
FACIAL REGION-BASED ENSEMBLING FOR UNSUPERVISED TEMPORAL DEEPFAKE
LOCALIZATION

Nesryne Mejri1, Pavel Chernakov1, Polina Kuleshova1, Enjie Ghorbel1,2, Djamila Aouada1

Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg1, Luxembourg
Cristal Laboratory, National School of Computer Sciences, University of Manouba2, Tunisia

firstname.lastname@uni.lu

ABSTRACT
This paper addresses the challenge of temporal deepfake lo-
calization. Instead of classifying entire videos as real or fake,
the goal is isolating forged frames in untrimmed videos that
might be partially manipulated. Recently, few deepfake local-
ization methods have emerged. They are mostly supervised,
therefore relying on costly annotations and suffering from a
lack of generalization to unseen manipulations. As an alter-
native, we propose reformulating deepfake localization as an
unsupervised time-series anomaly detection problem. Hence,
to investigate the relevance of the proposed formulation, re-
cent state-of-the-art techniques in anomaly detection for time-
series are evaluated in the context of deepfake localization.
To avoid using large architectures, geometric representations,
e.g., facial landmarks, are used as input. Moreover, a facial-
region based ensembling strategy is introduced for a better
modelling of localized deepfake artifacts. Experiments per-
formed on the ForgeryNet dataset demonstrate the effective-
ness of the proposed ensembling method and highlight the
suitability of the suggested formulation.

Index Terms— Unsupervised Anomaly Detection, Time-
series, Temporal Deepfake Localization.

1. INTRODUCTION

The rise of deepfake technology, involving the creation of re-
alistic facial media using Deep Neural Networks (DNN), calls
into question the credibility of digital content [1, 2]. One ma-
jor risk is the misuse of these manipulated data for spread-
ing misinformation. Consequently, the development of effec-
tive deepfake detection methods has become crucial. Current
deepfake detection strategies [3, 4] generally rely on binary
classification, focusing on the prediction of one label for an
entire video. Hence, these approaches simplify the problem
by assuming that forged videos are temporally segmented.
This, however, hinders their application in a real-world sce-
nario, especially if real-time performances are required. A
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Fig. 1. Normalized histograms of the standard deviation of
landmark displacements extracted from fake and real videos
from ForgeryNet [6].

more plausible approach would be to localize deepfakes in
an untrimmed video stream that can be locally forged. Re-
cently, few methods have been proposed for temporal local-
ization [5, 6, 7, 8]. The latter are trained in a supervised man-
ner, thereby inheriting two major shortcomings. First, a large
set of annotated data is needed, which can be costly and hard
to obtain. Second, as discussed in [3, 9], overfitting issues can
occur causing a poor generalization to unseen manipulations.

Inspired by recent works on unsupervised deepfake detec-
tion [10, 9], we propose to reformulate the problem of deep-
fake localization as an unsupervised anomaly detection prob-
lem in multivariate time-series. In other words, we suggest
learning a time-series model using only real videos and con-
sidering out-of-distribution frames as deepfakes at inference.
Specifically, we represent each video by the position trajec-
tories of facial landmarks. These trajectories can be seen as
a multivariate time-series, which can be prone to temporal
inconsistencies in the case of forged videos. As experimen-
tally demonstrated in Fig. 1, a noticeable discrepancy exists
between the standard deviation of landmark displacements of
real and fake videos. Furthermore, such a geometric repre-
sentation has the advantage of being low-dimensional, result-
ing in more compact models. It is also universal across all
datasets as it is robust to illumination changes and image con-
tent, thereby reducing overfitting risks. Hence, we propose

979-8-3503-9015-5/24/$31.00 ©2024 IEEE 



to study the suitability of recent time-series anomaly detec-
tion for the concrete use case of landmark-based deepfake lo-
calization. Furthermore, we propose a simple, yet effective,
region-based ensembling strategy for deepfake localization
relying on autoencoder (AE) architectures. Extensive experi-
ments and analysis demonstrate the relevance of the proposed
formulation as well as the introduced ensembling methods,
suggesting a promising direction for future research in deep-
fake temporal localization.
In short, our contributions can be summarized as follows:
(1) The formulation of temporal deepfake localization as
an unsupervised anomaly detection problem in time-series.
(2) An ensemble of lightweight autoencoders focusing on fa-
cial regions, trained only on real videos. (3) A comprehensive
analysis and comparison of recent anomaly detection tech-
niques on time-series in the context of deepfake localization.
This paper is structured as follows: Section 2 formulates tem-
poral deepfake localization as a time-series anomaly detection
problem. Section 3 details the proposed region-based ensem-
bling approach. Section 4 describes the experiments and ana-
lyzes the results. Finally, Section 5 concludes this work.

2. UNSUPERVISED ANOMALY DETECTION IN
TIME-SERIES FOR DEEPFAKE LOCALIZATION

USING GEOMETRIC REPRESENTATIONS

An untrimmed video V can be defined as a temporally-
ordered sequence of T images denoted as V = {It}1≤t≤T

with It ∈ Rh×w×c and h, w and c being the height, width and
the number of channels of It, respectively. We assume that
l = {lt}1≤t≤T corresponds to the ground-truth label vector of
V, with lt ∈ {0, 1} representing the label of V at an instant t.
Note that lt = 1 in the presence of a forgery and lt = 0 oth-
erwise. We denote by Vt the subsequence of V formed by
(It−τ1 , It−τ1+1, ..., It, ..., It+τ2−1, It+τ2) with τ1and τ2 two
integers defining the position and the size of a sliding window
and Ts being its length. The goal of deepfake localization is
estimating a function f : Rh×w×c×Ts :→ {0, 1} for all t,

f(Vt) = lt. (1)

Existing localization methods mostly learn f in a supervised
manner using deep learning architectures [6, 7, 8]; thereby
relying on costly annotations. Moreover, supervision leads to
a lack of generalization to unseen manipulations, as this was
demonstrated in the context of deepfake detection [3, 9]. To
address this issue, we propose reformulating the problem of
deepfake localization as an unsupervised anomaly detection
task. Thus f can be viewed as a composition of two functions
f = Φ◦Ψ where Ψ : Rh×w×c×Ts → X models normal time-
series and is learned using only real data and Φ : X → {0, 1}
is a thresholding function only used at inference.
Another aspect that should be considered is the model size.
In fact, existing multivariate time-series anomaly detection
architectures have been initially designed for relatively low

dimensional data [11]. Hence, directly modelling videos as
time-series might results in cumbersome models. As a solu-
tion, we propose the use of geometric representations, e.g.,
2D facial landmarks. As shown in [12], in the context of
deepfake detection, they can be used for obtaining more com-
pact models, while demonstrating more robustness to illumi-
nation changes and noise. In other words, Ψ can be defined as
Ψ = Ψ2 ◦Ψ1 such that Ψ1 : Rh×w×c×Ts → R2×n×Ts maps
a video subsequence to its corresponding 2D facial landmark
subsequence and Ψ2 : R2×n×Ts → X .

3. FACIAL REGION-BASED ENSEMBLING FOR
UNSUPERVISED DEEPFAKE LOCALIZATION

As unsupervised anomaly detection for time-series ap-
proaches were not originally proposed for deepfake tempo-
ral localization, they do not explicitly focus on artifact-prone
facial regions. Those regions, however, have been proven to
be extremely effective in capturing deepfake artifacts [13, 9]
from different deepfake generation methods. Hence, as illus-
trated in Fig. 2, we propose an ensembling strategy of dif-
ferent models that are focused on localized regions. For that
purpose, we train an ensemble of K autoencoders, each one
trained on a subset of landmarks belonging to a manually-
selected facial region such as the mouth or the nose. Then, a
voting strategy is applied for building the final predictions.

More specifically, given an input video Vt ∈ Rh×w×c×Ts

processed as a 2D landmark sequence denoted by Xt =
Ψ1(Vt) ∈ R2×n×Ts , we select K specific regions. We de-
note the position of the set of the nk landmarks belonging to
the region of index k ∈ {1, ...,K} as Xk

t =∈ R2×nk×Ts . For
each k ∈ {1, ...,K}, an autoencoder that aims at learning the
distribution of authentic region-specific landmark trajectories
is considered. To this end, given an encoder Enck(.) and a
decoder Deck(.), for all windowed sequences Xk

t , our model
is trained as, {

z = Enck(Xk
t ),

X̂k
t = Deck,

(2)

with z ∈ RTs×d being the d-dimensional latent representa-
tion. The learning is optimized using the mean squared dis-
tance formulated as,

Lr =
1

Nb

Nb∑
t=0

||X̂k
t −Xk

t ||22, (3)

with Nb being the total batch samples and || · ||2 denoting
the L2-norm. Similarly to [14, 15], a statistical model termed
Peak Over Threshold (PoT) [16] is used to automatically se-
lect an adequate threshold λ based on the training sequences.
Such an approach identifies a suitable value at risk by fitting
the distribution of the training data with a Generalized Pareto
Distribution. Hence, given λ and a window Xk

t , the predic-
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Fig. 2. Overview of the proposed facial region-focused ensembling.

tion lkt associated with the frame t is expressed as,

lkt = (
1

2× nk × Ts

2nk∑
i

Ts∑
j

||X̂k
t,i,j −Xk

t,i,j ||22 > λ). (4)

with (.) being an indicator function. Finally, given the K
predictions lkt from different autoencoders, the final predic-
tion is built via the soft majority voting rule.

4. EXPERIMENTS

4.1. Experimental settings

4.1.1. Dataset

We used the ForgeryNet dataset [6], a comprehensive bench-
mark for temporal forgery localization. It is formed by
2,896,062 images and 221,247 partially manipulated videos.
Nevertheless, we select1 only the data that contain one person
per video. In total, we consider 9866 real videos from the of-
ficial training set and 1,516 videos from the validation set for
testing (as annotations for the test set are not yet available).
Note that our test set comprises six different forgery methods.

4.1.2. Baselines

In addition to the proposed ensembling approach, we evalu-
ate seven recent anomaly detection methods for time-series.
As discussed in [17], these approaches adopt different learn-
ing paradigms. First, four reconstruction-based methods
are considered, namely TranAD [15], USAD [18], Omni-
Anomaly [14] and MAD-GAN. TranAD and USAD are re-
spectively based on transformer and AE architectures that are
trained adversarially. OmniAnomaly uses a stochastic Recur-
rent Neural Network (RNN) and a planar normalizing flow
to generate reconstruction probabilities. Finally, MAD-GAN
is a GAN-inspired approach using an RNN as a base model
for modeling spatio-temporal dependencies. Second, fore-
casting approaches are also tested for the use case of deep-
fake localization, including CAE-M [11], DAGMM [19] and

1The processed sequences will be released.

GDN [20]. CAE-M feeds a reconstruction error and the
learned feature representations to an auto-regressive network
that predicts future feature values. DAGMM constrains the
feature space to follow Gaussian mixture model distribution.
Then, an RNN is employed for predicting a future data point.
Last but not least, GDN models the relationships between
data features as a graph coupled with an attention mecha-
nism. For comparing with supervised deepfake localization
methods [6, 8, 7, 5], only MDS [5], a multimodal technique
with decoupled audio-video networks, is compatible with our
setting. It maximizes the similarity of real audio and real vi-
sual features and minimizes it otherwise. The other baselines
either require audiovisual input data or are not accessible.

4.1.3. Evaluation metrics

For evaluating the proposed ensembling strategy as well as
state-of-the-art methods, we report the following metrics: the
standard Precision, Recall, and F1-score metrics. Note that
the results are reported with and without the Point Adjustment
protocol, referred to as (PA) and (non-PA), respectively. The
PA protocol proposed in [21] is commonly used for evaluating
unsupervised anomaly detection in time-series [15, 18, 14]. It
assumes that if a single point within an anomalous segment
is detected, then the entire segment is correctly predicted as
anomalous. Furthermore, we compute the t-Precision, the t-
Recall, and the t-F1-scores [22], which are metrics tailored
for time-series by taking into account factors like the loca-
tion of detected anomalies and the cumulative overlap be-
tween predicted and ground-truth segments. Finally, similar
to deepfake detection methods, we also report the Area Un-
der the Curve (AUC) metric. In all our experiments, Bold and
underline report the best and second best results, respectively.

4.1.4. Implementation details

For each video, we detect and crop the faces. Then, we extract
from each frame a total of 98 landmarks using SPIGA [23].
The landmark values are normalized between 0 and 1. The
average lengths of training and testing sequences are respec-
tively equal to 160 and 119 frames. We use the same au-



Method AUC Precision Recall F1-score

Su
p. MDS [5] 0.4943 0.4704 0.6931 0.5604

U
ns

up
.

TranAD [15] 0.7177 0.8018 0.4878 0.6066
USAD [18] 0.7779 0.8330 0.5000 0.6046
DAGMM [19] 0.7573 0.8314 0.5644 0.6724
GDN [20] 0.7837 0.8397 0.6187 0.7125
MAD-GAN [25] 0.8497 0.7980 0.7859 0.7919
OmniAnomaly [14] 0.7068 0.7998 0.4642 0.5874
CAE-M [11] 0.9182 0.8385 0.9130 0.8742
Ours 0.9302 0.8090 0.9538 0.8754

Table 1. Results in terms of standard performance metrics on
ForgeryNet under the PA protocol.

toencoder architecture as proposed in CAE-M [11] from this
repository2. The models are trained 5 epochs, one sequence
at a time on an NVIDIA RTX A4000 GPU. We use the
AdamW [24] optimizer with a learning rate of 10−3 and
weight decay of 10−5.

4.2. Results

4.2.1. Performance using standard metrics

Table 1 and Table 2 report the obtained results in terms of Pre-
cision, Recall, and F1-score with and without the PA protocol,
respectively. In the former, it can be noted that the proposed
ensemble generally outperforms other approaches including
the supervised baseline. This confirms the adequacy of fol-
lowing a region-based strategy for spatially modelling deep-
fake artifacts. It can also be seen that except CAE and MAD-
GAN, most approaches unsupervised achieve comparable re-
sults. Hence, it remains unclear whether reconstruction-based
on forecasting methods are more suitable for the complex sce-
nario of deepfake localization. This might also suggest that
both reconstruction and forecasting approaches are able to
capture discrepancies. In the latter case, when the predic-
tions are not adjusted, it can be observed that all approaches
suffer from an expected significant performance drop. Nev-
ertheless, our ensemble still surpasses unsupervised state-of-
the-art methods, including CAE-M with an increase of 1.77%
and 7.63% in terms of AUC and F1-score, against 1.2% and
0.12% under the PA protocol, respectively. In comparison
with MDS, although they reach better precision, recall and
F1-score under the non-PA protocol, we achieve a higher
AUC of 93.02% and 54.91% with the PA and non-PA pro-
tocols respectively. This suggests that with our approach the
forged and real frames are more separable than with the super-
vised baseline. Additionally, contrary to MDS, our method is
trained using a single modality and does not require annotated
deepfake data. Notably, MDS presents overfitting signs since
it achieves significantly higher AUC under the in-dataset set-
ting reported in [5], with more than 90% against 46.63% un-
der the cross-dataset setting (see Table 2 ).

2https://github.com/imperial-qore/TranAD/

Method AUC Precision Recall F1-score

Su
p. MDS [5] 0.4663 0.5104 0.3325 0.4027

U
ns

up
.

TranAD [15] 0.4967 0.2757 0.0459 0.0787
USAD [18] 0.5080 0.3657 0.0647 0.1100
DAGMM [19] 0.5015 0.3155 0.0527 0.0904
GDN [20] 0.5153 0.4097 0.0820 0.1367
MAD-GAN [25] 0.5425 0.4629 0.1715 0.2503
OmniAnomaly [14] 0.4933 0.2417 0.0370 0.0641
CAE-M [11] 0.5314 0.4720 0.1222 0.1941
Ours 0.5491 0.4597 0.1916 0.2704

Table 2. Results in terms of standard performance metrics on
ForgeryNet under the non-PA protocol.

Method t-Precision t-Recall t-F1-score

Su
p. MDS [5] 0.3039 0.3348 0.2376

U
ns

up
.

TranAD [15] 0.3424 0.0552 0.0815
USAD [18] 0.4101 0.0763 0.1110
DAGMM [19] 0.3730 0.0639 0.0937
GDN [20] 0.4226 0.0933 0.1229
MAD-GAN [25] 0.5066 0.2068 0.2239
OmniAnomaly [14] 0.3130 0.0434 0.0657
CAE-M [11] 0.4683 0.1546 0.2041
Ours 0.4354 0.2362 0.2706

Table 3. Results in terms of range-based metrics (t-Precision,
t-Recall and t-F1-score) proposed in [22] on ForgeryNet un-
der the non-PA protocol.

4.2.2. Performance using range-based metrics

Table 4 and Table 3 report the obtained results on ForgeryNet
in terms of range-based metrics including the t-Precision, the
t-Recall, and the t-F1-score proposed in [22], under the PA
and the non-PA protocols, respectively. It can be observed
from Table 3 that the obtained results with range-based met-
rics are consistent with the standard metrics results shown in
Table 2 and Table 1. In fact, the proposed ensemble achieves
the highest t-F1-score, followed by MAD-GAN and CAE-M.
This demonstrates the robustness of our strategy as compared
to unsupervised state-of-the-art techniques, suggesting that it
can detect consecutive anomalies rather than random point
anomalies. However, in Table 4, we observe that our method
is no longer the best performing. This can be explained by
the fact that the adjustment harms our performance, by boost-
ing the t-Recall at the expense of the t-Precision. Notably,
PA does not always yield a reliable comparison. As shown
in [26], it can boost the performance a random detector mak-
ing it comparable to a well-trained one. Furthermore, the
compatibility of this protocol with range-based metrics is de-
batable. In fact, by treating an anomalous segment and a sin-
gle point equally, the temporal information that range-based
metrics aim to capture, based on the predicted anomaly loca-
tion and cumulative overlap, is dissipated. Hence, we report
only non-PA results in the following experiments.



Method t-Precision t-Recall t-F1-score
Su

p. MDS [5] 0.2321 0.6521 0.3034

U
ns

up
.

TranAD [15] 0.3357 0.4537 0.3653
USAD [18] 0.3926 0.5582 0.4281
DAGMM [19] 0.3564 0.5303 0.3959
GDN [20] 0.3847 0.5852 0.4226
MAD-GAN [25] 0.4214 0.7591 0.4842
OmniAnomaly [14] 0.3039 0.4361 0.3364
CAE-M [11] 0.3465 0.8635 0.4635
Ours 0.2487 0.9369 0.3695

Table 4. Results using range-based metrics proposed in [22]
on ForgeryNet under the PA protocol.

Facial regions #Landmarks AUC Precision Recall F1-score

Pupils (P) 2 0.5186 0.4109 0.0916 0.1498
Left Eye (LE) 8 0.5182 0.4064 0.0923 0.1505
Right Eye (RE) 8 0.5060 0.3409 0.0602 0.1023
Eyes (E) 16 0.5216 0.4265 0.0976 0.1588
Left Brow (LB) 9 0.5257 0.4451 0.1065 0.1718
Right Brow (RB) 9 0.5115 0.3733 0.0756 0.1258
Brows (B) 18 0.5346 0.4796 0.1257 0.1992
Nose (N) 9 0.5104 0.3603 0.0786 0.1290
Mouth (M) 20 0.5092 0.3587 0.0710 0.1185
Jawline (J) 33 0.5296 0.4672 0.1121 0.1808

Table 5. Results using individual facial regions on
ForgeryNet in terms of standard performance metrics under
the non-PA protocol.

4.2.3. Selection of facial regions

Since we propose a facial region-focused ensemble, we report
in Table 5 the performance of our AE trained on different fa-
cial regions. The best performance is achieved using the jaw-
line and eyebrows models. This can be explained by the fact
that during the blending stage, deepfake generation methods
fail to perfectly align the foreground and background faces,
resulting in noisy landmarks within those facial areas. It is
also interesting to observe the mismatch between the left and
right facial areas. Specifically, a difference in terms F1-score
of 4.70% and 4.77% can be observed between the right and
the left eyebrows, and the left and right eye respectively.

4.2.4. Role of the ensembling

Table 6 gives the obtained results by considering different
combinations of the three most relevant regions. Mainly, we
compare the simple concatenation of the region-based geo-
metric features against the proposed ensemble strategy. It can
be noted that the ensembling consistently enhances the per-
formance as compared to the direct concatenation of region-
based features within a single model. This might be explained
by the fact that implicitly learning region-based features with
a single model is challenging. As discussed in [27], capturing
local artifacts using a CNNs is not straightforward as succes-
sive convolution layers tend to eliminate low-level features.

Brows Eyes Jawline Ensembled AUC F1-score

✓ ✓ ✓ 0.5388 0.2446
✓ ✓ 0.5309 0.1869

✓ ✓ ✓ 0.5491 0.2704
✓ ✓ 0.5173 0.1497

✓ ✓ ✓ 0.5392 0.2368
✓ ✓ 0.5301 0.1854

✓ ✓ ✓ ✓ 0.5513 0.2913
✓ ✓ ✓ 0.5374 0.2088

Table 6. Feature combination versus ensembling strategy of
the three most relevant facial regions under the non-PA proto-
col. Experiments are performed on ForgeryNet.

Method #Parameters

Su
p. MDS [5] 122777092

U
ns

up
.

TranAD [15] 3197004
USAD [18] 50109
DAGMM [19] 50016
GDN [20] 20074
MAD-GAN [25] 48613
OmniAnomaly [14] 38872
CAE-M [11] 7229
Ours 7229

Table 7. Number of model parameters

4.2.5. Model size

Finally, Table 7 reports the number of parameters of each
method. It can be seen that our method as well as CAE-M
have a significantly lower number of parameters in compar-
ison to state-of-the-art techniques, including the supervised
baseline MDS (with 7229 against 122777092 parameters).

5. CONCLUSION

In this paper, temporal deepfake localization has been formu-
lated as an unsupervised time-series anomaly detection prob-
lem. To assess the suitability of the proposed formulation,
state-of-the-art methods in the general field of time-series
anomaly detection have been benchmarked under the com-
plex scenario of deepfake localization. Instead of using raw
videos, a geometric representation is used, namely, the tra-
jectories of facial landmarks, enabling the use of relatively
lightweight architectures. Furthermore, to better model lo-
calized artifacts, a facial region-based ensembling strategy
has been introduced. The obtained results have not only
demonstrated the relevance of the proposed formulation, but
have also shown the superiority of the introduced ensembling
method as compared to state-of-the-art techniques. However,
our approach might be sensitive to compression and noisy
landmark extraction. In future works, strategies for including
textural information will be explored to overcome this issue.
As such, this paper opens the ground for future investigations
in the field of unsupervised deepfake localization.
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