DCM-based gait generation for walking on moving support sufaces

Johannes Englsberger, George Mesesan, Christian Ott Adn-Schaffer

Abstract— This paper presents a novel walking gait generator
that allows the successful traversal of moving support sugces
such as conveyor belts, moving plates and escalators. The
gait generator previews all steps of a complete gait sequeagc
while providing efficient matrix-vector based computatiors. The
moving support surfaces are explicitly taken into accountdr the
trajectory design. Multiple successful simulations of waking on
different non-stationary ground surfaces prove the high quality
of the proposed walking gait generator.

I. INTRODUCTION

Robotic walking is regarded as a difficult problem: wal- ¥ :
king robots have a high number of degrees of freedomEEEE==rs
(DOF), their system dynamics is nonlinear and hybrid, and &
— to avoid falling — contact stability constraints need to N e
be obeyed. A widely used approach to handle this high =
complexity is model reduction. The most popular reduced
model focuses on the robot's CoM dynamics. In [1], Kajita et
al. introduced thdinear inverted pendulurfLIP) model that  Fig. 1. Toro [19] walking over two moving plates in OpenHRM][2
uses the zero momentum point (ZMP) as input and further
constrains the CoM dynamics to a horizontal plane. Many
works (including [2]-[6]) have presented successful wadki IS crucial in case of movirigground surfaces. In contrast
gait generation and/or control based on the LIP model. to other gait generation methods including [2], [4], our

A further break-through in the field of online walking gait method facilitates a preview of theomplete gait sequence
generation and control was the decomposition of the LIia efficient matrix-vector based computations. The rasyilt
model into a stable and an unstable component. The latiépiectories obey appropriate initial and terminal coaists.
was first referred to by Pratt et al. [7] as '(instantaneoudyven though the feet are moving with the respective support
Capture Point’ and by Hof et al. [8] as 'extrapolated Centegurfaces, the ground reference points are guaranteed to
of Mass’. Takenaka et al. [9] introduced the term 'Divergenbe feasible (assuming sufficient friction). Finally, theofo
Component of Motion’ (DCM) for it, which we use in the trajectories are designed to match the moving supportcairfa
presented work. The DCM was successfully applied to fldhotion, such that impacts with the floor are avoided. These
floor walking, e.g. in [9]-[11]. In [12], we extended the features result in a remarkable tracking performance.

DCM model to 3D, while Hopkins et al. [13] extended it To the best of our knowledge, the presented walking
to Varying virtual pendu|um he|ghts (time-varying DCM)galt generator is the first of its kind, i.e., to date no other
In [14]’ Mesesan et al. ana|yze the convex properties 5fameworks exist that would allow for comparably efficient
CoM trajectories based on DCM and perform multi-contac@ait generation for walking over ground surfaces that move
locomotion in simulation. While robotic walking over flat or at different speeds.

unevenstationarygrounds has been successfully addressed, The paper is structured as follows: Section Il reviews the
robotic walking across moving ground surfaces, as predentBasics of the control points used in this work. In Section
by Unhelkar et al. [15] for a wheeled mobile platform, is not!l, we derive single transition phase trajectories, whisle
covered by the state of the art. then used in Section IV as building blocks to compose multi-

This paper presents an awesome gait generator that @fiase trajectories for @omplete walking sequencgections
tends our DCM-based p|anning and control framework [14]\/ and VI pI’OVide implementation details and describe simu-
[16]-[18] to allow the traversal of moving support surfacedations, respectively, that verify the performance of oaitg
such as moving plates, conveyor belts and escalators. Wh@ignerator. Section VII concludes the paper.

in case of Walkmg on stationary ground’ oné may argue INote: it can be shown that walking within a reference systéat t

about the number of previewed steps, a multi-step preview moving at asingle constant velocitfe.g. within a train) follows the

same physics as walking on stationary ground and may thusabdléd
German Aerospace Center (DLR), by standard walking gait generators and controllers. Intreshy walking
Institute of Robotics and Mechatronics, 82234 Wesslingntzay. over support surfaces that moveditferent velocitiegw.r.t. direction and/or
contact: johannes.englsberger@dlr.de magnitude) requires more sophisticated gait generatiotiads.



Il. REVIEW OF BASICS I11. SINGLE TRANSITION PHASE TRAJECTORIES AS
The fundamental theory on thBivergent Component BUILDING BLOCK
of Motion (DCM), the enhanced Centroidal Moment Pivot |n this work, we usenyp waypoints for VRP, DCM

(eCMP) and theVirtual Repellent Point(VRP) can be and CoM, respectively, and perform piecewise interpotatio
found in our previous work [16], [17]. In this section, wepetween them, which yieldsy = nwp— 1 single transition

summarize their definitions and properties. phase trajectoriesThese are then used as building blocks for
The DCM is defined as composing the correspondiegmpletereference trajectories.
E—x+bi. (1)

A. General solution for DCM trajectories corresponding to
Here, z and & denote the center of mass (CoM) positionpolynomial VRP trajectories as input

and velocity, respectively, each being a three-dimensiona
qguantity. The DCM time-constant is denoted by which
can be derived from the average height of the CoM abo
the ground surfacé\z,p, as b = \/Az,p/0, g being the
gravitational constant (see [16], [17] for more detalils). ol (t)= 7 t) P, . (6)

Reordering (1), we find the CoM dynamics

In sections IlI-A and I11-B, we provide explicit solutiohs
for both DCM and CoM trajectories for arbitrapplynomial
MFRP reference trajectories of the form

1 Here,t" (t) = [1, t, t2, ..., t%], o, is the polynomial order
T = 5 (x—-¢) , (2) of v(t) and P, is a polynomial parameter matrix. Inserting
(6) into (3) yields:

which shows that the CoM follows the DCM with a stable

first order dynamics. The CoM dynamics can thus (assuming Ty - Lty LT

sufficient friction, see [18]) be neglected w.r.t. plannangd ¢n= b & b L@fx ' )
control, which facilitates the gait design process. v (1)

(ml'jrigE:)?[’rs]tggllgm(;gs;hOtio\':\gfrf]o’r\lceemg(ggélsgr%rlwa(\/:vof/l ): vlvme / E;d This ODE can be solved using the solution from appendix
: : ' I-A by settingy(t) — £T(t), a— b andpy, — P, in (43):
the following unstable first order dynamics for the DCM: y 9yt =& Pu vin (43)

.1 T(t) = eb (-t (0)C(b) P,) + tT(t) C(b) P, .
i-lew @ §0=¢ (8-100h R) +w ® R
¢
Here we already inserted the definition of the Virtual Repel- & ®)
lent Point (VRP)v. The VrIiP encode$’ via Evaluating (8) fot =T, g;[ can be written alternatively as
F=—-(x—v). 4) T
b? -t (d-'mco)r), O

Looking at (3), we find that the DCM is pushed away

from the VRP, i.e., itdiverges This divergent nature of where&r :=¢&(T). Replacingg! from (9) into (8), we find

the DCM can be used to design DCM reference trajectories 1 T

that obey a terminal constraint (see Sec. V-B). Additignall &' (t) = er &+ (tT(t) —eb t (T)) C(b) P,.

corresponding CoM trajectories can be derived. 710) -
Another three-dimensional point that is interesting for CR-E ()

walking gait design and control is the so calledhanced o ) ) . (1.0)

Centroidal Moment Pivo(eCMP). In contrast to the Cen- This is the DCM solution for a given terminal DClt using

troidal Moment Pivot (CMP, [21]), which is defined as a@n arbitrarypolynomialVRP reference as input.

point on the ground surface that encodes the external force G | solution for CoM traiectori ding t

direction the eCMP is a 3D point encoding both the directiorn eneral soution for -0l trajectories corresponaing 1o

and themagnitudeof the external forcefey Via polynomial VRP trajectories as input

m In this section, we will derive an explicit solution for
Fext = 15 (z—e) . (®)  the CoM trajectory. By setting(f) — 2" (t), 4— —b and

The eCMP can be used for three-dimensional walking gaftt) _*éT_(t)' the general ODE (44) from appendix | beco-

generation, in a similar manner as the ZMP is used fdnes equivalent to (2):

flat-floor gait design. The difference between (4) and (5) 1 1 /¢

represents the gravitational force, which corresponds to a iT(t) ™ wT(t) + b (eﬁ 5g + tT(t)PE) (11)

VRP v at a constant heian‘AzVrp above the eCMR, i.e., O

v=e+]|0, O,szrp]T. Due to this constant offset, conside-

rations made for the eCMP — including the point to pointHere, we already inserted the DCM solution from (8) as

interpolations from Sec. I1I-C — can be directly transfelrre input. By comparingg™ (t) from (8) to (t) from (45), we

to the VRP (and vice versa).

SNote: for better readability, the basic math for solving tregjuired
2Az\,rp corresponds to average CoM height above the ground surface. specific ordinary differential equations (ODE) was movedppendix .
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Fig. 3. Moving eCMP (VRP equivalent) support point integia@n

Fig. 2. Convex support point interpolation leads to feasisingle . . . . . .
foot/contact forcesFu, a nom and Fuyg, (nom- Time dependancies omitted. €., V1a linear interpolation between preceding eCMP

support pointea(t) and aleading eCMP support poirdg(t)
using a temporal interpolation functiof(t). Furthermore,
infer that the solution of (11) can be found by additionallyif 0 < f(t) <1 vt € [0, T] (T denoting the duration of the
setting — b, e — &1 andpg — P; in (46) interpolation), (14) forms aonvexinterpolation between the
two points [14]. Inserting (14) into (5) we find

1/ t t
T - T -t T
x'(t) = =Z|(eb—eb) & + e bz (12) m
3 ) € Fex(t) = 55 (@ — (1= f(1) ealt) + f() ealt)) ) .
sinh() o0
+ () - ebeT() C(-b) P . _ - o (15)
which can be split into a pair of single external forces
Inserting P¢ and¢/! from (8) and (9), respectively, into (12), F ) — (1— f(t m t) — ealt 16
we finally express the CoM solution as excanom(t) = ( ®) b2 (m( ) —eal )) (16)
T oty T ot and m
2T (t) = smh(B) e & +eb g (13) Fextgnom(t) = f(t) 5 (m(t)—eg(t)) .an
W(t) These nominal single external forceBexanom(t) and

4 ((ttT e tg) C,— sinh(i) e*% 4) C, P, Feyignom(t) are proporti(_)nal to the offsets ef(t) andeB(t)

b from the CoM, respectively. Therefore, they automatically
pass through both the respective eCMP support points and
the CoM (see Fig. 2 (left)) and are thus feasible with regard

Here,C(—b), C(b), t"(t), t"(0) andt"(T) are denoted to unilaterality and non-tilting constraintsby design
by C_p, Cy, t{, t§ andtl, respectively. While the support points move w.r.t. the spatial reference

Note: in our previous works [16]-[18] (and also for thesystem, they are stationary w.r.t. their respective suppor
DCM controller used in this paper), explicit CoM trajectsi surfaces (i.e., in the moving reference systems). That way
are not requirei We provide CoM solutions here, sincetilting of any one of the supporting feet/contacts is avdide
other controllers may require explicit CoM reference ttaje  Friction cone constraints may be
tories. Also, these CoM trajectories will serve as a bagis fo « fulfilled already.
our future research on fully (including friction constrein « obtained at the planning stage by force modulation
dynamically feasible motion planning. in the nullspace of (15), i.e., by adding forcesA F’

) ) ) to the respective nominal contact forc&ganom and
C. Con_vex interpolation between moving eCMP/VRP sup- Fexnom that cancel each other and thu's'produce no
port points CoM forces or torques (see Fig. 2 (right)).

In this section, we derive feasible eCMP and VRP tra- « enforced via a quadratic program (QP) at a higher level
jectories for traversing moving support surfaces. To this by making use of the full robot dynamics instead of the
end, we attach eCMP support points to the moving support  simple support point dynamics considered for planning.
surfaces, which are thus moving relative to the inertiaiiea  After verifying the feasibility of external forces, we now
while being stationary w.r.t. a local frame attached to eactpecify the support point motions. In this paper, we limit ou
respective support surface. For each single transitioseyhaanalysis to support points moving edbnstantvelocities:
the reference eCMR(t) is constructed via

-
CR—x(t)

ea(t) =eap+téa (18)
e(t) = (1-f(t) ealt) + f(t) es(t), (14) ep(t) = epo+tép
4since only unilaterality of contact forces and eCMP (simita ZMP) °given that ea(t) and eg(t) are within the "single contact support

constraints are guaranteed to avoid tilting of the robots, favhile friction ~ polygons” of the (potentially moving) contacks and B, respectively.
is neglected during planning. 60ur method could handle arbitrapplynomialsupport point trajectories.



of Pl boundary conditions | 1
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VARIOUS POSSIBLE INTERPOLATION SCHEMES
Fig. 4. lllustration of particular function$(t) from table |

Here, epo = ea(0) and ego = eg(0). The support point (21), and (22) in a single equation we find
velocitieséa and ég are equal to the corresponding support

contact velocities, i.e.ep and eg are stationary w.r.t. the .. .71 1 T T
respective contact frames. Due to its convex constructian v v (1) =to, (1) ( 0o x1 _pf) va(t) +prog(t) | (23)

(14), the interpolated eCME(t) always lies on the line con- o1 pi T il 1
necting the two support points,(t) andeg(t) (see Fig. 3). =10, 41(t) (( 0 } - [O]) vao Tt {O} VB
Note the similarity to Bézier curves, the main distinctive Lorth)xd ~—
feature being that in our setup the start positigsp of the Pvago Pvgy
leading support point is not constrained to coincide with th [0
end positionea T = ea(T) of the preceding support point. + ( 1 |- [0} ) N+ [O] vg) .
Unlike other methods (e.g. [13], [22], [23]) that use a |00 x1 pt fz/fd
time-varying virtual pendulum length and thus parameter o Pig

b, in our work the constantaverage CoM heightAz,p
(corresponding to a timeonstant b leads to an equivalent )
usage of eCMR: and VRPw for both planning and contral  Note: In the second row of (23), we use a time veefor 4 (t)
Any corresponding eCMP/VRP points and trajectories aréat is augmented by one additional time exponential with
simply offset vertically byAz.p. Therefore, for the eCMP respect totgf (t) from the first row. In the remainder of the
support point interpolation (14) a corresponding equivale paper, we will denote . 4 (t) simply by ¢T(t) for brevity,

VRP support point interpolation exists: et (t)=[1,t, t2, .. to*1. Thus, we rewrite (23) as

’U(t) - (1_ f(t)) vA(t) + f(t) vB(t) ’ (19) 'UT(t) :tT(t) (pVA.o 'UX,O + Pvgp ’Ug,o + P 'U,I\ + Pig 'Ug) )

with the preceding VRP support poimi(t) andleading VRP P (24)

support pointug(t), which are obtained via which returns the three-dimensional reference YRB a

. function of time andP,.
vA(t) = vao+1 oA (20) Having a close look at Fig. 3, we observe that, as compa-
vg(t) =vgo+tvg (21)  red to formulation (21), a reformulation of the leading VRP
support pointvg(t) via its terminal pointvgt = vg(T) is
where va o = va(0) and vgo := vg(0). The VRP support advantageous becausg(T) equalsv(T). In Sec. IV, we

points areAz,p above the eCMP support points. exploit this equality for a compact formulation via VRP
In this work, we choose the temporal interpolatiorvaypoints. Therefore, we evaluate (21) for= T which
function f(t) to be apolynomialthat is expressed as yieldsvg o = vg 1 — T vB. Insertingug o back into (24) yields
f(t) = to, pr - (22)  Py=Duso VA0 + Pugo VBT + Pia DA + (Pig — T Pugo) U -
(25)

The vectort] = [1,t, 2 ..., t°] ando; denotes the poly- T_he final usage of this reformulation is eggmplified in Fig. 5
f (in the foot trace of contact 4) for transition phage= 7,

nomial order off (t). The polynomial parameter vectpk is
RwherevA’OJ = 00,7 = Vwp,7 and VBT, 7 = ’U(T) = Vwp,8-

designed to satisfy given continuity requirements of thePv
reference trajectories, which translate to boundary doordi

for f(t) (see table | and Fig. 4). Now, combining (19), (20), 8Note: in contrast to cases with time-varying VRP supportisoi (t)

andwvg(t) (as treated in this paper, see Fig. 7), for stationary suggonts
va, vg = const the interpolated VRRy(t) moves on a spatidine spanned
“Note: from here on, our formulation is purely based on the iRP by these two support points (see [14]).



heel-to-toe offset
- -

D. Specific single transition phase trajectories for watkin left foot trajectory
on moving grounds . &0 =0 |

<

- N B | i/ wa1(t) left foot print/trace
For a specific transition phage we can evaluate (25) for . 1 ? Owp7 = UAOT T 1

. . . . . Dwp7
VA0 = V0, VBT = VT, ¢, VA = V0,9 and VB = UT,¢- TD 3

/éA . 6

Zend

Eend

i = &ini = Tini
P

Py = pPuy v(-l)-,db + Pvgo 'U{cp (26)
+ Dip vg,(ﬁ + (pVB =T pVB,o) ’U¥¢ .

vAT,7 1O

Vini =
P
\
<«

7

Vend

O,
Vwpg = VB T7

Here, vg ¢, v1.0, V0¢ and vt denote the initial and final i .
0,¢ R0) 0,9 N0} right foot print/trace Lo L./ right foot trajectory

VRP positions and velocities, respectively. For a giveraloc v

time in transition phasedy € [0,Ty], the VRP reference

trajectory from (6) can be written as Fig. 5. Top view of VRPu(t), DCM &(t), CoM x(t) and foot trajectories,
plus foot positions / traces (left: orange, right: greenjlyCcontacts 3 and

,UI (t) = 7 (ts) Pup - 27) 4 have a non-zero velocityed = [0,—-0.4,0T 2, ¢4 =[0.2,—0.4,0T T).

Similarly, the DCM solution (10) becomes
To obtainZyp, we first evaluate (28) foty = 0:

&) =Veo) Ty + Rz, Pus (28) o g . 0
T T T T T = Ozo¢ Yoy + Prog VT,
=V (t) ST,([) +CPV*>E(I)=¢ Pvao Yo, + cPvﬁf(t),dz Pvgo VT 9 0.9 _E,O,d’ .?_d’ _fo¢ _-'[|:¢ T
—_— —_— + Og0¢ U0y + Beog U1 + Ve 0 ETo -
ag () Bz o (t)

I-_lere agl’o;_(p = Gg,d, (0), BE,O,d) = Bg’d, (0), 65’0’4, = 554, (0),
Bsop =B y(0) and ys o4 = ¥ 4(0), respectively. These

g ¢ (1) Be 4 (1) single-phase parameters are collected in diagonal matrice
Ag =diag(@s 01, ¢ oy ) Be = diag(Beo1:- Be.ong):

Ag = d'ag(_af,o,b---aaz,o,n¢), B; = d'ag(ﬁz,o,b---,ﬁ_z,o,%)
xh(t) = o (t) €14 + Sept) zop + Cg,ax(t),(p P,y (29) and Iy =diag(ys o1, - Vs.0n,) that allow us to write (31)

T T in matrix form (for all ny transition phases) as
= Wo(t) &rp + Io(t) o4

T T T T
T CRx(t),0 Pvao V0,6 T CR—x(t),¢ Pvso VT.¢
—_—— —_——

ax¢ (1) B (t)
+ € .6 Pia D09+ Ch g (P — T Pugy) 974 . Using the selection matriceS and St, and introducing a
—— DCM terminal constraing; (see [14] for details), the DCM

T T T T
T CRogt) Pia 0 T CRog(t),, (P — T Pugg) 1 -
—_———

and the CoM solution (14) turns into

o = AsVo+ B Wy (31)
+ AgVo+ Be Vi + Ie E7 .

g (1) Bro(®) waypoint matrix is found to be
In the next section, we will use the specific single transitio Vup
phase trajectories (27)-(29) to derive consistent multge = _ [; Cy 6y = v 32
reference trajectories for VRP, DCM and CoM. —we A I A (32)

&
IV. COMPUTATION OF MULTI-PHASE TRAJECTORIES where
The derivations provided in this section are rather com=Cy = St sg (Ag So+ B; ST)
pact. A more detailed derivation (for the non-moving ground ¢, — =g * S§ (Ag So+ Bg St)
case) is provided in [14]. The main idea followed here is te_cC _ =gt 01 T
concatenate the presented single-phase trajectoriestatnobflj _r_gT Fxg?
closed-form multi-phase trajectories in matrix-vectornfio o 05&oT
As mentioned above, we interpolate betwegp VRP, DCM
and CoM waypoints, respectively. The complete trajectorie
are then composed of = nyp— 1 single transition phases. wh = OyTy v&¢ + Bets ’Uh (33)
For a compact formulation, we collect all waypoints in matri — T o T T T
ces, i.e., all VRP waypoints iWyp = [Vwp.1, .., bwpny) -+ all +OxTg Doy + Baro D1y + o &1 + T Tog
DCM waypoints inZyp = [fwp., ---véwp,an]T and all CoM whereay1.¢ =0y (T), BxT.6 =B (T), axT,6 = Ox ¢ (T),
waypoints inXyp = [:cwp,l,...,ccwp,nwp]T, respectively. Note: Bxt.o = Bro(T), Wt = Yo (T) and &1¢ = & (T), re-
in [14] we introduced selection matricé and St such that = spectively. In the same way as for the DCM waypoints, these
the collection of all initial VRP3/4 and final VRPsVr of all parameters are collected in diagonal matrigks By, Ay,
ng previewed transition phases are obtained from the VRB,, I, and A. These allow us to write (33) in matrix form:
waypoints viaVp = So Viyp and Vi = St V4, respectively.
The same matrices are also used in this work to select the XT = AxVo+ BxVr (34)
corresponding elements &fyp, Swp and Xyp. + AVo+ ByWVr + INEr + A Xp .

Now, to obtainXp, we evaluate (29) foty = Ty:



Fig. 6. Toro traversing two moving plates in OpenHRP [20].

left foot traj.
— right foot traj,
2n_ Vref
Veommand
eref(t) left foot trajectory 150- éref
08 T right foot trajectory — Sactual
z[m| — 1H— ZTref
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Fig. 7. Three-dimensional €CMByei(t), VRP vrei(t), DCM & (t), 0 p 2 tll 3 4 5

CoM ze¢ (t) and footreferencetrajectories, plus foot positions/traces (left:
orange, right: green) for traversing two moving plates. taonvelocities:

N N ; Fig. 8. Trajectory tracking for walking over moving platios (onlyx and
¢(12010 =[0,0,0]" T, é(345, =1[0,-04,0" 2, é57g =[0,04,0] 1. 9 4 y 9 g gp (only

y directions plottedy trajectories shifted by-0.5m to avoid occlusions).

Again, using the selection matric& and St, and introdu- B. Design of VRP waypoint positions and velocities
cing a CoM_initiaI c_onstrainbcs (see [14] for details), the  pg exemplified in Fig. 5, we uséwo VRP waypoints
CoM waypoint matrix is found to be per contact which is the minimum number required to

% implement alternating single support (and thus foot-sying
wp and double support phases. The VRP waypoints are placed

Xup = [XCV XCy *eg ch} ‘2"¥p (35) appropriately in the local contact (i.e., foot) frame andyma
fr implement a heel to toe offset. The VRP waypoint velocities
Ts are equal to the corresponding contact velocities. Thergkco
where and next to last VRP waypoints (marked by yellow circles

Xoy = Xpr—1 Sg (Ax So+ By ST) in Fig. 5) are not predefined. Instead they are computed (see

XC_'V = XH;]- Sg (Ax SO+BX ST)
Xeg = *H " [01.n, 1T

Xey = XH [ O1ny]

*H = I8} Ik St

[18] for details) such that i) the first DCM waypoint coincide
with the DCM position that corresponds to a steady stance
DCM (start configuration) and ii) the final CoM waypoint
coincides with the final VRP waypoint, such that finite-
time CoM convergence is achieved. Note: if the walking

gait starts or ends on a moving ground surface, the DCM
Equations (32) and (35) provide a tool to compactlynitial constraint as defined here and the DCM terminal
compute all DCM waypointEy, and CoM waypointsXyp. constraint from (32) need to comply with theoving ground
Finally, to obtain continuous VRP, DCM and CoM referencéoundedness conditicaterived in appendix II.

trajectories, equations (27), (28) and (29) are evalfated VI. SIMULATIONS

The proposed algorithm for moving ground walking gait
generation was tested in multiple OpenHRP [20] simulations
These simulations include traversing two moving plates

In contrast to footprints on stationary ground, on movir;ciwmle starting and stopping on stationary ground), stati

> nd stopping on two plates that are moving in different
ground the fe_et follow foot—tracgs (see figures 5 and 7)'. 8irectionpsp ”sgplit-belt Iikpe walking” (here: left Igeg wailkg
account for this support foot motion, we compute appropnaton station’ary ground, right on moving plate) and walking
touch-down (TD) and take-off (TO) locations and modify our ’

: . : on moving three-dimensional stepping stones through 3D
polynomial-based foot trajectory planner accordingly. . .
space. While the complementary video shows all these
walking simulations, in the paper we focus on presentin
9either for multiple transition phases and evaluation tirf@splotting 9 Pap P 9

complete trajectories as shown in figures 5 and 7, or only émcthe local the traversing two moving plates simulation (see _flgures 1
time ty in the current transition phasg for the purpose of controls. and 6). Toro successfully traverses the two moving plates

V. IMPLEMENTATION DETAILS

A. Foot touch-down and take-off locations



(moving at +£0.47 in the y-direction) using a dynamic Here, tT(t) =1 t, t2 ..., t%), py is the polynomial
walking gait (single support time:.Bs, double support time: parameter vector ang), is the polynomial order ofi(t). The
0.1s). Figure 7 shows the corresponding three-dimensiongkneral solution formula for this kind of ODE is

reference trajectories, the foot trajectories and the fooik

t t
tact traces in<_:|uding touc_h_—down (TD) and take_-off (TQ) y(t) = ok Yo — ea / (e’é u(r))dr ' (38)
positions. While the explicit CoM reference trajectory is —— a .
provided by our gait generator, in the presented simulation Yhom(t) =0
we use our purely DCM-based walking controller from [16] yinhom(U(t))

(i.e., the CoM trajectories can be seen as complementary

information here). Figure 8 shows the corresponding tregki In [18] we used partial integration of the integral term ie th
performance. Due to the precise tracking (average DChMhomogeneous solutiofianom to obtain

tracking error: 19mnj it has to be mentioned explicitly, that

t t
the figure doesn’t only show the reference trajectories, but y(t) = eayo + us(t)—ed uz(0) , (39)
also the actual onesEven in the zoomed-in windows, the o (0 o, (i)
tracking errors are hard to discover, the reference signaMith us(t)= 3 (aj ﬂ.(t)) = %(al tT(t)) Pu.
being overlapped by the actual signals. This provides gtron i=0 =
evidence of the high quality of our walking gait generator. T

i (1)
VII. CONCLUSION AND FUTURE WORK Here,(”(t) andt' (t) denote thej-th derivatives ofu(t) and

In this paper, we presented a novel walking gait generatgr (t), respectively. The sum terad(t) can be rewritten as
that allows the traversal of moving support surfaces (sich a
moving plates, conveyor belts, moving stairs etc.), initigd d(t)=a'" D(t) , (40)
the case of starting and/or stopping on moving gr_oungsing the constant vectar’ =[1,a,a2,...,a%] and time ma-
(see video attachment). Our method facilitates a mulf-ste L © (o) AT
preview (e.g. all steps of the complete gait sequence) viex D(t) = {t(t), t(t), t(t),.., t (t)} e RlCutDx(outl),
computationally efficient matrix-vector based computadio By evaluating the produet™ D(t) and groupind® the terms

The excellent tracking performance of our walking gait gepy the time exponential€, d(t) can be rewritten as
nerator is based on three core features: i) the foot trajesto

are designed to match the moving support surface motions, i d(t)=t"(t)C(a) . (41)
the ECMPNRP trajectorle_s are designed in such a way .th?he coefficient matrixC'(a) is solely dependent on parameter
the respective support points are guaranteed to stay W|thén Here, we provide its explicit expression fog = 6:
each respective "single foot support polygon” and iii) all™ ' '
trajectories (eCMP, VRP, DCM, CoM) are continuous and [1 a 2a° 6a° 24a* 120a° 720a%]
obey appropriate initial and terminal constraints. 1 2a 6a2 24a° 120* 720°

For our future work, we intend to perform experiments 1 & 12a° 60a 360a*
of walking on (or traversing) moving surfaces with our full- Cy|o,—6 = 1 & 20a° 1208
size humanoid robot Toro [19]. Also, we intend to generalize 0 1 ) 30a?
our overall DCM-based walking gait generation and control 0 0 1 &
framework to support arbitrary walking gaits and robot 0 0 0 1
configurations (e.g. bipedal, quadrupedal, hexaped3l etc. i " (42)
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Now, with (41), we can rewrite (39) as
APPENDIX | y(t) = ea (yo—tT(O) C(a) pu) +t'(t) C(a) py . (43)
SOLVING SPECIFIC ORDINARY DIFFERENTIAL EQUATIONS —
Py
(ODE) ye
A. Solution for ODE with polynomial input B. Solution for ODE with polynomial and exponential inputs
Consider an ordinary differential equation (ODE) Consider another ODE
; 1 1

S D | qor Lo 1o

(1) = 2 y(H) - S ut) (36) T =3v0-300 (44
wherea is the time constant of the system and the inpu/nere A I T
function u(t) is a temporal polynomial, i.e., ait) =ef Ge + ¢ (t) pa - (45)

ut) = t’ t)pu - (37) 10¢ g., by using the "coeffs” command in Matlab



Again, we apply (38) to obtain the solution for (44). ItS [6] R. Tedrake, S. Kuindersma, R. Deits, and K. Miura, “A @ddorm

homogeneous part and the inhomogeneous part correspon-

ding to the polynomial fraction of input function(t) are

equivalent to the solution (43), while the solution for the [7]

inhomogeneous part correspondlng to the exponential com-

ponent ofult) i

(eB —ea) Ue. Combining

these findings, the solution of (44) is found as

Jt) = eigo + ('H-ett’(0)) C@ po

(e —e;) Qe . (46)
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APPENDIXII
MOVING GROUND BOUNDEDNESS CONDITIONS

(8]

El

[10]

[11]

[12]

Here, we consider the boundedness conditions [24] for

stationary standingn a support surface (e.g. before or aftelf

a walking gait) that is moving with a constant velocity
The corresponding VRP moves with the support surface, i.e.,

Vstat = ¢. For the DCM to VRP distance to remain bounded

their respective velocities must be equal, i.e.,

Estat = Dstat - (47)

Inserting€ from (3) and solving foi yields the correspon-
ding boundedness constraint:

Note: previous works [9], [18], [25] had focused on
walking on stationary grounds, i.ebgtat =

é = v +b'l‘)stat . (48)

0, and thus the

condition for boundedness had begns- v.
For a full understanding of the stationary case, we noW8]
insert¢ from (48) into (1) to find that

i.e.,

(1]

(2]

(3]

(4]
(5]

Tstat — Vstat = —B (113 - 'U) ) (49)
—_——— ~ _
Ax,v Axyv

the CoM converges towards the VRP.
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