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Abstract—Generative adversarial networks (GANs) have
shown promise for various problems including anomaly detection.
When anomaly detection is performed using GAN models that
learn only the features of normal data samples, data that are not
similar to normal data are detected as abnormal samples. The
present approach is developed by employing a dual-encoder in
a bidirectional GAN architecture that is trained simultaneously
with a generator and a discriminator network. Through the
learning mechanism, the proposed method aims to reduce the
problem of bad cycle consistency, in which a bidirectional GAN
might not be able to reproduce samples with a large difference
between normal and abnormal samples. We assume that bad
cycle consistency occurs when the method does not preserve
enough information of the sample data. We show that our
proposed method performs well in capturing the distribution of
normal samples, thereby improving anomaly detection on GAN-
based models. Experiments are reported in which our method is
applied to publicly available datasets, including application to a
brain magnetic resonance imaging anomaly detection system.

Keywords—anomaly detection; adversarial learning; generative
adversarial network; encoder, cycle consistency; latent space;
unsupervised learning; unbalanced datasets

I. INTRODUCTION

Anomaly detection is a well-known problem that fo-
cuses mainly on finding abnormal data behavior that differs
from a normal data distribution. Studies of the anomaly
detection problem have benefitted various fields, including
health care [1], video surveillance [2] [3], and image anal-
ysis [4]. Most anomaly detection problems, particularly in
high-dimensional image datasets, are defined by separating
abnormal samples that are visually different from the data
distribution. Separating anomalies from a data distribution
can be useful for improving product quality inspections in
manufacturing systems [5], detecting brain tumors in medical
images [6], and detecting anomalous objects in video surveil-
lance [2] [3].

In real-world applications, there is a strong need for
anomaly detection techniques that are able to handle distri-
butions of complex high-dimensional data. In terms of data
complexity, however, conventional anomaly detection methods
are unsuitable for solving the aforementioned problems [7]
[8]. Usually, only a small number of anomalous samples are
available, which leads to collection of an imbalanced data sam-
ple. This phenomenon has led researchers to propose learning
approaches in semi-supervised and unsupervised settings, such
as image reconstruction-based anomaly detection systems.

Anomaly detection methods based on generative adversar-
ial networks (GANs) have shown promising performance in
capturing the distributions of high-dimensional and complex

Fig. 1. Cycle consistency showing samples in data space and latent space Z.
All samples in data space are represented by x. The data samples x1 and x2

are in the normal data distribution, and the predefined latent variables z1 and
z2 are in latent space Z distributed in a circle. (a) Good cycle consistency
that reproduces input samples consistently. (b) Bad cycle-consistency in which
point x1 maps to z2 and reproduces x2 instead of the original point x1. The
depicted concept is introduced in [7].

data [1] [9]. In particular, Zenati et al. [9] proposed an anomaly
detection framework employing a bidirectional GAN (BiGAN)
[10] [11] that simultaneously learns an encoder, a generator,
and a discriminator during training.

BiGAN is trained through bidirectional adversarial learning
in which an encoder and a generator network are used to gen-
erate data both in data and latent space [7]. Working similarly
to an autoencoder in data reconstruction, BiGANs generate
normal and abnormal samples similar to the normal samples in
order to measure the abnormality through reconstruction error.
Data reproduction quality in BiGANs has shown limitations in
normal sample reconstruction, resulting in high reconstruction
error for normal samples. This could significantly degrade
the anomaly detection performance [10] [11]. This creates
an insufficient difference between samples. The condition
where a model cannot reproduce samples and gives large
reconstruction error is called bad cycle consistency [12]. Fig. 1
shows a conceptual image of cycle consistency.

This study assumes that bad cycle consistency can occur
as a result of a model not preserving enough information of
the input image. The proposed method introduces preserved
information learning using a dual-encoder in BiGAN. The aim
of preserved information learning in dual-encoder BiGAN is to
significantly reduce the bad cycle consistency of GAN-based
architectures. In this paper, a model employing dual-encoder
BiGAN is proposed for addressing bad cycle consistency and
improving anomaly detection. Toward these ends, the main
goals of this paper are as follows.

• To propose a GAN-based anomaly detection technique
for reducing bad cycle consistency.

• To evaluate the proposed method on several publicly
available datasets and demonstrate its performance com-
pared with state-of-the-art methods.
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II. RELATED WORK

A complete review of deep learning technology for anomaly
detection along with its application across various domains
is comprehensively explained in [13]. Examples of existing
methods include autoencoder-based anomaly detection, such
as denoising autoencoder [14], robust deep autoencoder [15],
and variational autoencoder [16]. Autoencoder-based methods
usually detect anomalies by measuring the difference between
an original sample x and its reconstruction x′ as ‖x− x′‖.

Recent anomaly detection methods employing GANs can
handle the presence of anomalous samples [17]. GANs train
two different networks simultaneously through a minimax
game in which one network is a generator (G) that learns
to generate data (e.g. images) and minimize error, and the
other network is a discriminator (D) that aims to distinguish
the generated data by G from the real data distribution. The
first work that used GANs for anomaly detection, called
AnoGAN, was proposed by Schleg et al. [1]. AnoGAN is
trained using only normal samples to learn a mapping of
the latent space representation. During the testing period,
the latent vector that best reconstructed the test image is
then searched through the latent space representation. The
anomaly score in AnoGAN is defined using a combination of
reconstruction loss and the difference between the intermediate
discriminator feature representation of a test image and its
reconstruction. Furthermore, GANomaly [18] was proposed
which uses conditional GANs that jointly learn the generation
of a high-dimensional image and the inference of the latent
space. GANomaly frameworks consist of encoder-decoder-
encoder sub-networks in the generator and a discriminator
network. GANomaly defines a new anomaly score as a com-
bination of three loss functions, namely, feature matching
loss, reconstruction loss, and encoding loss. A more recent
method, called Fence GAN [8], aims to generate data lying
on the boundary of the normal data distribution by proposing
the use of encirclement loss for the GAN loss function. In
Fence GAN, the anomaly score is calculated directly using
the score from the discriminator. Sabokrou et al. [19] proposed
a method that is mainly composed of two networks that are
trained adversarially in an unsupervised learning setting. One
of the networks in this architecture learns to refine noisy input
images, while the other is responsible for separating normal
and abnormal sample images.

III. BACKGROUND

A. Generative Adversarial Networks

GANs consist of two networks for learning data generation.
One network is a generator G that learns to generate data and
to minimize error, while the other is a discriminator D that
aims to distinguish generated data by G from the real data
distribution. Both network G and D are trained simultaneously
to minimize their loss through a two-player min-max game,
formulated as

min
G

max
D

E
[
logD(x) + log(1−D(G(z)))

]
(1)

GANs are also used to solve anomaly detection problems
and defined as AnoGAN [1].

B. Efficient GAN-based Anomaly Detection

BiGAN learns an encoder E that maps input samples x to a
latent representation z, and a generator G and a discriminator
D are also trained at the same time. Unlike the original GAN,
the discriminator D in BiGAN considers not only the input
x, but also its respective latent variable z. In particular, the
BiGAN training objective is defined as

min
G,E

max
D

E
[
logD(x,E(x)) + log(1−D(G(z), z))

]
(2)

To generate G,D, and E, a model is trained only using
normal samples and the anomaly score function A(x) as in [1]
is used to measure the level of abnormality. The anomaly score
is based on the convex combination of reconstruction loss LG

and discriminator loss LD.

A(x) = αLG(x) + (1− α)LD(x) (3)

Fig. 2. Proposed method: Original method dual-encoder BiGAN architecture.
For simplicity, the other losses in the proposed method are omitted from the
illustration.

IV. PROPOSED METHOD

A. Dual-Encoder BiGAN

In this study, a GAN-based anomaly detection approach is
proposed for handling bad cycle consistency. BiGAN forces
abnormal samples to be reproduced within a normal distribu-
tion, but either the normal or abnormal samples suffer from
the problem of poor reconstruction of inlier samples, making
it difficult for GAN-based methods to detect outlier samples
precisely. We assume that bad cycle consistency might occur
when a model is unable to preserve enough information of the
input image. The proposed method introduces preserved infor-
mation learning employing a dual-encoder BiGAN architecture
(Fig. 2). In this case, η as depicted in Fig. 2 is a Gaussian noise
that is added to input sample x in order to make the proposed
method more robust against corrupted samples. Furthermore,
the preserved information learning in a dual-encoder BiGAN
uses cycle consistency loss and latent space variable loss. In
Fig. 2, p(y) represents the probability that the joint input of
a sample and latent variable to discriminator D comes from a
real or fake sample.



Fig. 3. Training mechanism for dual-encoder BiGAN.

The proposed method optimizes the generator G by prior-
itizing cycle consistency. The goal is to be able to generate
an image that can be reconstructed back to its original source.
It is expected that the proposed method can overcome the
main problems by prioritizing the cycle consistency loss.
Furthermore, an evaluation is performed on publicly available
image datasets, including a real-world medical image dataset
(Section V).

B. Preserved Information Learning

Fig. 3 shows the training mechanism for training all net-
works in the proposed method,. This training mechanism
is implemented simultaneously in order to train each of
the networks in the dual-encoder BiGAN architecture. The
concept behind the complete training scheme of the dual-
encoder BiGAN is inspired by image-to-image translation
methods [20] [21]. In image-to-image translation, the image
transformation is done through different-domain or same-
domain transformation. In contrast, the proposed method does
not use any domain information, but instead uses single-class
input.

The complete training scheme as shown in Fig. 3 is as
follows.

• Discriminator D is trained adversarially to separate
real/fake images (see Fig. 3-1). As in BiGAN, the dis-
criminator input is a pair of samples in image space and
its respective latent variable, both for real sample x and
fake/reconstructed sample G(z).

• In preserved information learning, the networks are con-
ditioned using the target variable c. The target variable c
is an extra information input provided to the conditioning
function by feeding the real target cx or random target cy
as an additional input layer to the networks. Both cx and
cy are configured to control the generation of a sample
corresponding to the source, whether it is from real data
sample x or from generated sample.

• As shown in Fig. 3-2(A-B), a real sample x and ran-
dom target cy are regenerated through G(Er(x), cy) as
generated sample x′y , which is then reconstructed back
to x′ in order to measure the loss of cycle consistency
of sample x. This procedure is called normal-abnormal
transformation because it employs a random target cy (not
a real normal label) that is uniformly distributed as input
to encoder Er during training (see Fig. 3-2 (A)). The
input of cx is the real label used for real normal sample
x.

• The present architecture employs a dual-encoder in which
the second encoder Eg is proposed in order to optimize
the distance between a real sample latent variable and
reconstructed latent variable in latent space. Fig. 3-3
shows the latent variable optimization in the proposed
method. In particular, the output from discriminator D
is also used to update the encoder Er that appears in
Eq. 11, as shown in Fig. 3-3(A). In comparison with the
bottom of Fig. 3-1(A) where measurement is performed
to update the discriminator D, in Fig. 3-3(A) it is used to
update the encoder Er. Furthermore, the effect of latent
space optimization on dual-encoder BiGAN is shown in
Fig. 8c after BiGAN (Fig. 8b) with additional encoder
Eg .

• Preserved information learning (Fig. 3-4) employs input
from both random variable z and latent variable Er(x)
into generator G. As this is expected to reduce bad
cycle consistency, we additionally support this process by
prioritizing cycle consistency loss in generator G. As a
result, the generator learns to enrich its ability to generate
various samples and is also pushed to reconstruct input
samples from Er(x) similarly to an auto-encoder. The
improvement achieved by using this procedure can be
seen in Fig. 8, which shows that the proposed method
with preserved information learning reduced bad cycle
consistency in the MNIST anomaly dataset. The genera-
tor is trained through a preserved information learning
scheme as shown in Fig. 3-4 with the assistance of
cycle consistency prioritization. The encoder employs an
input image x and its target c. For any generated or
reconstructed image, target cy is used, where cy is defined
as a noisy random target provided to the generator for
learning features from non-normal image input.



Fig. 4. Networks structure of (a) generator G, (b) discriminator D, and (c)
encoders Er and Eg .

By learning only normal features, the reconstruction in the
proposed method is closed to normal samples. This mechanism
therefore provides two advantages: (1) generator G recon-
structs the image to normal features; and (2) discriminator
D is able to measure any input x as normal or abnormal. To
realize these training mechanisms, dual-encoder BiGAN losses
are defined as follows.

1) Adversarial loss: In the proposed method, the generator
learns to preserve information from the input images. To
ensure that generator G is able to judge a real/fake latent
variable z, the generator also receives signals from both input
images and random latent variables. As mentioned earlier, the
proposed method prioritizes cycle consistency, which makes
it important to learn the relationship between image space
and latent space. The adversarial loss of discriminator D is
modified as follows.

LD
adv =

∑
c∈{cy,cx}

E
[
log(1−D(G(z, c), z))+logD(x,Er(x))

]
(4)

The adversarial loss of generator G is modified by adding
the loss information of encoder Eg

LG
adv =

( ∑
c∈{cy,cx}

E
[
log(1−D(G(z, c), z))

])
+

E
[
log(1−D(G(Eg(G(z, cy))), Eg(G(z, cy))))

] (5)

2) Prioritized cycle consistency loss: In dual-encoder Bi-
GAN, the generator is optimized by prioritizing cycle con-
sistency loss. Cycle consistency loss helps the generator to
preserve enough information for reconstructing the generated
image back to its original.

Lcyc =Ex,cx,cy

([
‖G(Er(G(Er(x), cy)), cx)− x‖1

]
+
[
‖G(Er(G(Er(x), cx)), cx)− x‖1

]
+
[
‖G(Eg(G(z)), cy)−G(z, cy)‖1

]) (6)

3) Preserved information loss: We modify the identity loss
from [21] as preserved information loss to penalize generator
G when learning real input images.

Lpil =

{
0, c = cy

Ex,c =
[
‖G(Er(x), c)− x‖1

]
, c = cx

(7)

4) Latent space loss: We introduce a second encoder Eg for
minimizing the distance between z and its latent reconstruction
in latent space.

Lz =
[
‖Eg(G(Er(x), cx))− Er(x)‖1

]
(8)

where Lz is only introduced for the real input x while the
second term in 7 is penalized through a priority parameter for
cycle consistency.

5) Full objective: Total optimization of discriminator D,
generator G, encoder Er and Eg in Dual-encoder BiGAN is
as follows.

LD = LD
adv (9)

LG = LG
adv + λcycLcyc + Lpil (10)

LEr = E
[
logD(x,Er(x))

]
+E

[
‖G(Er(x), cx)−x‖1

]
(11)

LEg
= Lz (12)

Here, λcyc is a priority parameter of cycle consistency for
generator G. In our experiments, we set λcyc = 0.1.

C. Anomaly Score
The proposed method is trained using only normal samples

and employs a preserved information learning mechanism
(Fig. 3-4). The anomaly score is defined as in Equation 3
where we use α = 0.1, which has been found empirically
through experiments in [1]. We also find that the discriminator
score D(x) can also be employed as an alternative anomaly
score. In the evaluation phase, real target cx is substituted for
only normal targets because the trained model is familiar with
only normal input samples.

V. EXPERIMENTS

To evaluate the proposed method, extensive experiments
were conducted on publicly available datasets. In all exper-
iments using the unsupervised learning setup, the proposed
method used only normal samples to train the models. A
common practical performance metric, the area under the
receiver operating characteristics curve (AUROC) is used to
measure the quality of interchangeability of the given scoring
of the methods proposed in this study.

A. Architecture
In our experiments, we follow the network structure for

all generator, discriminator, and encoders introduced in Bi-
GAN [9] when evaluating the MNIST dataset. There are only
minimal differences between the structures of our networks
and the original BiGAN; these differences are due to the join
input of target c and the latent space variable. In particular,
Fig. 4 shows the number of layers used in the proposed
method, which consist mainly of Dense, Convolution, and
Convolution Transpose layers. For fair comparison, we use the
same architecture for the baselines with minimal differences
between each of the architectures.



Fig. 5. AUROC results on MNIST dataset.

Fig. 6. AUROC results on the CIFAR10 dataset

B. Datasets

To evaluate the proposed method, experiments were con-
ducted on three publicly available datasets. The following is
a brief overview of each dataset used for evaluation of the
proposed method.

1) MNIST: The MNIST dataset contains handwritten digits
which are usually used for early stage model evaluation. The
data are split between 60,000 samples in the training set and
10,000 samples in the test set. Within each set, there are
28 × 28 pixel grayscale images with a total of 10 output
classes representing the ten digits from 0 to 9. The evaluation
presented in this work was conducted on each class in which,
at any time, only one class is considered as the anomaly class,
and the remaining nine classes are considered together as the
normal class. This means that only the normal examples in the
training set were used to train the evaluated models while the
training data of the class considered abnormal were ignored.
The test procedure was applied to a test set that had not been
seen by the trained model.

Fig. 7. Image reconstruction of anomaly digit 1. The proposed method
completely reconstructs normal and abnormal samples. Fundamentally, we
expect the proposed method to be unable to reconstruct any abnormal samples.
This phenomenon could have the effect that the anomaly score A(x) is not
able to separate normal and abnormal samples.

2) CIFAR10: The CIFAR10 dataset [22] contains natural
color 32 × 32 pixel images. The dataset is split into images
associated with labels representing objects of 10 classes of
natural images, such as image of ”airplane”, ”automobiles”,
and ”dog”. As with the MNIST dataset, we configured the
dataset for each class by using only one class as the anomaly
object and trained the models only using normal data samples
from the rest of the classes.

3) BRATS 2013: The BRATS 2013 dataset [23] [24] con-
sists of synthetic and real images. Each image is divided into
healthy samples and tumor positive samples with high-grade
gliomas (HGs) and low-grade gliomas (LGs). There are 25
patients with both synthetic HG and LG images and 20 patients
with real HG and 10 patients with real LG images. In this case,
we are not particularly trying to segment the tumors, but rather
trying to predict the separation of whether an image contains
a tumor, which represents an abnormality in the sample.

C. Results

1) Application to MNIST: Fig. 5 shows the AUROC results
obtained using the MNIST dataset, where the x-axis represents
anomalous classes and the average overall performance. As
shown in Fig. 5, the proposed method outperforms the state-
of-the-art methods on the majority of abnormal class digits.
Interestingly, the proposed method performs badly against only
anomaly digit 1. This may occur due to the proposed method
completely reconstructing all normal and abnormal samples as
shown in Fig. 7. This causes the anomaly score for anomaly
digit 1 to be very close to that of the digits in the normal class.

Fig. 8 shows the reconstruction images from generator G
of the BiGAN-based methods. In the figures, digit class 0 was
selected as the anomaly class. The original BiGAN evaluated
in [9] (EGBAD) shows the condition in which normal samples
were generated the same as other digits among normal sam-
ples. This evidence shows that BiGAN (EGBAD) suffers from
bad cycle consistency, which may cause high reconstruction
error of normal samples (Fig. 8b). The proposed method
overcomes this shortcoming by employing a dual-encoder
in the BiGAN architecture. Fig. 8d shows the results of
preserved information learning in dual-encoder BiGAN. This
significantly reduces the bad cycle consistency, thereby leading
to improved detection performance. Preserved information
learning is important for achieving the maximum capability of
dual-encoder BiGAN. Based on empirical observations, dual-
encoder BiGAN is not expected to reach its best performance
by only adversarial training with the help of latent space



(a) Real (b) EGBAD [9] (c) Proposed (without
preserved information
learning)

(d) Proposed

Fig. 8. Evaluation results for abnormal digits 0. Digits in blue boxes indicate models that were unable to reconstruct normal samples due to bad cycle
consistency, while digits in red boxes indicate models that were unable to reconstruct abnormal images. (a) Real input images. (b) Reconstructed images by
BiGAN/EGBAD. (c) Reconstructed images by proposed architecture dual-encoder BiGAN trained adversarially without preserved information learning. (d)
Proposed method.

TABLE I
PERFORMANCE ON THE BRATS 2013 DATASET ACCORDING TO AUROC

METRIC.

Methods AUROC
AnoGAN 0.340279
ALOCC 0.620300
GANomaly 0.845130
EGBAD + A(x) 0.286299
EGBAD + D(x) 0.786707
Proposed + A(x) 0.632038
Proposed + D(x) 0.861377

TABLE II
PERFORMANCE OF MODIFIED VERSIONS OF THE PROPOSED METHOD ON

BRATS 2013 WHEN CHANGING LATENT VARIABLE SIZE.

Modification z AUROC
Proposed + A(x) 20 0.632038
Proposed + D(x) 0.861377
Proposed + A(x) 50 0.743657
Proposed + D(x) 0.847963
Proposed + A(x) 100 0.634741
Proposed + D(x) 0.926704

optimization (Fig. 8c). This shows the benefit of applying dual-
encoder to BiGAN with a complete preserved information
learning mechanism.

2) Application to CIFAR10: Fig. 6 shows a comparison of
the performance results for the proposed method compared
with the baselines for the CIFAR10 anomaly dataset. Since the
images in CIFAR10 contain natural images which have more
complex visual structures compared with the MNIST images,
it shows that all GAN-based anomaly detection, including
ours, offer fair results without providing high performance in
the separation of normal and abnormal samples. On average,
the proposed method is quite competitive against the base-
lines, particularly for the anomaly class ’deer’. The CIFAR10
dataset clearly provides a different level of difficulty and is a
challenging problem for the anomaly detection task. Fig. 13
shows the reconstruction image of anomaly class ’airplane’
for different latent variable sizes.

3) Application to brain magnetic resonance imaging
anomaly detection: We employed the proposed method and

EGBAD to the brain magnetic resonance imaging problem
domain, specifically the BRATS 2013 dataset, and used the
anomaly score A(x) and output of discriminator D(x) as
anomaly scoring. Proposed model with anomaly scoring A(x)
and D(x) is presented as proposed + A(x) and proposed + D(x),
respectively. This configuration is also applied for EGBAD.
The performance results obtained by the proposed method are
shown in Table I. Overall, we see that the proposed method
gave the highest performance on the BRATS 2013 dataset as
indicated by the AUROC score (AUROC: 0.861377) and was
competitive against GANomaly. Fig. 9 shows a comparison
of the reconstruction with the EGBAD method for BRATS
2013. The healthy image reconstruction by the proposed
method seems worse than that by EGBAD. Since our best
reconstruction is obtain by D(x), the reconstruction error is not
very important for helping us find the normal and abnormal
samples in BRATS 2013. In addition, there is a tendency for
EGBAD to fall into mode collapse by qualitatively examining
the reconstruction of both healthy and abnormal samples.

D. Modified Versions of Dual-encoder BiGAN

This section presents further studies for developing modified
methods to dual-encoder BiGAN. In the evaluation on a rela-
tively simple dataset (MNIST), dual-encoder BiGAN showed
strong performance against most abnormal classes. However,
the proposed method may not be able to achieve the best
results due to differences in data complexity and character-
istics, as shown in the experimental results for CIFAR10. The
following are proposed modifications of the proposed method
to achieve improved performance through selection of the
architecture and training mechanism.

1) Simple vs. complete training scheme: The proposed
method offers competitive performance through its complete
training scheme. Here we propose simple versions of the
proposed method: (1) without providing a random target to
the generator G; and (2) omitting step 2 (A-B) shown in
Fig. 3 from the training mechanism since it is not needed
when the random target is provided to generator G. The simple
training scheme performs well enough on the MNIST dataset
that it does not completely suffer from bad cycle consistency
(see Fig. 10). While it does not show major degradation



(a) Proposed

(b) EGBAD

Fig. 9. Reconstruction of healthy and abnormal samples by (a) the proposed
method and (b) EGBAD.

Fig. 10. Cycle consistency of different training schemes on MNIST anomaly
digit 0.

on the non-complicated dataset, complete reconstruction of
natural image datasets requires further improvement as in the
case of CIFAR10 (see the comparison of a real sample and
reconstruction in Fig. 13).

2) Effect of latent variable size: This section considers the
effect of latent variable size on both encoder Er(x) and Eg(x)
and their random variables. These variables share the same
size and contain the information required by the generator to
regenerate an image. Our assumption is the size of z could be
critical for deciding the precision of information required by
the generator to translate z into image space.

In addition, changing the latent variable size is another
modification for improving the anomaly detection performance
presented in Table II. This improves the AUROC performance
of the proposed method from 0.861377 to 0.926704 on BRATS
2013.

3) Latent space projection: In MNIST, we are interested in
studying the behavior of the proposed method by projecting
the data onto latent space to see the data projection of a model
that able to separate normal and abnormal samples. Fig. 11
visualizes this data projection of both encoders Er and Eg

(a) Encoder Er (b) Encoder Eg

Fig. 11. Latent space projection of encoders in the proposed method on
MNIST using abnormal digit 0.

(a) Encoder Er (b) Encoder Eg

Fig. 12. Latent space projection of encoders in the proposed method on
CIFAR10 using abnormal class ’airplane’.

on the latent space. According to samples shown for both
encoders, the normal and abnormal sample data is distributed
to separate the anomaly sample from the whole data. This
shows the linearity between the data separation in latent space
and data space. When these can be separated in latent space,
it might be possible to distinguish between the two groups
of samples. For comparison, our argument is supported by the
latent space projection of CIFAR10, for which the performance
was only AUROC of 0.61 on the data space (see Fig. 12).

Fig. 13. Reconstruction image for different latent variable sizes on CIFAR10



VI. CONCLUSION

We proposed an anomaly detection method to reduce bad
cycle consistency in BiGAN. This paper assumes that bad
cycle consistency might occur due to limitations in the model
with respect to preserving enough information from the input
image. The proposed method employs a dual-encoder on
BiGAN architecture and introduces a preserved information
learning mechanism to solve GAN problems as well as to
perform anomaly detection. Empirical evaluation on pub-
licly available datasets and brain magnetic resonance imaging
anomaly detection showed the performance of the proposed
method compared with state-of-the-art methods for separating
abnormal samples from the data distribution.
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virtual skeleton database: an open access repository for biomedical re-
search and collaboration,” Journal of medical Internet research, vol. 15,
no. 11, p. e245, 2013.


	I Introduction
	II Related Work
	III Background
	III-A Generative Adversarial Networks
	III-B Efficient GAN-based Anomaly Detection 

	IV Proposed Method
	IV-A Dual-Encoder BiGAN
	IV-B Preserved Information Learning
	IV-B1 Adversarial loss
	IV-B2 Prioritized cycle consistency loss
	IV-B3 Preserved information loss
	IV-B4 Latent space loss
	IV-B5 Full objective

	IV-C Anomaly Score

	V Experiments
	V-A Architecture
	V-B Datasets
	V-B1 MNIST
	V-B2 CIFAR10
	V-B3 BRATS 2013

	V-C Results
	V-C1 Application to MNIST
	V-C2 Application to CIFAR10
	V-C3 Application to brain magnetic resonance imaging anomaly detection

	V-D Modified Versions of Dual-encoder BiGAN
	V-D1 Simple vs. complete training scheme
	V-D2 Effect of latent variable size
	V-D3 Latent space projection


	VI Conclusion
	References

