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ABSTRACT

State-of-art deep neural networks (DNN) are vulnerable to attacks by adversarial examples: a
carefully designed small perturbation to the input, that is imperceptible to human, can mislead DNN.
To understand the root cause of adversarial examples, we quantify the probability of adversarial
example existence for linear classifiers. Previous mathematical definition of adversarial examples
only involves the overall perturbation amount, and we propose a more practical relevant definition of
strong adversarial examples that separately limits the perturbation along the signal direction also. We
show that linear classifiers can be made robust to strong adversarial examples attack in cases where
no adversarial robust linear classifiers exist under the previous definition. The quantitative formulas
are confirmed by numerical experiments using a linear support vector machine (SVM) classifier. The
results suggest that designing general strong-adversarial-robust learning systems is feasible but only
through incorporating human knowledge of the underlying classification problem.

1 Introduction

The deep neural networks (DNN) are widely used as the state-of-art machining learning classification systems due to its
great performance gains in recent years. Meanwhile adversarial examples, first pointed out by Szegedy et al. (2014),
emerges as a novel peculiar security threat against such systems: a small perturbation that is unnoticeable to human
eyes can cause the DNNs to misclassify. Various adversarial algorithms have since been developed to efficiently find
adversarial examples (Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016; Carlini and Wagner, 2017; Madry et al.,
2018). The adversarial examples have also been demonstrated to misled DNN based classification systems in physical
world applications (Sharif et al., 2016; Brown et al., 2017; Kurakin et al., 2018; Athalye et al., 2018a). Various defense
methods have also been proposed to prevent adversarial example attacks: Adversarial training (Szegedy et al., 2014;
Goodfellow et al., 2015); Defensive distillation Papernot et al. (2016); Minmax robust training (Madry et al., 2018;
Sinha et al., 2018); Input transformation Xu et al. (2017). However, many of the defenses are shown to be vulnerable to
attacks taking such defense strategies into consideration (Athalye et al., 2018b).

Recently, Shafahi et al. (2019) showed that, for two classes of data distributed with bounded probability densities on
a compact region of a high dimensional space, no classifier can both have low misclassification rate and be robust
to adversarial examples attack. So are we left hopeless against such threat? Theoretical analysis for understanding
adversarial examples is needed to address this issue. Goodfellow et al. (2015); Fawzi et al. (2018) pointed out that
susceptibility of DNN classifiers to adversarial attacks could be related to their locally linear behaviours. The existence
of adversarial examples is not unique to DNN, traditional linear classifiers also have adversarial examples. In this paper,
we extend the understanding of adversarial examples by quantifying the probability of their existence for a simple case
of linear classifiers that performs binary classification on Gaussian mixture data.

In previous literature, a data point x is mathematically defined as having an adversarial example x′ = x + v when
the perturbation amount ‖v‖ is small and x′ is classified differently from x. This definition does not exclude genuine
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signal perturbation. For example, if a dog image x is perturbed to an image x′ that is classified as a cat by both human
and the machine classifier, then x′ should not be an adversarial example even if ‖v‖ = ‖x′ − x‖ is small. The proper
definition needs to capture the novelty of adversarial examples attack: while a human would consider two images x′
and x very similar and consider both clearly as dogs, a machine classifier misclassifies x′ as a cat. While defining
genuine signal perturbation for general learning problems is difficult mathematically, the signal perturbation is clear in
the binary linear classification for Gaussian mixture data. We therefore propose a new definition of strong-adversarial
examples that limits the perturbation amount in the signal direction separately from the limit on overall perturbation
amount.

In this paper, we derive quantitative formulas for the probabilities of adversarial and strong-adversarial examples
existence in the binary linear classification problem. Our quantitative analysis shows that an adversarial-robust linear
classifier requires much higher signal-to-noise ratio (SNR) in data than a good performing classifier does. Therefore, in
many practical applications, adversarial-robust classifiers may not be available nor are such classifiers desirable. On the
contrary, useful strong-adversarial-robust linear classifiers exists at the SNR similar to that required by the existence of
any useful linear classifiers, however, they require better designed training algorithms.

The paper is organized as follows. Section 2 presents the notations and definitions of (strong-)adversarial examples
and derive explicit formulas for the probability of their existence. Section 3 presents numerical experiments. The
formulas are confirmed experimentally, and then are used to illustrate their implication on the vulnerability against
(strong-)adversarial example attacks. Section 4 discusses how our results relate to some works in literature and
summarize their implication on general adversarial attack defenses.

2 Adversarial Rates Analysis of Linear Binary Classifier on Gaussian Mixture Data

We first introduce our definitions of adversarial and strong-adversarial examples, and then we characterize their existence
through defining sets. Using the defining sets, we derive explicit probability rates of (strong-)adversarial examples
existence for linear classifiers on Gaussian mixture data.

2.1 Definition of Adversarial and Strong-Adversarial Examples

The classical adversarial examples are defined as follows:

Definition 1. 1 Given a classifier C, an ε-adversarial example of a data vector x is another data vector x′ such that
‖x− x′‖ ≤ ε but C(x) 6= C(x′).

Without loss of generality, in this paper we focus on `2 norm perturbations. If not specified, ‖·‖ in the following refers
to the `2 norm. The general `p norm (p ≥ 1) perturbation is studied in the Appendix 5, and the results will be stated in
the discussion section.

For a general machine classification problem, it is reasonable to only consider adversarial examples since the signal
direction is often not easily definable mathematically. Here we consider the simple binary linear classification of
Gaussian mixture data where the signal direction can be clearly distinguished. For two classes labeled ‘+’ and
‘−’ respectively, a linear classifier is C(x;w, b) = {w · x + b > 0} where ‘·’ denotes the inner product of two
vectors. Here the parametersw and b are respectively the weight vector and the bias term. For the classical Gaussian
mixture data problem, for each of the two classes, the d-dimensional data vector x comes from a multivariate
Gaussian distribution N(µi, σ

2
i Id), i = ‘+’ or ‘−’. Notice the optimal ideal classifier here is the Bayes classifier

C(x;µ, µ̄) = {µ · (x− µ̄) > 0}2 where µ = 1
2 (µ+ − µ−), µ̄ = 1

2 (µ+ + µ−).

For this problem, the data distributions of the two classes only differ in their means µ+ and µ−. Thus the signal
direction is µ0 = µ/ ‖µ‖. Adding 2 ‖µ‖ amount of perturbation along the signal direction changes the ‘−’ class data
distribution to the ‘+’ class data distribution exactly, rending all classifiers unable to defend against such a perturbation.

In previous literature, the adversarial examples definition does not limit perturbation along the signal direction, therefore
we propose a new definition that limits the perturbation along the signal direction separately by an amount δ, we will
refer these examples as strong-adversarial examples .

Definition 2. Given a classifier C, an (ε, δ)-strong-adversarial example of a data vector x is another data vector x′
such that ‖x− x′‖ ≤ ε and |(x− x′) · µ0| ≤ δ but C(x) 6= C(x′).

1We don’t distinguish the targeted and untargeted adversarial examples here because for binary classification they are the same.
2Here we just use the optimal Bayes classfier for balanced case since we are focusing on the balanced case in the following text.
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To illustrate the difference between the adversarial examples and the strong-adversarial examples, we consider the
following examples visualized in Figure 1. Here, Figure 1(a) shows a data vector x of dimension d = 19× 19 = 361
from the ‘+’ class. To visualize, each component of the data vector is mapped onto [0, 1] via function 1

2 (tanh 2x
3 + 1)

and then displayed in grey scale as a 19× 19 image (Carlini and Wagner, 2017).

Figure 1: (a) a data point x from the ‘+’ class; (b) a randomly perturbed x′; (c) an adversarial x′ but not strong-
adversarial; (d) a strong-adversarial x′. All three perturbations are of the same amount ε = 5.7 and ‖µ‖ = 4. The
center grid cell within the red boundary contains the real class signal.

The two means µ+ and µ− are chosen to be zero at every component of the vector except the component corresponding
to center grid cell (shown with red boundary in Figure 1). Hence the optimal Bayes classifier identifies the image
as from ‘+’ (or ‘−’) class when the center grid cell within the red boundary appears to be white (or black). With a
perturbation amount of ε = 0.3× 19 = 5.7, Figure 1(b) shows a randomly perturbed x′ which is hardly distinguishable
from the first image x to the human eye. This confirms that, in defending against realistic threats, ε of magnitude
O(
√
d) needs to be studied. (Detailed discussion of ε order is in subsection 2.3.)

For a trained support vector machine (SVM) classifier, Figure 1(c) and (d) shows two adversarial examples with the
same ε = 5.7, but only the last one in (d) is strong-adversarial for δ = 1.2. (Section 3 provides detailed setup of this
experiment.) The adversarial attacks present a novel threat: a machine classifier misclassifies the perturbed data points
that a human would not have noted the difference. We can see that our strong-adversarial example definition focus
attention on this novel threat. In contrast, under the traditional definition, the adversarial examples include examples
similar to Figure 1(c) that would indeed be classified by human into another class. We now quantitatively analyze the
existence of adversarial and strong-adversarial examples.

2.2 The Defining Sets

Here we characterize the defining sets where the (strong-)adversarial examples exist. Then we quantify the probability
of data falling into these defining sets in the next subsection 2.3.

We denote Ωε = {x : x has an ε-adversarial example} and Ωε,δ = {x : x has an (ε, δ)-strong-adversarial example}.
Furthermore, for a fixed perturbation v, we denote the set where v changes classification as Ω(v) = {x ∈ Rd :
C(x+ v) 6= C(x)}.
For any data point x in Ωε, there exists a v with ‖v‖ ≤ ε such that x + v is classified differently from x. In other
words, the distance of x from the classifier’s decision boundary is less than ε. For a linear classifier C(x;w, b) =
{w ·x+ b > 0}, the normal direction of its decision boundary is v0 = w/ ‖w‖. Thus, perturbing x by ε amount along
one of the two directions v0 or −v0 will cross the linear decision boundary. That is, Ωε ⊆ Ω(εv0) ∪ Ω(−εv0). Since
it is obvious from the definition that Ωε =

⋃
‖v‖≤ε Ω(v) ⊇ Ω(εv0) ∪ Ω(−εv0), we have Ωε = Ω(εv0) ∪ Ω(−εv0).

In summary, to judge if x ∈ Ωε, we only need to check the perturbation along the normal direction v0.

In contrast, our definition of strong-adversarial examples only allows δ amount of perturbation along the signal notation
µ0, hence it is not sufficient to only check perturbations εv0 and −εv0 for judging if x ∈ Ωε,δ. Let θ denote the
deflected angle between µ0 and v0. (Without loss of generality, we choose the θ value such that 0 ≤ θ ≤ π/2.) Then
we can decompose v0 into two components along and orthogonal to the signal direction µ0 respectively. That is,
v0 = cos θµ0 + sin θn0 where n = v0 − (v0 · µ0)µ0 and n0 = n/ ‖n‖. When ε cos θ ≤ δ, the adversarial example
resulting from the εv0 perturbation is also strong-adversarial by definition. When ε cos θ > δ, however, εv0 is no longer
an allowable perturbation in the strong-adversarial example definition. Then we need to check whether classification

3
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change is caused by a perturbation of δ amount along µ0 direction and
√
ε2 − δ2 amount along n0 direction. That is, ,

to judge if x ∈ Ωε,δ , we need to check perturbations u2 = δµ0 +
√
ε2 − δ2n0 and −u2. We summarize the defining

sets characterization in the following lemma whose detailed proof is in the Appendix 5.1.
Lemma 1. The defining sets for ε-adversarial and (ε, δ)-strong-adversarial examples are given by:

Ωε = Ω(εv0) ∪ Ω(−εv0); Ωε,δ = Ω(u2) ∪ Ω(−u2) (1)

where u2 = βµ0 +
√
ε2 − β2n0, β = min(ε cos θ, δ).

Next, we use these defining sets to quantify the probabilities of (strong-)adversarial example existence.

2.3 Adversarial and Strong-Adversarial Rates

For the binary classification problem, a random data vector comes from the Gaussian mixture distribution p(x) =
λ+ϕ+(x) + λ−ϕ−(x), where ϕi(x) is the probability density function of the multivariate Gaussian N(µi, σ

2
i Id) and

λi is the probability that the data vector belongs to the class of i = ‘+’ or ‘−’. For simplicity, we focus on the balanced
classes case of λ+ = λ− = 0.5 and also σ+ = σ− = σ.

Adversarial Rate For a random data vector x from the ‘+’ class, it has an ε-adversarial example x′ if it is classified
correctly by w · x+ b > 0 and x ∈ Ω(−εv0). Thus the adversarial rate from the ‘+’ class is

λ+pr[w · x+ b > 0,w · (x− εv0) + b < 0 |ϕ+(x)] = 0.5pr[0 < w · x+ b < ε ‖w‖ |ϕ+(x)]. (2)

Since under the multivariate Gaussian N(µ+, σ
2Id) distribution ϕ+(x), w · x+ b is a univariate Gaussian random

variable with mean w · µ+ + b and variance ‖w‖2 σ2, the above quantity becomes

0.5

[
Φ

(
ε ‖w‖ − (w · µ+ + b)

‖w‖σ

)
− Φ

(
−(w · µ+ + b)

‖w‖σ

)]
. (3)

Here Φ(·) denotes the cumulative distribution function (CDF) of the standard Gaussian distribution N(0, 1). Similarly,
the adversarial rate from the ‘−’ class is

λ−pr[−ε ‖w‖ < w · x+ b < 0|ϕ−(x)] = 0.5

[
Φ

(
−(w · µ− + b)

‖w‖σ

)
− Φ

(
−ε ‖w‖ − (w · µ− + b)

‖w‖σ

)]
. (4)

Recall µ = 1
2 (µ+ − µ−), µ̄ = 1

2 (µ+ + µ−). If we denote b′ = w · µ̄+ b, then we can rewritten the expressions as
w · µ± + b = ±w · µ+ b′. Combining equations (3) and (4), we have the overall adversarial rate as

padv = 0.5

[
Φ

(
ε
σ −

w·µ+b′
‖w‖σ

)
− Φ

(
− w·µ+b′
‖w‖σ

)
+ Φ

(
w·µ−b′
‖w‖σ

)
− Φ

(
− ε

σ + w·µ−b′
‖w‖σ

)]
= 0.5

[
Φ

(
w·µ+b′
‖w‖σ

)
− Φ

(
w·µ+b′
‖w‖σ −

ε
σ

)
+ Φ

(
w·µ−b′
‖w‖σ

)
− Φ

(
w·µ−b′
‖w‖σ −

ε
σ

)] (5)

Also notice that the misclassification rates from the two classes are respectively λ+Φ[−(w · µ+ + b)/(‖w‖σ)] =
0.5{1− Φ[(w · µ+ b′)/(‖w‖σ)]} and λ−{1− Φ[−(w · µ− + b)/(‖w‖σ)]} = 0.5{1− Φ[(w · µ− b′)/(‖w‖σ)]}.
Thus the overall misclassification rate is

pm = 1− 0.5

[
Φ

(
w·µ+b′
‖w‖σ

)
+ Φ

(
w·µ−b′
‖w‖σ

)]
. (6)

We combine equations (5) and (6) into the following Theorem.
Theorem 1. The overall adversarial rate of a linear classifier for the balanced Gaussian mixture data is

padv = 1− pm − 0.5

[
Φ

(
w·µ+b′
‖w‖σ −

ε
σ

)
+ Φ

(
w·µ−b′
‖w‖σ −

ε
σ

)]
. (7)

To be robust against adversarial attacks, a linear classifier needs a low adversarial rate. For the classifier to be useful, it
also needs a low misclassification rate. Hence we should look at the sum of misclassification rate and adversarial rate,
which we call the adversarial-error rate:

perr = padv + pm = 1− 0.5

[
Φ

(
w·µ+b′
‖w‖σ −

ε
σ

)
+ Φ

(
w·µ−b′
‖w‖σ −

ε
σ

)]
(8)

4
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Comparing equation (8) with (6), we can see why adversarial-robustness is hard to achieve.

First, the misclassification rate pm in (6) is minimized by the Bayes classifier with b′ = 0 andw ·µ = ‖w‖ ‖µ‖. Hence
the best pm value is 1−Φ(‖µ‖ /σ). There exists useful classifiers when ‖µ‖ /σ is big enough to make 1−Φ(‖µ‖ /σ)
small. This is achieved for ‖µ‖ /σ = O(1). For example, when ‖µ‖ /σ = 3, the misclassification rate of the Bayes
classifier is around 0.1%.

However, to achieve a low adversarial-error rate in (8), the required SNR ‖µ‖ /σ can be much bigger. When
w · µ > ε ‖w‖, a lower bound for the adversarial-error rate is

perr ≥ 1− Φ

(
w · µ
‖w‖σ

− ε

σ

)
≥ 1− Φ

(
‖µ‖
σ
− ε

σ

)
. (9)

Therefore, the existence of a useful adversarial-robust linear classifier requires ‖µ‖ /σ − ε/σ = O(1) instead. Notice
that, for this Gaussian mixture data setup, the noise in each class follows the N(0, σ2Id) distribution with an expected
square of `2 norm of dσ2. Therefore, for a positive constant value ηa < 1, the perturbation amount of ε = ηa

√
dσ is

smaller than the average noise in data and generally is hard to detect. Hence, for the typical high-dimensional data
applications, an adversarial-robust linear classifier needs to protect against perturbation amount of ε = O(

√
d) which

implies that ‖µ‖ /σ = O(
√
d) is needed from equation (9). Next, we show that this high SNR requirement is not

needed for a strong-adversarial-robust linear classifier.

Strong-Adversarial Rate The derivation of the strong-adversarial rate is very similar to that of the adversarial rate.
From equation (1), the difference between the adversarial defining set and the strong-adversarial defining set is only
that εv0 is replaced by u2 = βµ0 +

√
ε2 − β2n0. Hence the strong-adversarial rate from the ’+’ class is

0.5pr[0 < w · x+ b < w · u2|ϕ+(x)].

Since w · µ0 = ‖w‖ cos θ and w · n0 = ‖w‖ sin θ, we have w · u2 = (β cos θ +
√
ε2 − β2 sin θ) ‖w‖ where

β = min(ε cos θ, δ). We denote

g(ε, δ, θ) = β cos θ +
√
ε2 − β2 sin θ. (10)

Thus replacing ε ‖w‖ by g(ε, δ, θ) ‖w‖ in equations from (3) to (8), we have the following Theorem.

Theorem 2. The overall strong adversarial rate and strong-adversarial-error rate of a linear classifier are

ps−adv = 1− pm − 0.5

[
Φ

(
w · µ+ b′

‖w‖σ
− g(ε, δ, θ)

σ

)
+ Φ

(
w · µ− b′

‖w‖σ
− g(ε, δ, θ)

σ

)]
(11)

ps−err = ps−adv + pm = 1− 0.5

[
Φ

(
w · µ+ b′

‖w‖σ
− g(ε, δ, θ)

σ

)
+ Φ

(
w · µ− b′

‖w‖σ
− g(ε, δ, θ)

σ

)]
(12)

Compared to the analysis above, the existence of a useful strong-adversarial-robust linear classifier requires ‖µ‖ /σ −
g(ε, δ, θ)/σ = O(1) instead. Besides the overall perturbation amount ε, the function g(ε, δ, θ) in equation (10) is also
affected by two other factors: the signal direction perturbation amount δ and the angle θ between the classifier and
the ideal Bayes classifier. What is the practical relevant amount δ we should study? Let δ = ηsµ = ηs ‖µ‖. When
ηs > 1, a δ amount perturbation along the signal direction to all ’+’ class data points will make more than half of
them be classified as ’−’ by the Bayes classifier (also to human eye, e.g., Figure 1(c)). Therefore, when studying real
strong-adversarial perturbations (imperceptible to human but confuses machine) mathematically, we need to focus
on ηs < 1. That is, δ = O(1). Compared to the overall perturbation amount ε = O(

√
d) discussed earlier, we see

that δ � ε for typical high-dimensional data applications. When δ � ε, g(ε, δ, θ) ≈ δ cos θ + ε sin θ. Hence if
the linear classifier is well-trained to have small θ and small bias b′ (i.e., very close to the Bayes classifier), then its
strong-adversarial-error rate is approximately 1 − Φ[(1 − ηs)‖µ‖/σ], which can be made small when SNR ‖µ‖ /σ
is of order O(1). That is, with good training, we can find a useful strong-adversarial-robust linear classifier when
‖µ‖ /σ = O(1). In contrast, no training can make the linear classifier to be useful and adversarial-robust unless the
SNR ‖µ‖ /σ is much bigger, at the order of O(

√
d).

The conclusion for the analysis using `p norm (see Appendix 5 for details) is similar. There exists a useful strong-
adversarial-robust linear classifier for constant order SNR ‖µ‖ /σ = O(1), but a useful `p-adversarial-robust linear
classifier only exists when SNR is much bigger, at the order of O(dmin(1/p,1/2)).

5
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3 Numerical Studies and Analysis of Adversarial Examples

3.1 (Strong-)Adversarial Rates for the Linear SVM

Settings We first conduct numerical experiments of a support vector machine (SVM) classifier on the Gaussian
mixture data. We randomly generate 5000 data points from the balanced mixture distribution 0.5N(µ+, σ

2Id) +
0.5N(µ−, σ

2Id), and randomly splits them into 4000 train data and 1000 test data. We set µ+ = −µ− = [µ, 0, · · · , 0],
σ = 1 and d = 19 × 19. A linear SVM is trained on the training data using the python scikit-learn package and
its default setting. Then for each test data vector, we check if it has any adversarial and strong-adversarial example,
for ε = ηa

√
dσ = 19ηa and δ = ηsµ. Figure 1 earlier visualizes one such test data vector and its adversarial and

strong-adversarial examples for ηa = ηs = 0.3. We conduct this experiment for various values of η = ηa = ηs and
µ, and for each parameter combination, the simulation is repeated 1000 times. Figure 2 plots three empirical rates
(misclassification, adversarial-error and strong-adversarial-error), each averaged over the 1000 simulations, against µ
values, together with corresponding quantitative formulas from equations (6), (8) and (12). Figure 2(a)-(c) shows the
results for three perturbation levels of η = 0.05, 0.1, 0.3, with the empirical quantities shown with symbols and the
quantitative formulas shown in curves. The plots show very good agreement between the formulas with actual empirical
proportions.

Figure 2: Empirical probabilities and their theoretical values calculated from equations (6), (8) and (12), plotted versus
µ. (a) η = 0.05, (b) η = 0.1, (c) η = 0.3

In our simulation, µ = ‖µ‖ /1 = ‖µ‖ /σ is the SNR. Figure 2 shows that SVM have pretty good performance in terms
of misclassification rate once the SNR exceeds 2. However, it is not robust to (strong-)adversarial attacks when µ = 2,
and will only become robust for much larger SNR. The part of curves for µ < 2 have some fluctuations due to the fact
that the bias term b varies a lot when SNR is small. When µ ≥ 2, the SVM has b ≈ 0, and we can approximate the
(strong-)adversarial-error rate by dropping the bias term in (8) and (12) and replace θ with its asymptotic limit as given
by solving (θ, t) from the equations (Huang, 2017):

sin2 θ =
N

d

∫ t

−∞
(t− z)2ϕ(z)dz, cos θ =

N

d
· µ
σ

∫ t

−∞
(t− z)ϕ(z)dz (13)

where ϕ(z) is the density function of standard normal distribution. The rates plotted with these approximate formulas
overlap the curves on Figure 2 very well for the part µ ≥ 2. We use these formulas to study the robustness of SVM
against (strong-)adversarial examples.

Figure 3(a) plots the three error rates formulas of SVM when η = 0.3. Figure 3(b) plots the same rates for the Bayes
classifier. These two classifiers are similar in misclassification rates and adversarial-error rates, but are very different in
strong-adversarial-error rates. For a linear classier with small bias b′ ≈ 0, equations (6), (8) and (12) become:

pm ≈ 1− Φ

(
‖µ‖
σ

cos θ

)
, perr ≈ 1− Φ

[(
‖µ‖
σ
− ε

σ

)
cos θ

]
, ps−err ≈ 1− Φ

[(
‖µ‖
σ
− δ

σ

)
cos θ − ε

σ
sin θ

]
(14)

Setting θ = 0, we get the theoretical optimal rates achieved by the ideal Bayes classifier:

pidm = 1− Φ

(
‖µ‖
σ

)
, piderr = 1− Φ

(
‖µ‖
σ
− ε

σ

)
, pids−err = 1− Φ

(
‖µ‖
σ
− δ

σ

)
. (15)

Comparing equations (14) and (15), between the Bayes classifier and a linear classifier with small bias, both the
misclassification rate and adversarial-error rate differ by a factor of cos θ inside the Φ(·) function. However, comparing

6
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Figure 3: When η = 0.3, the three error rates (a) of SVM versus SNR µ; (b) of Bayes classifier versus SNR µ; (c) of an
unbiased linear classifier versus cos θ when µ = 2.

their strong-adversarial-error rates, besides the multiplicative factor cos θ, there is also an extra bias term − ε
σ sin θ

inside the Φ(·) function. Since ε
σ is of order O(

√
d), θ = o(1/

√
d) is needed for the linear classifier to approach the

optimal strong-adversarial-error rate. In contrast, for the misclassification rate and adversarial-error rate, only θ = o(1)
is needed to approach the optimal rates. Figure 3(c) plots these three rates versus cos θ when η = 0.3 and µ = 2. We
can see that misclassification rate is low for a wide range of cos θ values while the strong-adversarial-error rate only
becomes low when cos θ is very close to one.

3.2 Defending Against Strong-Adversarial Example Attacks

We have just seen that training a strong-adversarial-robust classifier needs stricter training requirements than those
for a classifier with low misclassification rate: θ = o(1/

√
d) versus θ = o(1). This is doable by incorporating some

extra knowledge about the classification setting into the training. As an illustration, we show the results of using
a naive method to find a sparse SVM in this case: for the SVM trained using standard method, takes ten non-zero
components of w with largest absolute coefficients and set rest of components zero. The left panel of Figure 4 plots the
strong-adversarial-error rates of this sparse SVM versus original SVM. We can see that the sparse SVM achieves a
low strong-adversarial-error rate very close to the optimal rate of the ideal Bayes classifier. However, the same way
of finding a sparse SVM does not produce strong-adversarial-robust classifier, shown in the right panel of Figure 4,
when the data are generated with µ+ = (µ, µ, ..., µ)/

√
d instead of µ+ = (µ, 0, ..., 0). The data distributions in these

two cases are equivalent with a change of coordinate systems. The sparse SVM fails in the second case since the extra
knowledge incorporated into training is incorrect (sparseness only happens in the first coordinate system but not in the
second coordinate system).

Figure 4: The strong-adversarial-error rates of standard SVM (SVM − s− err), the sparse SVM (sp− s− err) and
the ideal Bayes classifier (id− s− err). Left: µ+ = (µ, 0, ..., 0); Right: µ+ = (µ, µ, ..., µ)/

√
d. η = 0.3.

The above exercise shows that, even when adversarial examples are unavoidable, strong-adversarial-robust linear
classifiers can be found with extra structural information on the underlying problem. Notice that the sparse SVM above
provides good defense by using only the knowledge of a sparse representation existence (under the coordination system)
but not what the sparse representation is, with the later part learned from data by training. More generally, statisticians
have noticed that SVMs are suspect to the phenomenon of data-piling: there are more data points close to the decision
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boundary than Gaussian mixture distribution implies. The distance-weighted discriminant (Marron et al., 2007) can be
used to alleviate this data-piling phenomenon, and may be used to protect against strong-adversarial examples.

Figure 5: MNIST images of ’1’: (a) the original image, (b) an adversarial example with ε = 2.34, (c) a hand-made
example with ε = 2.28

For more general classification problems, the signal direction is harder to define. But the concept of adversarial versus
strong-adversarial examples still applies. Figure 5 shows an image of ’1’ from the MNIST data set, and two images with
added perturbations. (b) shows an adversarial example obtained by Carlini and Wagner (2017) algorithm with ε = 2.34,
that is misclassified by a DNN. (c) shows an image we made with a similar perturbation amount ε = 2.29. If a classifier
is adversarial-robust at level of ε = 2.34, then it needs to classify both images (b) and (c) as ’1’. However, classifying
image (c) as ’1’ clearly contradicts what a human would do, rendering the usefulness of the classifier for practical
applications in doubt. Generally, we should pursue a strong-adversarial-robust classifier, not an adversarial-robust one.

4 Discussions and Conclusions

In this paper, we provide clear definitions of adversarial and strong adversarial examples in the linear classification
setting. Quantitative analysis shows that adversarial examples are hard to avoid but also should not be of concern in
practice. Rather, we should focus on finding strong-adversarial-robust classifiers. We now consider the implications of
these results on studying adversarial examples for general classifiers, and their relationship to some recent works in
literature.

Recently, Shafahi et al. (2019) shows that no classifier can achieve low misclassification rate and also be adversarial-
robust for data distributions with bounded density on a compact region in a high-dimensional space. Our analysis does
not match exactly with their impossibility statement because we are studying the Gaussian mixture case, which has
positive density on the whole space. However, in spirit our results have similar implications: for the usual SNR O(1)
that allows low misclassification rate, generally it is impossible to be also adversarial-robust (for which a much bigger
SNR O(

√
d) is required).

Our results, however, do show that there can be adversarial-robust classifiers under the traditional definition when the
SNR is very big. Schmidt et al. (2018) has also shown that, for Gaussian mixture classification problem and a particular
training method, the adversarial-robustness is achievable but requires more training data than simply achieving the low
misclassification rate only. Our formula indicates that useful adversarial-robust classifier do exist at the SNR level they
assumed. Our study is more focused on the fundamental issue of when useful adversarial-robust classifiers exist, not
which training method and what data complexity will find such a classifier. However, our formulas do indicate that an
adversarial-robust classifier has to satisfy a stricter requirement than a good performing classifier. Thus either a better
training method or a higher data complexity is needed for finding a useful adversarial-robust classifier, agreeing with
the general theme of Schmidt et al. (2018).

Our results on the existence of adversarial examples do not change qualitatively when using other `p norm to measure
the perturbation: under traditional definition, useful adversarial-robust classifier exists only when the data distribution
has a very big SNR of O(dmin(1/p,1/2)) as shown in the Appendix 5. For many applications where good classifiers
exists (SNR of only O(1) ensures this), we can not pursue adversarial-robust classifier under the traditional adversarial
example definition 1. The current defense strategies based on such adversarial example definition likely will still be
suspect to more sophisticated adversarial attacks. For certifiable adversarial-robust classifiers (Madry et al., 2018; Sinha
et al., 2018), the robustness is achieved only for the perturbation amount ε high enough so that they differ from human
in classifying images like those in Figure 1(c) and Figure 5(c). Thus a paradigm change is needed: we should train a
classifier to be strong-adversarial-robust rather than adversarial-robust.

8



Understanding and Quantifying Adversarial Examples Existence in Linear Classification A PREPRINT

While the signal direction is obvious in the linear classification, the signal direction and the definition of strong-
adversarial examples in general classification warrants further study. The signal direction in the linear classification
here is the direction where the likelihood ratio of the two classes changes most rapidly. One reasonable extension is to
define the signal direction at any data vector x as the gradient direction of the likelihood ratio at x. Then similar to
definition 2, the strong-adversarial example for general classifier also restrict the change along this signal direction
to the amount δ. The strong-adversarial-robust classifiers therefore are likely to be very close to the Bayes classifier.
Some recent works have attempted training DNN to be close to the Bayes classifier: Wang et al. (2018) uses a nearest
neighbors method, and Schott et al. (2019) applies the generative model techniques. In particular, Schott et al. (2019)
applied their method on MNIST dataset, and when applying a specifically designed attack on such a trained DNN, the
adversarial examples found are semantically meaningful for humans. That is, these adversarial examples are adversarial
in traditional definition but likely not strong-adversarial. The new strong-adversarial examples framework can allow
theoretical quantification of the robustness for these training methods. The analysis of strong-adversarial-robustness for
general classifiers such as DNN can provide a new research direction on how to defend against realistic adversarial
attacks.
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5 Appendix

5.1 Proof of Lemma 1

Lemma 2. The defining sets for ε-adversarial and (ε, δ)-strong adversarial examples are given by:

Ωε = Ω(εv0) ∪ Ω(−εv0); Ωε,δ = Ω(u2) ∪ Ω(−u2) (16)

where u2 = βµ0 +
√
ε2 − β2n0, β = min(ε cos θ, δ).

Proof. Proof of the adversarial defining set formula. Since it is obvious from the definition that Ωε =⋃
‖v‖≤ε Ω(v) ⊇ Ω(εv0) ∪ Ω(−εv0), we only need to show that Ωε ⊆ Ω(εv0) ∪ Ω(−εv0). That is, for any data point

x ∈ Ωε, either x+ εv0 or x− εv0 changes its classification.

We now claim that the last statement is equivalent to that εv0 is the solution to the optimization problem:

maxw · v, v ∈ Dε = {v ∈ Rd : ‖v‖ ≤ ε}. (17)

To see this, if εv0 is the solution, then w · v ≤ w · (εv0) = ε ‖w‖ for all v ∈ D1. Now for a x classified into the ’−’
class and x ∈ Ωε, then w · x+ b < 0 and w · (x+ v) + b > 0. Hence

w · (x+ εv0) + b ≥ w · x+w · v + b > 0,

that is, x+ εv0 is misclassified into the ’+’ class thus x ∈ Ω(εv0). By symmetry, −εv0 is the solution to minw · v
when v ∈ D1, and hence −ε ‖w‖ ≤ w · v also for all v ∈ D1. Hence for a x classified into the ’+’ class and x ∈ Ωε,
similarly we have that x− εv0 is misclassified into the ’−’ class thus x ∈ Ω(−εv0).

Finally, εv0 is indeed the solution to (17) due to the Cauchy-Schwartz inequality w · v ≤ ‖w‖ ‖v‖ ≤ ‖w‖ ε. The first
equality holds if and only if v is along the same direction of w, thus v = cv0. The second equality holds if and only if
‖v‖ = ε, thus v = εv0. This finishes the proof for Ωε = Ω(εv0) ∪ Ω(−εv0).

Proof of the strong adversarial defining set formula. The proof follows exactly the outline of the adversarial case
proof above. Only now we need to prove that u2 is the solution to the optimization problem

maxw · v, v ∈ Dε,δ = {v ∈ Rd : ‖v‖ ≤ ε, |v · µ0| ≤ δ}. (18)

We can decomposew asw = (w ·µ0)µ0 + (w ·n0)n0, accordingly, v can be decomposed as v = (v ·µ0)µ0 + (v ·
n0)n0 + (v ·m0)m0, wherem0 is the unit normal vector of the plane spanned by µ0 and w, therefore

w · v = (w · µ0)(v · µ0) + (w · n0)(v · n0) = cos θ(v · µ0) + sin θ(v · n0) := x cos θ + y sin θ. (19)

The optimization problems becomes to maximize x cos θ + y sin θ in (19) under the constraints x2 + y2 = ε2 − (v ·
m0)2, |x| ≤ δ. This is a linear programming setup, it is easy to see that first we must have v ·m0 = 0 to reach maximum.
Then the solution is either at the corner (x, y) = (δ,

√
ε2 − δ2) or at the tangent point (x, y) = ε(cos θ, sin θ) as in

semi-adversarial case. If ε cos θ < δ, the solution is at the tangent point (x, y) = ε(cos θ, sin θ). Otherwise, the solution
is at the corner (x, y) = (δ,

√
ε2 − δ2). Combining the two cases, we arrive at the formula for u2 under equation (16).
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5.2 `p-Adversarial and `p-Strong-Adversarial Rates

In literature, the adversarial examples have been studied under different norms. Here we extend the analysis in main
text to the general `p norms with p ∈ [1,∞]3. That is, we use the distance metric dp(x,y) = ‖x− y‖p. Also, we
denote `q as the dual of `p, i.e., 1/p+ 1/q = 1.

Therefore the classical adversarial examples definition becomes the following.
Definition 3. Given a classifier C, an ε-`p-adversarial example of a data vector x is another data vector x′ such that
dp(x,x

′) ≤ ε but C(x) 6= C(x′).

As before, we restrict the perturbation amount along the signal direction µ0 to δ for strong-adversarial examples.
Definition 4. Given a classifier C, an (ε, δ)-`p-strong-adversarial example of a data vector x is another data vector
x′ such that dp(x,x′) ≤ ε and |(x− x′) · µ0| ≤ δ but C(x) 6= C(x′).

5.3 `p-Adversarial Rate and Existence of `p-Adversarial-Robust Classifiers

The analysis follows the same outline as the analysis for the `2 norm case. We first characterize the defining set
Ωε|p = {x : x has an ε− `p-adversarial example}.
Lemma 3. The defining sets for ε-`p-adversarial examples is given by:

Ωε|p = Ω(εv0|p) ∪ Ω(−εv0|p) (20)

where v0|p is the d-dimensional vector with component (v0|p)i = sgn(wi) · (|wi|/ ‖w‖q)q−1.

Here sgn denotes the sign function. That is, sgn(x) = 1 for x > 0; sgn(x) = −1 for x < 0 and sgn(0) = 0.

Furthermore, we denote the p-th power of a vector v = (v1, ..., vd) as taking the power component-wise. That is,
(vp)i = sgn(vi) · |vi|p. Then the above v0|p can be rewritten as v0|p = (w/ ‖w‖q)q−1.

Proof. The proof is similar to the proof of Lemma 2. Following the derivations there, we only need to show that
v0 = (w/ ‖w‖q)q−1 is the solution to the optimization problem:

max |w · v|, v ∈ Dε|p = {v ∈ Rd : ‖v‖p ≤ ε}. (21)

By Holder’s inequality, we have |w · v| ≤ ‖w‖q ‖v‖p ≤ ε ‖w‖q .

For the first “≤” to be “=”, vp has to be proportional towq. That is, for some constant c, v = cwq/p = cwq−1. For
the second “≤” to be “=”, we need ε = ‖v‖p. That is,

εp = ‖v‖pp = cp
d∑
i=1

|vi|p = cp
d∑
i=1

(|wi|q/p)p = cp
d∑
i=1

(|wi|q) = cp ‖w‖qq .

Hence we have ε = c ‖w‖q/pq = c ‖w‖q−1q , and thus c = ε ‖w‖1−qq . Plug c into v = cwq−1, we get
v = ε(w/ ‖w‖q)q−1 = εv0|p. This is the solution to the optimization problem. Hence arguments similar to
those for the proof of Lemma 2 above show that the equation (20) gives the defining set here.

With the characterization lemma 3, we can then compute the adversarial rate as before. Note that the misclassification
rate has nothing to do with the perturbation for adversarial examples. Thus regardless of which `p norm is used to
measure the perturbation, the misclassification rate is still given by the same formula as before.

pm = 1− 0.5

[
Φ

(
w · µ+ b′

‖w‖σ

)
+ Φ

(
w · µ− b′

‖w‖σ

)]
. (22)

The calculation of `p-adversarial rate follows `2-adversarial rate calculation exactly, except that the term ε ‖w‖2 is
replaced by w · εv0|p = ε ‖w‖q . Therefore, we have the following result.

Theorem 3. The overall `p-adversarial rate of a linear classifier for the balanced Gaussian mixture data is

padv|p = 1− pm − 0.5

[
Φ

(
w · µ+ b′

‖w‖2 σ
−
‖w‖q
‖w‖2

ε

σ

)
+ Φ

(
w · µ− b′

‖w‖2 σ
−
‖w‖q
‖w‖2

ε

σ

)]
. (23)

3We did not consider p ∈ [0, 1) because in this case, dp is not a metric, although practically, `0 is considered.
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Now we have the `p-adversarial error formula as the following.

perr|p = padv|p + pm = 1− 0.5

[
Φ

(
w · µ+ b′

‖w‖2 σ
−
‖w‖q
‖w‖2

ε

σ

)
+ Φ

(
w · µ− b′

‖w‖2 σ
−
‖w‖q
‖w‖2

ε

σ

)]
≥ 1− Φ

(
w · µ
‖w‖2 σ

−
‖w‖q
‖w‖2

ε

σ

)
= 1− Φ

(
‖µ‖2
σ

cos θ −
‖w‖q
‖w‖2

ε

σ

)
(24)

Corresponding to the discussions in the main text, a useful classifier only requires a signal-noise ratio (SNR) of
‖µ‖2 /σ = O(1) due to equation (22).

In contrast, due to equation (24), a necessary condition for the existence of a `p-adversarial-robust classifier is

‖µ‖2
σ
−
‖w‖q
‖w‖2

ε

σ
= O(1). (25)

We now investigate what order of SNR ‖µ‖2 /σ is needed to make (25) hold.

First, we have to find the practical relevant order of ε needs to be studied. The following lemma about the average
`p-norm of Gaussian noise will provide the guideline.

Lemma 4. Let the random vector x = (x1, ..., xd) follows the d-dimensional Gaussian distribution N(0, σ2Id). Then{
E[‖x‖pp] = mpdσ

p, p ∈ [1,∞),

E[‖x‖p] = O(
√

log dσ), p =∞, (26)

where mp denotes the p-th moment of the standard Gaussian distribution.

Proof. For p ∈ [1,∞),

E[‖x‖pp] = E[

d∑
i=1

|xi|p] =

d∑
i=1

E[|xi|p] = dE[|x1|p] = dσpmp. (27)

The `∞ result follows directly from the large deviation formula obtained by O’Brien (1974).

In the Gaussian mixture data, Lemma 4 states that the average `p noise is d1/pσm1/p
p . Therefore, for an η < 1, a

perturbation amount of ε = ηd1/pσm
1/p
p will be smaller than the average noise thus hard to distinguish from noise

(unless it concentrates in the signal direction). Thus any practical relevant defense needs to be robust at the minimum
against perturbations of order ε = O(d1/pσ). For the `∞, the defense needs to be robust at the minimum against
perturbations of order ε = O(

√
log dσ).

Plug-in these ε orders into the necessary condition (25), the existence of a `p-adversarial-robust classifier requires at

least ‖µ‖2σ = O(
‖w‖q
‖w‖2

d1/p) for p ∈ [1,∞); and it requires at least ‖µ‖2σ = O(
‖w‖q
‖w‖2

√
log d) for p =∞.

Next we use the norm comparison inequality to find these orders. For any w ∈ Rd and any 0 < r < s <∞, we have

‖w‖s ≤ ‖w‖r ≤ d
1/r−1/s ‖w‖s . (28)

(A) For 1 ≤ p < 2, we have 2 < q ≤ ∞. Using r = 2 and s = q in (28), we get

d1/q−1/2 ≤
‖w‖q
‖w‖2

≤ 1.

Plug this lower bound into the required order ‖µ‖2σ = O(
‖w‖q
‖w‖2

d1/p), the existence of a `p-adversarial-robust classifier
requires SNR of at least

‖µ‖2
σ

= O(d1/q−1/2d1/p) = O(d1/p+1/q−1/2) = O(d1/2).

(B) For 2 < p <∞, then q < 2 <∞. Using r = q and s = 2 in (28), we get

1 ≤
‖w‖q
‖w‖2

≤ d1/q−1/2.
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Thus the existence of a `p-adversarial-robust classifier requires SNR of at least

‖µ‖2
σ

= O(1 · d1/p) = O(d1/p).

(C) When p =∞, then q = 1. Using r = q and s = 2 in (28), we get

1 ≤
‖w‖1
‖w‖2

≤ d1/q−1/2.

Thus the existence of a `p-adversarial-robust classifier requires SNR of at least

‖µ‖2
σ

= O(1 ·
√

log d) = O(
√

log d).

We summarize the results for cases (A), (B) and (C) into the following theorem.
Theorem 4. For linear classification of balanced Gaussian mixture data, the existence of a `p-adversarial-robust
classifier requires SNR of at least

‖µ‖2
σ

=

{
O(dmin(1/p,1/2)) p ∈ [1,∞),

O(
√

log d) p =∞. (29)

Theorem 4 shows that the required SNR magnitude for `p-adversarial-robustness differs for different p. The `p-
adversarial-robustness is hardest to achieve for 1 ≤ p ≤ 2 since the required SNR O(

√
d) is highest in these cases. The

`∞-adversarial-robustness has the smallest SNR requirement, thus easiest to achieve. This agrees with the observation
by Schott et al. (2019): the `∞ robust classifier in Madry et al. (2018) is still highly susceptible to `2 attack.

5.4 `p-Strong-Adversarial Rate and Existence of `p-Strong-Adversarial-Robust Classifiers

Following the same derivations before, we have the following lemma for the defining set Ωε,δ|p = {x : x has an (ε, δ)−
`p-strong-adversarial example}.
Lemma 5. The defining set for (ε, δ)− `p-strong-adversarial examples is given by:

Ωε,δ|p = Ω(up) ∪ Ω(−up) (30)

where up is the solution to the optimization problem:

max |w · v|, v ∈ Dε,δ|p = {v ∈ Rd : ‖v‖p ≤ ε, |v · µ0| ≤ δ} ⊂ Dε|p. (31)

Notice the optimization problem of max |w · v| is a linear programming problem, and the feasible region Dε,δ|p is a
convex region. Therefore the solution up does exist.

Now replace the term ε ‖w‖2 by w · up in the previous derivations of (ε, δ)-strong-adversarial rate using `2 norm, we
get the following Theorem.
Theorem 5. The overall (ε, δ)− `p-strong-adversarial rate of a linear classifier for the balanced Gaussian mixture
data is

ps−adv|p = 1− pm − 0.5

[
Φ

(
w · µ+ b′

‖w‖2 σ
− w · up
‖w‖2 σ

)
+ Φ

(
w · µ− b′

‖w‖2 σ
− w · up
‖w‖2 σ

)]
(32)

We now try to find an SNR order that allows `p-strong-adversarial-robustness by applying formula (32) to the Bayes
classifier whose w = µ0 and b′ = 0. In this case, the solution to the optimization problem (31) becomes up = δµ0.
Thus using formula (32) we can get the (ε, δ)− `p-strong-adversarial-error rate for the Bayes classifier as

ps−err|p = 1− Φ

(
‖µ‖2 − δ

σ

)
. (33)

Since practical relevant δ can not exceed σ (in that case, no classifier can work as at least half of all data vectors will
be perturbed into another class), SNR ‖µ‖2σ of order O(1) can result in a useful `p-strong-adversarial-robust classifier.
This agrees with the conclusions in the main text about the existence of `2-strong-adversarial-robust classifiers.
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