocol
is the concept of Multi Point Relays (MPRs). A node
multipoint relay is a subset of its neighbors whose com-
bined radio range covers all nodes two hops away. In or-
der for a node to determine its minimum multipoint relay
set based on its two-hop topology, periodic broadcasts are
required. Similar to conventional link-state protocols the
link information updates are propagated throughout the net-
work. However, in OLSR when a node has to forward a link

update it only forwards it to its MPR set of nodes. Finally,
the distribution of topological information is realized with
the use of periodic topology control messages and has as
a result each node knowing a partial graph of the topology
of the network that is further used to calculate the optimal
routes. An EFSM of this protocol is available in [10].

6.4. OSPF

OSPF [12] is a very widely spread intra-domaine routing
protocol using the Open Shortest Path First Algorithm. An
OSPF Neighbour State Machine is used to maintain con-
nections between two OSPF neighbour routers, and to ex-
change information on the link state through Link State Ad-
vertisement (LSA). The variables, like sequence numbers,
are used for recording the present connections state. Such
an EFSM is presented in [6].

6.5. Compared Performances

Given the EFSM of the pre-cited protocols, we can com-
pare the performances of the different algorithms on them.
To have a clear view of the results we sum them up in the
following tables. Ns is the number of states, Nv the num-
ber of variables, V number of values that each variable can
take, C the complexity, Li the largest variable interval, and
Np the number of required processors.

protocol Ns Nv V C

SCP 4 4 4; 4; 4;
4

15360

INRES 4 3 5; 6; 2 1680
OLSR 4 6 2; 2; 2;

2; 5; 5
100800

OSPF 8 8 1; 2; 2;
2; 2; 2;
2; 2

261120

Figure 3. Complexity of the Sequencial Algo-
rithm

protocol Li Ns Np C

SCP 4 4 8 16
INRES 6 4 28 24
OLSR 5 4 23 20
OSPF 2 8 88 16

Figure 4. Complexity of the Parallel Algorithm

In the two tables we present respectively all the char-
acteristics needed to compute the complexity of the non-
parallel and parallel algorithms. The figures in the tables
last columns are not in seconds nor milliseconds but in tran-
sition processing time. It allows us to compare the results
and can be abstracted to whichever unit of time. For in-
stance we can read from these tables : if we need 261120ms
(more than 4 minutes) to finish a trace analysis from OSPF
with sequential algorithm, we need only 12ms with the par-
allel algorithm.

There are few other details to be explained about the ta-
bles data. For the number of values that a variable can take
we made a simplification in two cases :

- in the INRES protocol one variable is not bounded
(old data) but as it is used only for a simple compar-
ison (no intern modification) we can abstract it to a
boolean;

- in the OSPF two variables are defined on the IP ad-
dress domain ([0; 232 − 1]) but are used for simple
comparison, so we abstracted them too.

We must note that the parallelization implies the use of
multi-processors architectures. Although there is no prob-
lem to organize a cluster of machines in wired world, it
isn’t the same situation for wireless networks in terms of
bandwidth and security. The only valid possible parallel
architecture for wireless protocols would be a massively
multi-processor machine treating the protocol and its con-
trol through our parallel algorithm at the same time. For
instance, it would need a 23 processors portable machine to
control OLSR in real situation, and that is the reason why
the OLSR example is nowadays not experimentally possi-
ble.

If we compare the protocols we can see that there is no
doubt about the gain the parallel algorithm brings : it is
70 (INRES) to more than 20000 (OSPF) times faster and
it processes the four protocols with an average of less than
20 transitions process, which is very low for an exhaustive
analysis.

However, we can wonder when we look at the INRES
protocol. Indeed, its complexity is 10 times lower than the
SCP’s one for the non-parallel algorithm and 1.5 time big-
ger for the parallel one. In addition, it needs even more
processors than OLSR which is commonly considered as
more complex. This can be explained by the fact that SCP,
INRES, and OLSR are comparable in terms of number of
states, but INRES uses variables that allows more values.
In practice, the limitating factor tends to be the number of
values allowed to the variables because EFSMs of real pro-
tocols are rarely composed of more than a ten of states.

7. Conclusion and future work

In this article we reminded the backward checking ap-
proach for passive testing, and its limitations. Then, we
proposed our contribution consisting in few methods of par-
allelization of the algorithm and the study of each of these
methods in terms of complexity and performance. Finally
we have shown the undeniable power of the parallel version
illustrated by the application to four well known and used
communication protocols. This study has proven the lin-
ear complexity of the parallel algorithm, then making from
it the first ever linear exhaustive algorithm for passive test-
ing, and a serious mean of real-time monitoring for real life
protocols and services.

Nevertheless, the application examples show the ex-
pected theoretical results. In other words, it would be a
priority, in a future work, to implement the complete sys-
tem architecture and evaluate the impact of different facts
such as the parallel schedule management or the synchro-
nizations, not taken into acount in this paper. It could be
also interesting to elaborate an incremental parallel back-
ward checking which could avoid repetitions in the com-
puting process. This point is left for study in a future work.

References

[1] B. Alcalde, A. Cavalli, D. Chen, D. Khuu, D. Lee, Net-
work Protocol System Passive Testing for Fault Man-
agement - a Backward Checking Approach, Lecture
Notes on Computer Science, vol. 3235, pages 150-166,
Springer, 2004.

[2] J.A. Arnedo, A. Cavalli, M. Núñez, Fast Testing of Crit-
ical Properties through Passive Testing, Lecture Notes
on Computer Science, vol. 2644/2003, pages 295-310,
Springer, 2003.

[3] A. Cavalli, C. Gervy, S. Prokopenko, New approaches
for passive testing using an Extended Finite State Ma-
chine specification, in Journal of Information and Soft-
ware Technology 45(12) (15 sept. 2003), pages 837-
852, Elsevier.

[4] R. Hao, D. Lee, and J. Ma, Fault Management for Net-
works with Link-State Routing Protocols Proceedings
of the IEEE/IFIP Network Operations and Management
Symposium (NOMS), April 2004.

[5] D. Hogrefe, Report on the Validation of the INRES Sys-
tem, Technical Report IAM-95-007, Universitat Bern,
November 1995.

[6] D. Lee, D. Chen, R. Hao, R.E. Miller, J. Wu and X. Yin,
A formal approach for passive testing of protocol data

portions, Proceedings of the IEEE International Con-
ference on Network Protocols, ICNP’02, 2002.

[7] D. Lee, A.N. Netravali, K. Sabnani, B. Sugla, A. John,
Passive testing and applications to network manage-
ment, IEEE International Conference on Network Pro-
tocols, ICNP’97, pages 113-122. IEEE Computer Soci-
ety Press, 1997.

[8] http://www.llnl.gov/computing/tutorials/parallel comp/

[9] R.E. Miller, and K.A. Arisha, On fault location in net-
works by passive testing, Technical Report #4044, De-
partement of Computer Science, University of Mary-
land, College Park, August 1999.

[10] J.M. Orset, B. Alcalde and A. Cavalli, An EFSM-
based Intrusion Detection System for Ad Hoc Networks,
ATVA’05, October 2005.

[11] T. Clausen and P. Jacquet, IETF RFC 3626 - Opti-
mized Link State Routing Protocol (OLSR) , The Inter-
net Society, October 2003.

[12] J. Moy, IETF RFC 2328 - OSPF Version 2 , The Inter-
net Society, April 1998.

[13] M. Tabourier and A. Cavalli, Passive testing and ap-
plication to the GSM-MAP protocol, in Journal of In-
formation and Software Technology 41(11) (15 sept.
1999), pages 813-821, Elsevier, 1999.

[14] B. Tork Ladani, B. Alcalde and A. Cavalli, Passive
Testing - a Constained Invariants Checking Approach,
Lecture Notes on Computer Science, vol. 3502, Else-
vier, 2005.

