Applying Bayesian Belief Networks in Approximate String Matching
for Robust Keyword-based Retrieval

Bjtm Schuller, Ronald Miiller, Gerhard Rigoll, and Manfred Lang
Institute for Human-Machine Communication
Technische Universitdt Miinchen
D-80290 Miinchen, Germany
(schuller | mueller | rigoll | lang)@mmk.ei.tum.de

Abstract

In this work we present a novel approach towards
robust keyword-based retrieval. Thereby Bayesian
Belief Nerworks are applied in a word-model based
Approximate String Matching algorithm. Apart from
proved reliable performance of a working
implementation on standavd sources like digital text,
wholly probabilistic modeling allows for integration of
confidence measures and hypotheses obtained from
preprocessing stages like handwriting recognition or
optical character recognition respecting uncertainties
on the lower levels. Furthermore a flexible method to
include the modeling of specific error types deriving
Jrom humans and various Input sources is provided,
The remarkable performance of the algorithms
presented was tested during extensive evaluation with
respect to Levenstein-Distance, which can be seen as
basis of state-of-the-art methods in this research field.
The tests ran on a 14K database containing common
international music titles and four 10K databases
consisting of the most frequently used words in
English, German, French, and Dutch language.

1. Introduction

Due to the rapidly growing amount of digital
information available at giant archives and the Internet,
information retrieval became an established field of
research especially during the last decade, Within this
area, text retrieval is playing a major role, as text is
still the most widely spread form of presentation.
Thereby query methods try to find matches of the
string retrieval request in the textual data available. If
the search engine applies solely exact string matching,
many originally adequate hits might be missed because
of erroneous data either in the retrieval request or at
the retrieved data itself. Such errors may derive from

several sources: On the one hand retrieval requests can
be corrupted and uncertain due to orthographical or
typing errors of the user or results of a handwriting
recognition unit on handheld or tablet PC’s. On the
other hand the textual information database may
contain typing and spelling errors as well as
uncertainties and hypothesis of pre-positioned optical
character recognition stages. Furthermore during
transmission over lossy channels random deletion of
several characters may appear. Therefore Approximate
String Matching is a must to achieve adequate
robustness in keyword-based retrieval scenarios.

Unlike Boolean string comparison, such sofi
matching requires a measurement of similarity of two
strings 8, and Sp. Early approaches on this topic have
been made by V. Levenstein [1]. He proposes that
similarity can be determined by the minimum number
of operations to turn string S into Sz by editing S.
Thereby three kinds of edit operations are defined:
Substitution, deletion, and insertion of one character at
a time. This minimum number of necessary alterations
is referred to as Levenstein-Distance and is widely
used as the basis of state-of-the-art sofi matching
algorithms [2]. Unlike these, a novel approach towards
Soft String Matching is presented in this work: It uses
fully probabilistic modelling of character sequences
with Bayesian Belief Networks [3]. This allows the
processing of uncertainty in input strings as well as the
calculation of real confidences for different matching
hypotheses. Thus all koowledge lying in the
uncertainty of both system input and system output can
be conserved until a final decision has to be made.

2. Approximate String Matching

Our method of determining similarity between S,
and Sp quantitatively requires to build up a model of
one string, say S, at first. In a subsequent step

1999

information of the reference pattern Sp is fed into this
model in order to draw a comparison. The
corresponding algorithm starts with securing
invariance against character cases by switching all fo
lowercase. In the following the input sequence is split
into units of characters. A unit may consist in one or
more characters, which represent meta-characters as
phonemes or spelling variations. This is the first step
considering source adapted error modeling, here
exemplarily shown and implemented for orthographic
mistakes. The latter appear due to ambiguities in
spelling as different combinations of characters may
represent same phonemes. Common examples in
English are character units like doubled and single
consonanis or “eq”, “ee”, “ie”, and “ei”, all inter alia
standing for ¥, their respective phonetic transcription.
If such a character unit representing a phoneme is
observed in the string to be modeled, the characters of
the unit will not be separated and their similar units
will be kept as alternatives. As our target application is
a music retrieval database with international titles, we
used 37 different character units to cover prevalent
spelling mistakes in the languages contained. As
mentioned, the error modeling also has to take into
account the error characteristic of the sowrce.
Considering a handwriting recognition engine, the
alternative units consist of characters that are probably
confused due to the confusion matrix of the engine
applied. After the accomplishment of hence described
steps, a graph of parent-child relations between the
string 1o be modeled, its character units, and their
alternatives can be constructed. This graph constitutes
the structure of a discrete Bayesian Belief Network,
which is applied as mathematical model in our
algorithm. Figure 1 shows the corresponding structure
for the word “ease™.

Root : @
Character
unit (@) :) G (©

Similar char.
wmit@: e Ged G
Figure 1. Exemplary Belief Network graph for “ease”

Next to the constitution of the network structure, a
number of parameters have to be set. Since discrete
Belief Networks with soft evidences are used, the
parameters are the probabilistic dependencies between
each node and its parent node as well as the initial
probability of the root node iwself. Concerning
individual importance of all character units a on the
midlevel, we assume equal properties. Comparable

conditions exist between similar character units £ and
their parent nodes. Likewise, overall three values must
be set to define the complete network. These are the
probability of the root node P(Root) and the
conditional probabilities Pfu|Root) as well as P(flo).
The strong comrelation expected between character
units and their similar alternatives lead to setting
Pfla} to 095, which proved suitable during
evaluation. Unlike this, the establishment of the
remaining parameters has to be adapted to the number
of units contained in the character sequence attended.
The mathematical reasons for this will be discussed in
the description of the matching algorithin, So far it can
be motivated by an interpretation of P(Root} and
P{ajRoot): P(Root} can be seen as the probability of
appearance of the string modeled. A monotone
decrease of probability of occurrence was observed for
strings with increasingly more than four characters. On
the other hand a single character unit of the string gets
less significant the greater their number is. Considering
these aspects we have two indirect proportionalities to
the length L of the siring. Since the censtruction of
model is to be automated, a function for each
parameter in dependency of L must be used. Two
functions have been found heuristically, which meet
requirements described later on.

P(Rooty = p~8-107 . L ; P(a{ Roory = q—8-10" - L

The letters p and g stand for initial probabilities. Best
results could be achieved with following settings for:
p =125, and g = 0.75 for character confidences equal
1. Otherwise recognition probabilities of the co-
domain {0 ; 1] are mapped on the range [0.55 ; 0.75]
and will be put in for ¢ for the corresponding
character. The reason for the need of mapping is that
only values >0.5 for Pfa|Root) can have a positive
impact on P(Root) in case of evidence.

After the execution of all steps described, a
Bayesian Belief Network has been built that is suitable
for the final task of measuring similarity of the
modeled string to any other character sequence.

In determining similarity of two strings, following
two factors are playing a major role:

1. Number of identical or similar character units
2. Degree of adherence to the order of the units

In order to introduce nofations used in the
following, let S, be the modelled string and Sy the
reference string. Furthermore say Ny is the length of Sy
in number of units, whereby X & {4,B}, and let Uy, be
a unit at index n in string X, with 1 £ n < Ny .

2000

The important two factors mentioned above, are
processed together in three steps.

For initizlisation (n = 0} the variable [p(n) is set to
—1. At first Sp is scanned for each unit U, ,. In case that
Uy, 1s found, the index of the position in Sz will be
stored in [z(n). Additionally the distance D, to the
previous place of finding f3(n-1) is calculated as
follows:

D, =1g{n)—fg(n-1)~1

D, actually keeps the number of character units that
have been let out in Sz between the previous found unit
S, and the actual found unit of 5. In case that U/, can
not be discovered in Sp, the search extends to the
similar units of U/ ,. If this is successful, the distance
is not stored in D but in a separate list labelled as DS.
Otherwise, Ip(n) takes the wvalue of Iyr-1), its
forerunner, and D, therefore results in —1. Furthermore
found units in §3 must be denoted to avoid double
matching. After finishing this first step we get a list of
values D,, each corresponding with the n-th unit of the
modelled string S;.

The second step is applied to reduce computation
time. Thereby it is important to know that the
similarity calculus will perform with comprehension of
the valid entries in the lists D and DS. Negative values
indicate that either the accordant unit U, could not be
found or that a retrace had to take place concerning the
previous unit of S,. Both possibilities do not argue for
similarity of §; and Spz. Therefore those entries are
denoted as invalid. Same takes place if any values
larger than 3 appear, as this means that more than 3
units in Sp were let out till a new matching succeeded.
Now normally a decent number of valid entries are
left. If the sum of them in D and DS is larger than M
percent of N; the algorithm proceeds to step three.
Otherwise similarity of S and S is assumed to be too
small and not worth computing. Evaluative
experiments proved that at a value of M = 0.3 no
negative, impact conicerning recognition rate occurred.
On the other hand the computing time decreased up to
55% depending on the content of used databases.

As mentioned, step three takes on the final
calculation of similarity. The principal is to let nodes
of the Bayesian Belief Network model achieve
evidence, only if their correspending character unit
was found in valid order. Achieving evidence means
that the probability P(a) or £{5} of those nodes is set to
a definite value, being propagated especially to the
root node. At the end P(Roor) will indicate the degree
of similarity of §; and 5. In Belief Networks a direct
proportionality is present between P(Root) and Pla) as

2001

well as P(B), due to the setting of the network
parameters described. On the one hand all units, whose
corresponding entry in D or DS is zero get full
evidence, meaning P(a} = | or P{f}) = 1. This seems
reasonable since D, = 0 indicates that a matching
occurred in correct order. For values D, e {1,2,3} the
evidence has to weaken incrementally to allow for the
order aberration. An adequate function to implement
this proved to be

P(a)=P(B8)=1-D,-01.

Now a short review which cases have been covered
hence: For N; > Ny, P(Root) will be reduced by the
fact that maximum N nodes of the model will achieve
evidence. If N; < Nj, the occurrence of excrescent
units at the beginning of Sz and between units,
matching with S, is punished by reducing evidence
probabilities. However, the possibility that Sp consists
of S; and a suffix, consider e.g. adverbs like
“common” {S,;) and “commonly” (Sg}, is still not
handled. Therefore the evidence of the node modelling
the last matching unit U,; will be weakened according
to the number of following character units in S, which
is My — i. The reduced evidence probability P;" is
calculated to

P =P ~005-(Ny -

Thereby P; may be Pa) or FPif). So evidence of the
node of “n” in “common” is reduced by 10%, as it
contains two additional units at the end.

Now the setting of the network parameters P(Root)
and Pfa|Root) is getting reasonable. [magine two
models of two different strings S, and ;- with ¥, <
N, and a reference string Sp with Ny £ Np. Say S;, 5y
, and S, are containing an equivalent sub-string S, of
length N, < N, . The nodes representing the units of S,
will achieve equally high evidences during the
execution of the matching algorithm with Sg in both
models. If the parameters P(Root) and P(a|Root) were
not adapted to the length of S, and S4 , this would
result in almost equal probabilities for P(Root) in the
models of S; and S4- . The decay of mentioned net
parameters for longer sirings assures that the shorter
string Sy will achieve a greater probability as it is
relatively more similar to Sg.

Due to computation time and storage costs the
modelling is not done on database entries but on the
query request. As the modelling procedure is wholly
deterministic, it does not make a difference in
similarity measurement whether S, is modelled and Sz

constitutes the reference or the other way round. This
helps to reduce computation time to a fraction.

3. Evaluation

In order to examine the performance of the
described algorithms, a running implementation has
been tested on five databases, one containing 14,186
titles of common western music and four comprising
the 10,000 most frequent words of English, German,
Dutch and French each [4]. Table 1 shows statistical
parameters of the distributions of the string length L in
characters and the inter Levenstein Distance LD in the
applied databases.

Table 1. Distribution of L and LD in the databases.

LMin LMax L Lu LD T} LDU

)}
Titles 4 39 116.9] 2511179 | 6.32
English 1 18 17.11 (252|733]2.02
German 1 27 {816 3.09| 8.25 | 2.57
Dutch 1 26 7601289 779]2.36
French] 19 | 7.72 | 2.67 1 7.81 | 2.13

In the evaluation sets at first 1,000 entries are
selected from each database coincidentally. In a
subsequent step each entry is treated randomly with
editing operations proposed by Levenstein until a
defined relative Levenstein-distance Rel. LD in percent
is achieved. While all errors are randomly distributed,
this can be seen as the worst case as no adequate error
modeling can be applied. We build up four times six
test corpora for each database. In the first six sets all
edit operations were equally distributed (Table 2). In
further sets we focused on single edit operations.

Table 2. Perform. at equally distributed edit operations

Table 3. Agn.p for equally distributed edit operations

Rel. LD| 3% [10% | 20% | 30% | 40% | 50%

Titles -03] -0.8] -2.1| -28[-6.4| -82

English | -0.5| -19) -70] -38] -431 -55

Table 4. Agy;p for exclusive deletion of characters

Rel. LD| 5% | 10% | 20% | 30% | 40% | 50%

Titles 0.0{ -0.1 0.1 23] 1197 405

English 0.3 02 851 249 40.1(419

Rel. LD| 5% | 10% | 20% | 30% | 40% | 50%

Titles 99.7 199.2 | 976 | 957 | 92.6 | 893

English | 99.5 | 98.1 [91.7 | 77.2 | 674 | 55.0

German | 98.8 | 956 | 89.5 | 743 | 689 | 51.7

Dutch | 989 | 95.8 [91.8 | 76.7 | 67.0 | 55.6

French | 97.1 | 93.4 1 85.1 | 70.8 | 62.6 | 502

To show a comparison in performance, the entries
in Table 3 and 4 show the absolute gain Agy.p in
percens of our approach compared to the very standard
Levenstein aigorithm, where every edit operation is
counted by costs of “17,

While the proposed probabilistic algorithm shows
slightly worse recognition rates for equally distributed
disturbances by substitutions, deletions, and insertions,
the achieved gains on lossy channel transmission
resulting in random deletion of up to 50% of the
originally sent characters are outstanding (Table 4).

4, Conclusion

We proposed a2 novel approach towards robust
Approximate String Matching. As mathematical model
Bayesian Belief Networks are applied to allow for
probabilistic error modeling and adequate integration
of confidences and hypotheses provided by various
sources of the input and the retrieval text corpus. In
order to be comparable with slate-of-the-art
algorithms, evaluation considered relative Levenstein-
distance. Thereby increased robustness could be
proved especially at high degrees of input corruption.
The presented methods could be successfully
integrated in a multimodal Music Retrieval System
combining handwritten, speech and humming input, In
future works further refinement of automated error
modeling and extended evaluation will be forced.

5. References

[1] V. Levenstein: “Binary codes capable of correcting
insertions and reversals,” Sovier Physics Doklady, 10:707-
710, 1966.

[2] G. Navarro: “A Guided Tour to Approximate String
Matching,” ACM Computing Surveys, 33(1),
pp. 31-88, 2001.

[3] F. V. Jensen: An Introduction to Bayesian Networks,
UCL Press, 1996.

{4] U. QuasthofT , et al. : Projelke Deutscher Worltschatz,
University of Leipzig, Institute of Computer Science,
http://wortschatz.informatik.uni-leipzig.de,

2002

