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Abstract—Infrared small object detection is an important
computer vision task involving the recognition and localization of
tiny objects in infrared images, which usually contain only a few
pixels. However, it encounters difficulties due to the diminutive
size of the objects and the generally complex backgrounds in
infrared images. In this paper, we propose a deep learning
method, HCF-Net, that significantly improves infrared small
object detection performance through multiple practical modules.
Specifically, it includes the parallelized patch-aware attention
(PPA) module, dimension-aware selective integration (DASI)
module, and multi-dilated channel refiner (MDCR) module. The
PPA module uses a multi-branch feature extraction strategy to
capture feature information at different scales and levels. The
DASI module enables adaptive channel selection and fusion. The
MDCR module captures spatial features of different receptive
field ranges through multiple depth-separable convolutional lay-
ers. Extensive experimental results on the SIRST infrared single-
frame image dataset show that the proposed HCF-Net performs
well, surpassing other traditional and deep learning models. Code
is available at https://github.com/zhengshuchen/HCFNet.

Index Terms—Infrared small object detection, Deep learning,
Multi-scale features.

I. INTRODUCTION

Infrared small object detection is a crucial technology for
identifying and detecting minute objects in infrared images.
Due to the ability of infrared sensors to capture the infrared
radiation emitted by objects, this technology enables precise
detection and identification of small objects, even in dark
or low-light environments. As a result, it holds significant
application prospects and value in various fields, including
military, security, maritime rescue, and fire monitoring.

However, Infrared small object detection is still challenging
for the following reasons. First, deep learning currently serves
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as the primary method for infrared small object detection.
However, almost all existing networks adopt classic downsam-
pling schemes. Infrared small objects, due to their small size,
often come with weak thermal signals and unclear contours.
There is a significant risk of information loss during multiple
downsampling processes. Second, compared to visible light
images, infrared images lack physical information and have
lower contrast, making small objects easily submerged in
complex backgrounds.

To tackle these challenges, We propose an infrared small
object detection model named HCF-Net. This model aims
for a more precise depiction of object shape and boundaries,
enhancing the accuracy of object localization and segmentation
by framing infrared small object detection as a semantic
segmentation problem. As illustrated in Fig. 1, it incorporates
three key modules: PPA, DASI, and MDCR, which address
the challenges mentioned above on multiple levels.

Specifically, as a primary component of the encoder-
decoder, PPA employs hierarchical feature fusion and at-
tention mechanisms to maintain and enhance representations
of small objects, ensuring crucial information is preserved
through multiple downsampling steps. DASI enhances the
skip connection in U-Net, focusing on the adaptive selection
and delicate fusion of high and low-dimensional features to
enhance the saliency of small objects. Positioned deep within
the network, MDCR reinforces multi-scale feature extraction
and channel information representation, capturing features
across various receptive field ranges. It more finely models
the differences between objects and backgrounds, enhancing
its ability to locate small objects. The organic combination
of these modules enables us to address the challenges of
small object detection more effectively, improving detection
performance and robustness.

In summary, our contributions in this paper can be summa-
rized as follows:

• We model infrared small object detection as a semantic
segmentation problem and propose HCF-Net, a layer-
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Fig. 1. Network Architecture. The encoder primarily comprises the parallelized patch-aware attention (PPA) module and max-pooling layers, while the decoder
mainly consists of PPA and convolutional transpose (CT) layers. We incorporate the multi-dilated channel refiner (MDCR) module as an intermediary layer
to bridge the encoder and decoder. Within the skip-connection component, we introduce the dimension-aware selective integration (DASI) module to enhance
the fusion and propagation of features across different network layers.

wise context fusion network that can be trained from
scratch.

• Three practical modules have been proposed: parallelized
patch-aware attention (PPA) module, dimension-aware
selective integration (DASI) module, and multi-dilated
channel refiner (MDCR) module. These modules ef-
fectively alleviate the issues of small object loss and
low background distinctiveness in infrared small object
detection.

• We evaluate the proposed HCF-Net’s detection perfor-
mance on the publicly available single-frame infrared
image dataset SRIST and demonstrate a significant ad-
vantage over several state-of-the-art detection methods.

II. RELATED WORK

A. Traditional Methods

In the early stages of infrared small object detection, the
predominant approaches were model-based traditional meth-
ods, generally categorized into filter-based methods, methods
based on the human visual system, and low-rank methods.
Filter-based methods are typically limited to specific and uni-
form scenarios. For example, TopHat [1] estimates the scene
background using various filters to separate the object from
a complex background. Methods based on the human visual
system are suitable for scenarios with large objects and strong
background differentiation, such as LCM [2], which measures
the contrast between the center point and its surrounding
environment. Low-rank methods are suitable for fast-changing
and complex backgrounds but lack real-time performance in
practical applications, often requiring additional assistance

such as GPU acceleration. Examples of these methods include
IPI [3], which combines low-rank background with sparsely
shaped objects using low-rank decomposition, PSTNN [4]
employing a non-convex method based on tensor nuclear
norms, RIPT [5] that focuses on reweighted infrared patch
tensors, and NIPPS [6], an advanced optimization approach
that attempts to incorporate low-rank and prior constraints.
While effective in specific scenarios, traditional methods are
susceptible to interference from clutter and noise. In complex
real-world scenarios, modeling objects is significantly affected
by model hyperparameters, resulting in poor generalization
performance.

B. Deep Learning Methods

In recent years, with the rapid development of neural net-
works, deep learning methods have significantly advanced the
infrared small object detection task. Deep learning approaches
[7]–[14] exhibit higher recognition accuracy than traditional
methods without relying on specific scenes or devices, demon-
strating increased robustness and significantly lower costs,
gradually taking a dominant position in the field. Wang et
al. [15] used the model trained by ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) data to complete
the infrared small object detection task. Liangkui et al. [16]
combined with the data generated from oversampling, a multi-
layer network was proposed for small object detection. Zhao et
al. [17] developed an encoder-decoder detection method (TBC-
Net) combining semantic constraint information of infrared
small objects. Wang et al. [18] employed a generator and
discriminator to address two distinct tasks: miss detection and



Fig. 2. Detailed structure of the parallelized patch-aware attention module. This module primarily consists of two components: multi-branch fusion and
attention mechanisms. The multi-branch fusion component includes patch-aware and concatenated convolutions. The ’p’ parameter in patch-aware is set to 2
and 4, representing local and global branches, respectively.

false alarm, achieving a balance between these aspects. Nasser
et al. [19] proposed a deep convolutional neural network
model for automatic object recognition (ATR). Zhang et al.
proposed AGPCNet [20], which introduced attention-guided
context modules. Dai et al. introduced the asymmetric context
modulation ACM [21] and introduced the first real-world
infrared small object dataset, SIRST. Wu et al. [22] proposed
a ”U-Net within U-Net” framework to achieve multi-level
representation learning of goals.

III. METHOD

In this section, we will be discussing HCF-Net in detail. As
shown in Fig. 1, HCF-Net is an upgraded U-Net architecture
that consists of three crucial modules: PPA, DASI, and MDCR.
These modules make our network more suitable for detecting
small infrared objects and effectively tackle the challenges of
small object loss and low background distinctiveness. Next,
we will provide a brief introduction to PPA in Sec. III-A,
followed by an overview of DASI in Sec. III-B, and finally,
an introduction to MDCR in Sec. III-C.

A. Parallelized Patch-Aware Attention Module

In infrared small object detection tasks, small objects are
prone to losing crucial information during multiple down-
sampling operations. As depicted in Fig. 1, PPA substitutes
traditional convolution operations in the encoder and decoder’s
fundamental components to better address this challenge.

1) Multi-branch feature extraction: The primary strength
of PPA resides in its multi-branch feature extraction strategy.
As depicted in Fig. 2, PPA employs a parallel multi-branch
approach and Each branch is tasked with extracting features at

various scales and levels. This multi-branch strategy facilitates
the capture of multi-scale features of the object, consequently
improving the accuracy of small object detection. Specifically,
this strategy involves three parallel branches: the local, global,
and serial convolution branches. Given the input feature tensor
F ∈ RH′×W ′×C , it is first adjusted through point-wise con-
volution to obtain F

′ ∈ RH′×W ′×C′
. Then, through the three

branches, you can calculate Flocal ∈ RH′×W ′×C′
, Fglobal ∈

RH′×W ′×C′
, and Fconv ∈ RH′×W ′×C′

separately. Finally,
these three results are summed to obtain F̃ ∈ RH′×W ′×C′

.
Specifically, the distinction between the local and global

branches is established by controlling the patch size pa-
rameter p, which is realized through the aggregation and
displacement of non-overlapping patches in spatial dimen-
sions. Furthermore, we compute the attention matrix between
non-overlapping patches to enable local and global feature
extraction and interaction.

Initially, we employ computationally efficient operations,
including Unfold and reshape, to partition F′ into a set
of spatially contiguous patches (p × p,H ′/p,W ′/p, C).
Subsequently, we conduct channel-wise averaging to yield
(p × p,H ′/p,W ′/p), followed by linear computations using
FFN [23]. Subsequently, we apply the activation function to
obtain the probability distribution in the spatial dimension
for the linearly computed features and adjust their weights
accordingly.

In the weighted outcomes, we employ feature selection [24]
to choose pertinent features for the task from tokens and
channels. To be specific, let d = H′×W ′

p×p , and represent the
weighted outcome as (ti)

C′

i=1, where ti ∈ Rd represents the
i-th output token. Feature selection operates on each token,



yielding the output as t̂i = P · sim(ti, ξ) · ti, where ξ ∈ RC′

and P ∈ RC′×C′
are task-specific parameters, and sim(·, ·)

is a cosine similarity function bounded within [0,1]. Here, ξ
functions as the task embedding, specifying which tokens are
relevant to the task. Each token ti is reweighted based on its
relevance to the task embedding (measured by cosine similar-
ity), effectively simulating token selection. Subsequently, we
apply a linear transformation of P for channel selection for
each token, followed by reshape and interpolation operations,
ultimately producing the features Flocal ∈ RH′×W ′×C′

and
Fglobal ∈ RH′×W ′×C′

. Finally, we substitute the conven-
tional 7x7, 5x5, and 3x3 convolution layers with a serial
convolution consisting of three 3x3 convolution layers. This
results in three distinct outputs: Fconv1 ∈ RH′×W ′×C′

,
Fconv2 ∈ RH′×W ′×C′

, and Fconv3 ∈ RH′×W ′×C′
, which

are then summed to obtain the serial convolution output
Fconv ∈ RH′×W ′×C′

.
2) Feature fusion and attention: Following feature ex-

traction via the multi-branch feature extraction, we conduct
adaptive feature enhancement using attention mechanisms. The
attention module comprises a sequence of efficient channel
attention [25] and spatial attention [26] components. In this
context, F̃ ∈ RH×W×C′

is successively processed by a one-
dimensional channel attention map Mc ∈ R1×1×C′

and a
two-dimensional spatial attention map Ms ∈ RH′×W ′×1. This
process can be summarized as follows:

Fc = Mc(F̃)⊗ F̃, Fs = Ms(Fc)⊗ Fc, (1)

F
′′
= δ(B(dropout(Fs))), (2)

where ⊗ denotes element-wise multiplication, Fc ∈
RH×W×C′

and Fs ∈ RH×W×C′
represent features after

channel and spatial selection, δ(·) and B(·) represent Rectified
Linear Unit (ReLU) and Batch Normalization (BN), respec-
tively, and F

′′ ∈ RH×W×C′
is the final output of PPA.

B. Dimension-Aware Selective Integration Module

Fig. 3. Detail structure of the dimension-aware selective integration module.

During the multiple downsampling stages in infrared small
object detection, high-dimensional features may lose infor-
mation about small objects, while low-dimensional features
may fail to provide sufficient context. To address this, we
propose a novel channel partition selection mechanism (de-
picted in Fig. 3), enabling DASI to adaptively select ap-
propriate features for fusion based on the object’s size and

characteristics. In particular, DASI initially aligns the high-
dimensional features Fh ∈ RHh×Wh×Ch and low-dimensional
features Fl ∈ RHl×Wl×Cl with the features of the current
layer Fu ∈ RH×W×C through operations like convolution and
interpolation. Subsequently, it divides them into four equal
segments in the channel dimension, resulting in (hi)

4
i=1 ∈

RH×W×C
4 , (li)4i=1 ∈ RH×W×C

4 , and (ui)
4
i=1 ∈ RH×W×C

4 ,
where hi, li, and ui denote the i-th partitioned features of
high-dimensional, low-dimensional, and current layer features,
respectively. These partitions are computed according to the
following formulas:

α = sigmoid(ui), u
′

i = αli + (1− α)hi, (3)

F′
u = [u′

1,u
′
2,u

′
3,u

′
4], F̂u = δ (B (Conv(F′

u))) , (4)

where α ∈ RH×W×C
4 represents the values obtained through

the activation function applied to ui, u′
i ∈ RH×W×C

4 rep-
resents the selectively aggregated results for each partition.
After merging (u′

i)
4
i=1 in the channel dimension, we obtain

F′
u ∈ RH×W×C . The operations Conv(), B(), and δ() denote

convolution, batch normalization (BN), and rectified linear
unit (ReLU), respectively, ultimately resulting in the output
F̂u ∈ RH×W×C .

If α > 0.5, the model prioritizes fine-grained features, while
if α < 0.5, it emphasizes context features.

C. Multi-Dilated Channel Refiner Module

In the MDCR, we introduce multiple depth-wise separable
convolution layers with varying dilation rates to capture spatial
features across a range of receptive field sizes, which allows
for more detailed modeling of the differences between objects
and backgrounds, enhancing its ability to discriminate small
objects.

Fig. 4. Detail structure of multi-dilated channel refiner module.

Illustrated in Fig. 4, MDCR partitions the input features
Fa ∈ RH×W×C into four distinct heads along the channel
dimension, generating (ai)

4
i=1 ∈ RH×W×C

4 . Each head then
undergoes separate depth-wise separable dilated convolution
with distinct dilation rates, yielding (a′i)

4
i=1 ∈ RH×W×C

4 . We
designate the convolution dilation rates as d1, d2, d3, and d4.

a′i = DDWConv(ai), (5)



Fig. 5. Visual examples of representative methods are provided. Pink and green circles represent true positive and false positive objects, respectively. The
pink rectangle zooms in on true positive objects for a more apparent distinction of detection accuracy among different methods.

where a′i denotes the features acquired by applying depth-wise
separable dilated convolution to the i-th head. The operation
DDWConv() represents depth-wise separable dilated convo-
lution, and i takes values in 1, 2, 3, 4.

MDCR enhances the feature representation through channel
segmentation and recombination. Specifically, we split a′i into
individual channels to obtain (aji )

C
4
j=1 ∈ RH×W×1 for each

head. Following this, we interleave these channels across the
heads to form (hj)

C
4
j=1 ∈ RH×W×4, thereby enhancing the di-

versity of multi-scale features. Subsequently, we perform inter-
group and cross-group information fusion using pointwise
convolution to obtain the output Fo ∈ RH×W×C , achieving a
lightweight and efficient aggregation effect.

hj = Winner([a
j
1,a

j
2,a

j
3,a

j
4]), (6)

Fo = δ(B(Wouter([h1,h2, ...,hj ]))), (7)

where Winner and Wouter are the weight matrices used in
pointwise convolution. Here, aji represents the j-th channel
of the i-th head, while hj denotes the j-th group of features.
We have i ∈ 1, 2, 3, 4 and j ∈ 1, 2, ..., C

4 . The functions δ()
and B() correspond to rectified linear units (ReLU) and batch
normalization (BN), respectively.

D. Loss design

As depicted in Fig.1, we employed a deep supervision
strategy to further resolve the issue of small objects being
lost during downsampling. The loss at each scale comprises
binary cross-entropy loss and Intersection over union loss and
is defined as follows:

li = Bce(y, ŷ) + Iou(y, ŷ), L =

5∑
i=0

λi · li, (8)

where (li)
5
i=0represents the losses at multiple scales, ŷ is the

ground truth mask, and y is the predicted mask. The loss

TABLE I
ABLATION STUDY ON THE SIRST DATASET IN IOU(%) AND NIOU(%).
HERE ✓MEANS THAT THIS COMPONENT IS APPLIED. NOTE THAT OUR

BASELINE (BAS.).

Bas. PPA DASI MDCR SIRST
IoU nIoU

✓ 71.2 74.4
✓ ✓ 75.3 76.9
✓ ✓ ✓ 77.9 76.1
✓ ✓ ✓ ✓ 80.1 78.3

TABLE II
COMPARATIVE EVALUATION ON THE SIRST DATASET. WE REPORT

METRIC IOU (%) AND NIOU (%).

Method IoU nIoU

Top-Hat [1]Infrared Phys Techn′2006 5.86 25.42
LCM [2]T Geosci Remote′2013 6.84 8.96
PSTNN [4]Remote Sens−Basel′2019 39.44 47.72
IPI [3]TIP ′2013 40.48 50.95
RIPT [5]J−STARS′2017 25.49 33.01
NIPPS [6]Infrared Phys Techn′2016 33.16 40.91
MDvsFA [18]ICCV ′2019 56.17 59.84
SwinT [27] ICCV ′2021 70.53 69.89
ACM [21]WACV ′2021 72.45 72.15
UIUNet [22] TIP ′2022 78.25 75.15
HCFNet (Ours) 80.09 78.31

weights for each scale are defined as [λ0, λ1, λ2, λ3, λ4] =
[1, 0.5, 0.25, 0.125, 0.0625].

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

Our methods are assessed using SIRST [21] in two standard
metrics: Intersection over Union (IoU) and normalized Inter-
section over Union (nIoU) [21]. SIRST was partitioned into
training and test sets in an 8:2 ratio during our experiments.



B. Implementation Details.

We perform experiments with HCF-Net on an NVIDIA
GeForce GTX 3090 GPU. For input images of size 512×512
pixels and featuring three color channels, HCF-Net’s com-
putational cost is 93.16 GMac (Giga Multiply-Accumulate
operations), comprising 15.29 million parameters. We employ
the Adam optimizer for network optimization, employing a
batch size of 4 and training the model 300 epochs.

C. Ablation and Comparison

This section introduces ablative experiments and compar-
ative experiments conducted on the SIRST dataset. Firstly,
as shown in Table I, we use U-Net as a baseline and sys-
tematically introduce different modules to demonstrate their
effectiveness. Secondly, as indicated in Table II, our pro-
posed method achieves outstanding performance on the SIRST
dataset, with IoU and nIoU scores of 80.09% and 78.31%,
respectively, significantly surpassing other methods. Finally,
Fig. 5 presents visual results for various methods. In the first
row, it can be observed that our method accurately detects
more objects with a meager false-positive rate. The second row
demonstrates that our method can still precisely locate objects
in complex backgrounds. Finally, the last row indicates that
our method provides a more detailed description of shape and
texture features.

V. CONCLUSION

In this paper, we address two challenges in infrared small
object detection: small object loss and background clutter. To
tackle these challenges, we propose HCF-Net, which incor-
porates multiple practical modules that significantly enhance
small object detection performance. Extensive experiments
have demonstrated the superiority of HCF-Net, outperforming
traditional segmentation and deep learning models. This model
is poised to be crucial in infrared small object detection.

REFERENCES

[1] Ming Zeng, Jian xun Li, and Zhang xiao Peng, “The design of top-
hat morphological filter and application to infrared target detection,”
Infrared Physics & Technology, vol. 48, pp. 67–76, 2006.

[2] CL Philip Chen, Hong Li, Yantao Wei, Tian Xia, and Yuan Yan Tang,
“A local contrast method for small infrared target detection,” IEEE
transactions on geoscience and remote sensing, vol. 52, no. 1, pp. 574–
581, 2013.

[3] Chenqiang Gao, Deyu Meng, Yi Yang, Yongtao Wang, Xiaofang Zhou,
and Alexander Hauptmann, “Infrared patch-image model for small target
detection in a single image,” IEEE Transactions on Image Processing,
vol. 22, pp. 4996–5009, 2013.

[4] Landan Zhang and Zhenming Peng, “Infrared small target detection
based on partial sum of the tensor nuclear norm,” Remote Sensing, vol.
11, no. 4, pp. 382, 2019.

[5] Yimian Dai and Yiquan Wu, “Reweighted infrared patch-tensor model
with both nonlocal and local priors for single-frame small target detec-
tion,” IEEE journal of selected topics in applied earth observations and
remote sensing, vol. 10, no. 8, pp. 3752–3767, 2017.

[6] Yimian Dai, Yiquan Wu, and Yu Song, “Infrared small target and back-
ground separation via column-wise weighted robust principal component
analysis,” Infrared Physics & Technology, vol. 77, pp. 421–430, 2016.

[7] Rongtao Xu, Changwei Wang, Jiguang Zhang, Shibiao Xu, Weiliang
Meng, and Xiaopeng Zhang, “Rssformer: Foreground saliency enhance-
ment for remote sensing land-cover segmentation,” IEEE Transactions
on Image Processing, vol. 32, pp. 1052–1064, 2023.

[8] Rongtao Xu, Ye Li, Changwei Wang, Shibiao Xu, Weiliang Meng, and
Xiaopeng Zhang, “Instance segmentation of biological images using
graph convolutional network,” Engineering Applications of Artificial
Intelligence, vol. 110, pp. 104739, 2022.

[9] Changwei Wang, Rongtao Xu, Shibiao Xu, Weiliang Meng, and Xi-
aopeng Zhang, “Cndesc: Cross normalization for local descriptors
learning,” IEEE Transactions on Multimedia, 2022.

[10] Changwei Wang, Rongtao Xu, Shibiao Xu, Weiliang Meng, and Xi-
aopeng Zhang, “Da-net: Dual branch transformer and adaptive strip
upsampling for retinal vessels segmentation,” in International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2022, pp. 528–538.

[11] Changwei Wang, Rongtao Xu, Yuyang Zhang, Shibiao Xu, Weiliang
Meng, Bin Fan, and Xiaopeng Zhang, “Mtldesc: Looking wider to
describe better,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2022, vol. 36, pp. 2388–2396.

[12] Changwei Wang, Rongtao Xu, Ke Lv, Shibiao Xu, Weiliang Meng,
Yuyang Zhang, Bin Fan, and Xiaopeng Zhang, “Attention weighted
local descriptors,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023.

[13] Changwei Wang, Lele Xu, Rongtao Xu, Shibiao Xu, Weiliang Meng,
Ruisheng Wang, and Xiaopeng Zhang, “Triple robustness augmentation
local features for multi-source image registration,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 199, pp. 1–14, 2023.

[14] Rongtao Xu, Changwei Wang, Jiaxi Sun, Shibiao Xu, Weiliang Meng,
and Xiaopeng Zhang, “Self correspondence distillation for end-to-end
weakly-supervised semantic segmentation,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2023, vol. 37, pp. 3045–3053.

[15] WanTing Wang, Hanlin Qin, Wenxiong Cheng, Chunmei Wang, Hanbing
Leng, and Huixin Zhou, “Small target detection in infrared image
using convolutional neural networks,” in AOPC 2017: Optical Sensing
and Imaging Technology and Applications. SPIE, 2017, vol. 10462, pp.
1335–1340.

[16] LIN Liangkui, Wang Shaoyou, and Tang Zhongxing, “Using deep learn-
ing to detect small targets in infrared oversampling images,” Journal of
Systems Engineering and Electronics, vol. 29, no. 5, pp. 947–952, 2018.

[17] Mingxin Zhao, Li Cheng, Xu Yang, Peng Feng, Liyuan Liu, and Nanjian
Wu, “Tbc-net: A real-time detector for infrared small target detection
using semantic constraint,” arXiv preprint arXiv:2001.05852, 2019.

[18] Huan Wang, Luping Zhou, and Lei Wang, “Miss detection vs. false
alarm: Adversarial learning for small object segmentation in infrared
images,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 8509–8518.

[19] Nasser M Nasrabadi, “Deeptarget: An automatic target recognition using
deep convolutional neural networks,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 55, no. 6, pp. 2687–2697, 2019.

[20] Tianfang Zhang, Siying Cao, Tian Pu, and Zhenming Peng, “Agpcnet:
Attention-guided pyramid context networks for infrared small target
detection,” arXiv preprint arXiv:2111.03580, 2021.

[21] Yimian Dai, Yiquan Wu, Fei Zhou, and Kobus Barnard, “Asymmetric
contextual modulation for infrared small target detection,” in Proceed-
ings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2021, pp. 950–959.

[22] Xin Wu, Danfeng Hong, and Jocelyn Chanussot, “Uiu-net: U-net in
u-net for infrared small object detection,” IEEE Transactions on Image
Processing, vol. 32, pp. 364–376, 2022.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin, “Attention
is all you need,” Advances in neural information processing systems,
vol. 30, 2017.

[24] Baifeng Shi, Siyu Gai, Trevor Darrell, and Xin Wang, “Refocusing is
key to transfer learning,” arXiv preprint arXiv:2305.15542, 2023.

[25] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and
Qinghua Hu, “Eca-net: Efficient channel attention for deep convolutional
neural networks,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 11534–11542.

[26] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon,
“Cbam: Convolutional block attention module,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 3–19.

[27] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo, “Swin transformer: Hierarchical vision
transformer using shifted windows,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2021, pp. 10012–10022.


	Introduction
	Related Work
	Traditional Methods
	Deep Learning Methods

	Method
	Parallelized Patch-Aware Attention Module
	Multi-branch feature extraction
	Feature fusion and attention

	Dimension-Aware Selective Integration Module
	Multi-Dilated Channel Refiner Module
	Loss design

	Experiments
	Datasets and Evaluation Metrics
	Implementation Details.
	Ablation and Comparison

	conclusion
	References

