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Abstract

In this paper, a Visual Selection and a Shifting Mecha-
nisms based on a lattice of coupled chaotic Wilson-Cowan
oscillators is proposed. The oscillators representing each
object in a given visual scene are synchronized to produce
a chaotic trajectory. A cooperation and competition mech-
anisms are also introduced to accelerate oscillating fre-
quency of the salient object as well as to slow down other
objects in the same scene. The model can not only discrim-
inate each object among others in a given visual scene, but
also deliver the focus of attention to a salient object in an
instant of time. In comparison to other visual selection ap-
proaches, this model presents at least three new features.
First, it is able to highlight objects in complex forms, includ-
ing those that are non-linear separable. Second, a shifting
mechanism used to change the focus of attention among the
objects. Lastly, oscillators representing the salient object
will jump from chaotic phase to periodic phase. This be-
havior matches well to biological experiments on pattern
recognition of rabbit. Computer simulations are performed
and the results show that the proposed model is promising
as a Selection Mechanism with Shifting embedded in a Vi-
sual Attention System.

1. Introduction

Due to the limited processing capacity of biological sys-
tems, some mechanisms have evolved in order to permit
these systems to perform tasks, such as scene interpreta-
tion, in real time. Visual attention is an efficient mechanism
that biological systems have developed to address the re-
duction of provided visual information. Attention can be
related to the individual capacity of discriminating one sig-
nificant stimulus among others. This process appears to op-
timize the search procedure by selecting a number of possi-

ble candidate image and feature subsets which can be used
in tasks such as recognition [21]. It is also responsible to
break down complex tasks into a series of small localized
computational tasks [9]. According to Tsotsos et al. [18],
intermediate and higher visual processes seem to select part
of the sensory information received from the world and use
just these selected data in a further processing. Visual at-
tention is also responsible for reducing the combinatorial
explosion resulting from the analysis of all incoming sen-
sory information and possible image relationships [14, 17]
and for identifying the part of the visual input where the
processing is performed at the same time which irrelevant
visual information is suppressed [5].

Visual attention is generated by a combination of in-
formation from the retina and early visual cortical areas
(bottom-up attention - scene dependent) as well as feed-
back signals from areas outside of the visual cortex (top-
down attention - task dependent) [10, 11]. Bottom-up at-
tention is a feedforward process formed by simple features
extracted from the input image, such as intensity, stereo dis-
parity, color, orientation, and others [10]. All this informa-
tion is combined to create a saliency map which represents
the conspicuity points in the visual input. The top-down at-
tention is responsible for modulating the competition of all
stimulus within the visual input. This last process entails
keeping in a short-term memory the information about lo-
cation or an object which is used as a target of attention to
influence the earlier visual processes [6].

In this work we are mainly concerned with bottom-up at-
tention. Most of the bottom-up visual attention models are
related to the concept of a Saliency Map [10]. In these mod-
els, the first stage of processing is responsible to decompose
the input image into a set of feature maps. After that, a
saliency map is generated by a combination of those fea-
ture maps. The saliency map is a topographical map which
represents, by a scalar quantity, all salient points over the
entire input visual stimulus [10, 11]. The main purpose of
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this map is to guide a selection mechanism, which is re-
sponsible for delivering the focus of attention in a specific
(or most conspicuity) region of the image.

Although several models of bottom-up visual attention
have been proposed, the Selection mechanism used by these
models are implemented by a Winner-Take-All (WTA) neu-
ral network where just one neuron is activated but not the
entire object becomes salient. For example, in the model
proposed in [11], when a neuron receives the focus of at-
tention, a circle with a fixed radius is considered to be the
region of attention of the model. In this case, it is not possi-
ble to deliver the attention to complex objects that are non-
linear separable. To deal with this limitation, new object
selection mechanism should be developed.

von der Malsburg [19] proposed a mechanism of tempo-
ral correlation as a representational framework. This the-
ory suggested that objects are represented by the tempo-
ral correlation of the firing activities of spatially distributed
neurons coding different features of an object. A natural
way of encoding temporal correlation is by using synchro-
nization of oscillators where each oscillator encodes some
features of an object [16, 20, 22]. Inspired from the bi-
ological findings and von der Masburg’s brain correlation
theory, Wang and his collaborators have developed oscilla-
tory correlation theory for scene segmentation [3, 4, 16, 23],
which can be described by the following rule: the neurons
which process different features of the same object are syn-
chronized, while neurons which code different objects are
desynchronized. There are two basic mechanisms working
simultaneously in each oscillatory correlation model: syn-
chronization and desynchronization. The former serves to
group neurons into objects while the latter serves to distin-
guish one group of synchronized neurons (an object) from
another. Oscillatory correlation theory has been extended
and successfully applied to various tasks of scene analysis,
such as image segmentation, motion determination, audi-
tory signal segregation, and perception ([22] and references
there in). Another way to model oscillatory correlation and
to achieve unlimited capacity of segmentation (number of
objects can be segmented in a given scene) is to utilize the
properties of chaos and chaotic synchronization [8, 24, 25].
In the model proposed by Zhao et. al. [25], a large num-
ber of locally coupled chaotic oscillators can be synchro-
nized, so that each object in a given scene is represented
by a synchronized chaotic trajectory in the corresponding
network. Consequently, all such chaotic trajectories can be
easily separated by the high sensitivity to initial conditions,
which is the hallmark of chaos, and the fact that a chaotic
trajectory is dense in its invariant set. With this procedure,
the authors claim that the model has unbounded capacity of
object segmentation.

The use of synchronization has also received additional
support from neurobiological findings which have demon-

strated that visual attention is strongly linked with syn-
chronization among neurons. Biological experiments have
shown that visual attention increases the coherence among
neurons responding to the same stimulus suggesting that
synchronization is an important mechanism for visual se-
lection [2, 7, 12, 13].

In this paper, we construct a chaotic oscillatory correla-
tion network for object selection with a shifting mechanism.
Our model is based on a network of coupled chaotic Wilson-
Cowan oscillators [25]. Such a network is used to create a
selection mechanism where one of several objects is high-
lighted (receives the focus of attention). As the system runs,
each group of neurons representing an object of a visual in-
put is synchronized and produce a unique chaotic trajectory.
At the same time, a competition mechanism is also intro-
duced, where synchronized neurons cooperate each other to
accelerate their firing frequencies and slow down other neu-
rons with different oscillating activities. Finally, the most
salient object will jump to a high frequency periodic os-
cillating phase, while all other objects will be quite silent.
After receiving attention, this object is inhibited in order
to permit others objects to become salient, it means, to re-
ceive the focus of attention. This later process can be seen
as a habituation system where the presence of a fixed win-
ner stimulus must be followed by a progressive diminution
of its response and allowing other stimulus to become active
(focus of attention shifting). In this paper, we consider pixel
intensity as visual attention clue, i.e., the brightest object is
considered as the most salient object.

The rest of the paper is organized as follows. In sec-
tion 2, the segmentation process performed by a network
of Wilson-Cowan oscillators is described and the proposed
model are presented. In Section 3, the results obtained
through simulation of the proposed model applied to syn-
thetic images are showed. Finally, in Section 4, conclusions
are drawn.

2. Model Description

In this section, we first present a network of coupled
chaotic Wilson-Cowan oscillators for scene segmentation.
Then we introduce new selection mechanism, embedded in
the segmentation network, to accomplish visual attention
task.

2.1. Scene Segmentation using Coupled
Wilson-Cowan Oscillators

The model is a two dimensional network and governed
by the following equations:

Third International Conference on Natural Computation (ICNC 2007)
0-7695-2875-9/07 $25.00  © 2007



ẋi,j = −axi,j + G(cxi,j + eyi,j + Ii,j − θx) + k∆xi,j

ẏi,j = −byi,j + G(dxi,j + fyi,j − θy) + k∆yi,j (1)

G(v) =
1

1 + e−(v/T )

where (i, j) is a lattice point with 1 ≤ i ≤ N , 1 ≤ j ≤ M .
k is the coupling strength. ∆xi,j and ∆yi,j are coupling
terms among excitatory units and inhibitory units, respec-
tively. They are defined by

∆vi,j = γi−1,j−1;i,j(vi−1,j−1 − vi,j) +
γi−1,j;i,j(vi−1,j − vi,j) +
γi−1,j+1;i,j(vi−1,j+1 − vi,j) +
γi,j−1;i,j(vi,j−1 − vi,j) +
γi,j+1;i,j(vi,j+1 − vi,j) + (2)

γi+1,j−1;i,j(vi+1,j−1 − vi,j) +
γi+1,j;i,j(vi+1,j − vi,j) +
γi+1,j+1;i,j(vi+1,j+1 − vi,j)

where

γi,j;p,q =
{

1, if element (i, j) is coupled to (p, q),
0, otherwise.

(3)
Without consider the coupling terms, eqn. (1) repre-

sents a Wilson-Cowan neural oscillator [1], which has been
widely used in neural network modeling. It is a feedback
loop between an excitatory unit (x) and an inhibitory unit
(y). Ii,j is an external stimulation received by oscillator
(i, j). If Ii,j is a constant, no chaos can appear since it is a
two-dimensional continuous flow. In order to get a chaotic
oscillator, the external stimulation is defined as a periodic
function: Ii,j(t) = Ai,jcos(t), where Ai,j is the ampli-
tude of external stimulation. In all simulations of this pa-
per, Ai,j is considered as a bifurcation parameter, which
receives gray level of an input pixel.

The segmentation strategy is described below. Consid-
ering a scene image containing several objects. The net-
work is organized that each element corresponds to a pixel
of the image and a proper parameter of each oscillator is
chosen to encode the gray level of the corresponding pixel.
As the system runs, the neurons self-organize according to
a predefined similarity criterion, such that the connections
between pairs of neighboring oscillators with similar gray
level will be maintained, while those connections between
oscillators of very different gray level will be cut. Conse-
quently, all neurons belonging to the same segment will be
synchronized to form a unique trajectory, then each object is
represented by a synchronized chaotic orbit. Following the

high sensitivity to initial conditions and the dense proper-
ties of chaos, all such synchronized chaotic trajectories will
be mutually different in time. In this way, objects in a given
scene can be segmented.

2.2. Network of Wilson-Cowan Oscillators
as a Visual Selective System with
Shifting

The proposed model can be seen as an adaptation of the
model described above with three new major features. First,
a mechanism to select a salient object by increasing the fir-
ing frequency of its corresponding oscillators, and by de-
creasing the firing frequency of the oscillators correspond-
ing to the other objects is implemented. Second, a shifting
mechanism is used to change the focus of attention among
the objects. And finally, the neurons representing the ob-
ject in the focus of attention change their behavior from a
chaotic to a periodic phase. These features satisfy the fol-
lowing essential requirements of a Visual Selection system:

• considering as input one or a combination of features
(Saliency Map), the neural network must highlight (se-
lect) the region of the image where the focus of atten-
tion should be directed;

• all other locations of the visual input must be sup-
pressed by the system in order to keep the focus of
attention on just one of the active objects.

• the focus of attention must be shifted to other remain-
ing active locations. It means that the neural network
must implement a type of habituation system where
the presence of a fixed winner stimulus must be fol-
lowed by a progressive diminution of its response and
allowing other stimulus to become active.

The spiking frequency of Wilson-Cowan oscillators can
be controlled by changing the parameter b in equation (1).
So, we first analyzed the bifurcation diagram of periodically
driven Wilson-Cowan oscillators by varying the parameter
b, as shown in Fig. 1. From this figure, we see that when
b ≤ 0.005 there is nearly no oscillation. As b increases
we see sessions of periodic windows and chaotic behavior.
When b is small the chaotic behavior is predominant, but as
b increases the periodic behavior becomes more frequent.

In Fig. 2, we show the time series of a Wilson-Cowan
oscillator varying b. From this figure we can notice that as
b increases, the frequency of oscillation increases. When b
takes a high value (for example, the case of b = 0.1 in the
figure), the oscillator not only fires more frequently, but also
shows periodic resembling behavior.

In our model, we take advantage of these oscillatory
changes to determine visual attention, which means that the
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Figure 1. Bifurcation diagram of periodically
driven Wilson-Cowan oscillators by varying
parameter b. The stepsize ∆b = 0.0001

synchronized oscillators corresponding to the salient object
will present a periodic oscillation, while the oscillators cor-
responding to the other objects will remain chaotic with low
frequency.

In order to achieve this behavior, we let the oscillators
run with a fixed b parameter until they synchronize and the
segmentation task can be performed. After that, whenever
any oscillator fires, say oscillator (i, j), it will produce two
types of signals: 1) a reinforcement signal to itself and all
other oscillators that fire together with it. This reinforce-
ment is weighted by the pixel intensity that feeds this oscil-
lator; 2) an inhibitory signal to all the oscillators that have
different activities to (i, j).

The reinformecement/inhibitory behavior is defined by
the following equation:

bp,q(τ) = bp,q(τ −1)+
α

M(τ)

∑
i,jε∆(τ)

ωi,jf(||xi,j −xp,q||)

(4)

bmin ≤ bp,q(τ) ≤ bmax (5)

where (p, q) is neuron’s index, τ is a time instant with at
least one firing oscillator, M(τ) is the number of oscillators
at the firing state in τ time, ∆(τ) is the set of oscillators at
the firing state in τ time, bmin and bmax are constant, ||x||
is the norm of x, and f(x) = a1x + a2. By setting a1 < 0,
f(x) defines that each firing neuron, say neuron (i, j), may
send a positive or a negative signal to another neuron, say
(p, q), depending on the difference between them. Thus,
each neuron oscillator sends a positive signal to the oscil-
lators of the same group (represent the same object), while
it sends a negative signal to the oscillators of other groups.
ωi,j encodes the intensity of pixel (i, j).

200 400 600 800 1000 1200
−2

−1.5

−1

−0.5

0

0.5

t

x i,j

Figure 2. Temporal activities of oscillators
with b = 0.01, 0.02, 0.034, 0.05 and 0.1 respec-
tively. Vertical scale of second to fifth oscil-
lators were shifted downwards by 0.5

Each oscillator that receives a reinforcement signal will
increase the value of parameter b accordingly, while the os-
cillator receiving an inhibitory signal will decrease the value
of parameter b as well. The maximum value of b an oscil-
lator can take is bmax, while the minimum value is bmin.
After some time, only the oscillators corresponding to the
salient object will keep firing, increasing their activation
frequency until they enter a chaotic state with fixed phase.
The oscillators corresponding to the non-salient objects will
gradually decrease their activation frequency and maintain
chaotic both in amplitude and phase. In our model, this ob-
ject which remains active is the one that will receive the
focus of attention.

A group of neurons representing an object is considered
to be salient when the parameter b = bmax. At this moment,
all these neurons are firing with fixed frequency. After that,
the habituation mechanism is triggered, which is responsi-
ble for inhibiting this object and allowing a shifting of the
focus of attention to another salient object. All inhibited ob-
jects remain quite silent, it means, with a small chaotic fir-
ing frequency. When all salient objects in the input image
become inhibited, all neurons representing them are reset
and allowed to receive the focus of attention again.

3. Computer Simulations

This section presents the simulation results performed on
synthetic images in order to check the viability of the pro-
posed model as a Selection Mechanism with shifting of the
focus of attention.

In all simulations of this paper, the following parameters
are held constant at: a = 1.0, c = 1.0, d = 0.6, e =
−2.5, f = 0.0, k = 4, θx = 0.2, θy = 0.15, T = 0.025,
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Figure 3. Artificial image with 4 objects. (25×
25 pixels).

bmin = 0.009, bmax = 0.1, α = 0.001, a1 = −4, a2 = 1,
and the initial value of b is 0.02. Such a configuration can
guarantee that initially each oscillator is chaotic [25]. With
these parameter values, we perform some experiments with
synthetic images.

The first experiment was carried by using the artificial
image shown in Fig. 3, which has 4 objects with differ-
ent gray levels. Figure 4 shows the temporal activities of
oscillator groups where the first 200 steps are the transient
period responsible for the segmentation process. After that,
we can see the behavior of the system delivering the atten-
tion to a specific object and switching the focus of attention
among the objects of the image. As mentioned above, in our
simulations only the intensity of pixels are used as input. It
means that the object with the highest intensity receives the
attention earlier than other objects with lower intensity.
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Figure 4. Temporal activities of oscillator
blocks. Each trace in the figure corresponds
to an object in the input pattern of Fig. 3.
Vertical scale of the second objects is shifted
downwards by 0.5.

Our second experiment is performed by using the artifi-

cial image shown by Fig 5 containing 5 objects of differ-
ent gray levels. It can be seen from the figure that the five
objects are linearly nonseparable. Even though, the 5 ob-
jects are correctly segmented and Fig. 6 shows the tempo-
ral activities of the oscillators corresponding to each object.
Again, we see the behavior of the system where the atten-
tion is delivery to one of the five objects in an instant of
time.

In both experiments it is possible to see that the fre-
quency of non-highlighted objects remain quite silent and
chaotic, while the frequency of the object in the focus of at-
tention is increased and the neurons start to fire with fixed
frequency as it was expected.

Figure 5. Artificial image with 5 with 4 linearly
nonseparable objects. (25 × 25 pixels)
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Figure 6. Temporal activities of oscillator
blocks. Each trace in the figure corresponds
to an object in the input pattern of Fig. 6.
Vertical scale of second to fifth objects are
shifted downwards by 0.5.

4. Conclusions

This paper presents a Visual Selection Mechanism and
a Shifting Mechanism based on a network composed of
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chaotic Wilson-Cowan oscillators. These mechanisms can
be seen as part of a Visual Attention System, which are re-
sponsible for selecting one of several regions of interest into
the visual input image and also to switch from one previ-
ously selected object to another. The proposed model uti-
lize the properties of chaos and chaotic synchronization to
discriminate the objects that compose the visual input and
also included a inhibition mechanism which is responsible
for highlighting the most salient object. Another interesting
characteristic of the proposed model is its change of behav-
ior when the object receives the focus of attention. In this
case, the former chaotic behavior gives place to a trajectory
with fixed phase, which has been observed in the biological
experiments of pattern recognition of rabbit [15].

Computer simulations were performed in order check its
viability as a selection mechanism and the results show that
our model is a promising mechanism for computer vision
systems.

As a future work we intend to create a complete saliency
map using other features, such as color, saturation, orienta-
tion, etc. in order to test our model using real images and
compare our results with other models based on saliency
maps. In addition, we will also verify the possibility of in-
cluding some biasing mechanism to emulate top-down fac-
tors based on prior knowledge of the visual input, such as a
memory holding a specific object.
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