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Abstract— This paper introduces the Simplest Articulated
Free-Floating (SAFF) model, a low-dimensional model facilitat-
ing the examination of controllers, which are designed for free-
floating robots that are subject to gravity. Two different state-
of-the-art control approaches, namely absolute CoM control
accompanied by an assumption about the foot acceleration,
and a controller combining absolute CoM and foot control
objectives, are shown to yield exponential stability in the
nominal case, while becoming unstable if the foot contact is
lost. As an improvement over the state of the art, the so-called
Relative-CoM-to-Foot (RCF) controller is introduced, which
again yields exponential stability nominally, while preserving
a BIBO stable behavior even in case of a complete contact loss.
The controller performance is validated in various simulations.

I. I NTRODUCTION

The control of free-floating robots, whether in space
or on earth, is an exciting field of research. One of the
biggest challenges with regard to such robots is their intrinsic
under-actuation: According to Newton’s second law, their
centroidal dynamics, which includes both angular momentum
and linear momentum (the latter being directly related to the
robot’s Center of Mass (CoM) dynamics), may under certain
circumstances be completely uncontrollable, e.g. in space, or
conditionally controllable, e.g. on earth.

This paper takes inspiration from the field of space
robotics. The dynamics modeling w.r.t. the CoM was intro-
duced in [1]. So-called barycentric vectors were exploited
for modeling in [2]. A first step towards the use of relative
quantities in control was taken in [3], where the so-called
generalized Jacobian was introduced to control the end-
effector of a space robot assuming zero linear and angular
momenta. In [4]–[6], the generalized Jacobian-relatedinter-
nal andcircumcentroidalvelocities of a frame were defined
and used for end effector control without excitation of the
CoM. The velocities correspond to the relative CoM-to-
end-effector velocity measured in rotating and non-rotating
centroidal frames, respectively.

As compared to space-related applications, the control of
free-floating robots on earth has a more recent past. Until
today, many humanoid and other legged robots are position-
controlled [7]–[9]. Due to their rigidity, they have to be
carefully controlled when interacting with unstructured envi-
ronments, e.g. while walking. While keeping balance of the
overall system is a challenge, an instability of joint postures

The authors are with Institute of Robotics and Mechatronics, Ger-
man Aerospace Center (DLR), 82234 Wessling, Germany. E-mail:
johannes.englsberger@dlr.de

z1

zcom

z2

q1

q2

trunk

CoM

τ j

foot

w2

m1 g

m2 g
(ground)

0

m1

m2

m

z

Fig. 1: Simplest Articulated Free-Floating (SAFF) model:
two links (trunk, foot) that are constrained to move vertically;
subject to gravity; one actuated joint between trunk and foot
(→ τ j); foot may potentially apply forcew2 towards ground.

is very unlikely, because the latter are directly commanded
by the controls or planning algorithm, and strictly followed.
In contrast, torque-controllable robots such as [10], [11]have
the advantage of an intrinsically more compliant interaction
with their environment. However, in comparison to position
control, torque-based whole-body controllers (WBC) have
much more feedback channels, torque-based position con-
trol is only achieved indirectly and stability cannot always
be guaranteed. Henze et al. [12] achieved passivity-based
balancing on compliant ground surfaces with the humanoid
robot TORO [10], while Mesesan et al. [13] made the same
robot walk over compliant mattresses and gravel. Bellicoso
et al. [14] perform various dynamic gaits with the quadruped
ANYmal [15] by optimizing the whole-body motion and
contact forces. Fahmi et al. introduced STANCE [16], a
quadratic programming (QP) based soft terrain adaptation
algorithm. STANCE allows for locomotion over multiple
terrains of different compliances and is able to withstand
external perturbations. However, it cannot handle cases of
complete contact loss.

This paper newly introduces the so-called Relative-CoM-
to-Foot (RCF) controller. It is based on the insight that
the relative CoM-to-foot dynamics is always controllable,
while the absolute CoM dynamics, i.e. with respect to the
inertial frame, is only conditionally controllable. RCF control
is stable both during stance and during flight (or a free



fall), and thus can be used without switching. In case of
appropriate foot constraints, i.e. ground contact, this relative
controller can be anyhow used for absolute CoM tracking
control, since the constraints cause a concordance of relative
and absolute CoM coordinates. This is due to the fact that
controlling the CoM w.r.t. the world is kind of equivalent to
controlling it w.r.t. its world-fixed foot. In case of unstable
contact, e.g. when slipping or stepping into a hollow, RCF
control guarantees postural stability, thereby increasing the
likelihood of an eventual recovery after ground contact has
been re-established. To the best of our knowledge, RCF is
the first heuristic-free, purely torque-based whole-body con-
troller (WBC) that is robust to severe contact imperfections,
while the state of the art (e.g. [17]–[23]) is either not robust
w.r.t. this issue, or uses heuristics that are hard to predict and
cannot guarantee stability.

The paper is organized as follows: Section II introduces
the low-dimensional model used throughout the paper, while
Sec. III recapitulates our previous work on Modular Passive
Tracking Control (MPTC). Sections IV and V introduce the
considered tasks and derive different controllers, respectively.
In Sec. VI, simulation results are presented. Section VII
provides a discussion, while Sec. VIII concludes the paper.

II. EQUATION OF MOTION AND CONSTRAINT FORCES

A. Simplest Articulated Free-Floating (SAFF) model

In this work, we propose the Simplest Articulated Free-
Floating (SAFF) model (see Fig. 1). It consists of two
point-masses (m1 and m2 representing the trunk and the
foot, respectively) and one actuated joint between them (the
corresponding joint torqueτ j denotes here a linear force).
The foot may potentially1 be in contact with the ground and
be subject to a contact / foot forcew2.

1) Kinematics: The SAFF model is based on twogen-
eralized coordinates q1 and q2, collected in the generalized
coordinate vectorq = [q1,q2]

T , whereq1 corresponds to the
trunk position andq2 is the relative coordinate between trunk
and foot. Theabsolute coordinates z1 andz2 of the trunk and
foot, respectively, are collected as

z =

[
z1

z2

]

=

[
1 0
1 1

]

︸ ︷︷ ︸

J

q . (1)

Note that due to the linearity of the SAFF model, the
forward kinematics mapJ is equivalent to the corresponding
Jacobian matrix. Also note that the downward direction is
defined aspositive. The absolute trunk velocity ˙z1 and foot
velocity ż2 are

ż1 =
[
1 0

]

︸ ︷︷ ︸

J1

q̇ and ż2 =
[
1 1

]

︸ ︷︷ ︸

J2

q̇ . (2)

The robot’s Center of Mass (CoM) can be computed as

zcom =
m1

m
z1 +

m2

m
z2 , (3)

1This paper examines several controllers regarding their contact robust-
ness. Accordingly, we consider the case of firm foot contact with the ground,
and the case for which the foot is completely free, i.e. there is no ground.

wherem= m1+m2 denotes the total robot mass. The CoM
velocity can be computed as

żcom =
[m1

m
m2
m

]
J q̇ =

[
1 m2

m

]

︸ ︷︷ ︸

Jcom

q̇ . (4)

2) Dynamics:Applying the balance of forces (see Fig. 1),
we find the trunk and foot dynamics to be

m1 z̈1 = m1 g − τ j and m2 z̈2 = m2 g + τ j + w2 . (5)

The CoM dynamics is

mz̈com = m1 z̈1 + m2 z̈2 = m g+ w2 . (6)

Collecting the CoM and foot dynamics in matrix form yields
[
m 0
0 m2

][
z̈com

z̈2

]

+

[
−mg
−m2g

]

=

[
0
1

]

τ j +

[
1
1

]

w2 . (7)

Expressing the absolute CoM and foot acceleration as a
function of generalized accelerations̈q, namely

[
z̈com

z̈2

]

=

[
Jcom

J2

]

q̈ =

[
1 m2

m
1 1

]

q̈ , (8)

equation (7) can be rewritten as
[

m m2

m2 m2

]

︸ ︷︷ ︸

M

q̈ +

[
−m g
−m2 g

]

︸ ︷︷ ︸

τg =−JT
comm g

=

[
0
1

]

︸︷︷︸

ST

τ j +

[
1
1

]

︸︷︷︸

JT
2

w2 , (9)

which is theequation of motionof the SAFF model. The
right hand side of (9) can be interpreted as the generalized
torques

τ =
[
ST JT

2

]

︸ ︷︷ ︸

U

[
τ j

w2

]

︸︷︷︸

u

=

[
0 1
1 1

]

︸ ︷︷ ︸

U

u . (10)

Note that (9) has precisely the form of the general free-
floating robot equation of motion2 (EoM, see e.g. [24], [25]):

M q̈ + C q̇ + τg = STτ j + JT
c wc

︸ ︷︷ ︸

τ

, (11)

where Jc and wc are the stacks of contact Jacobians and
wrenches, respectively, relating to links in contact with the
environment. Note that in (9)C = 0 sinceM is constant.

B. Actual and estimated constraint force

This section provides the actual and estimated constraint
force, for the case that the foot is in contact with the ground.
This is typically modeled by imposing a constraint on the
foot acceleration ¨z2. Solving (5, right) forw2, we find

w2 = m2(z̈2−g)− τ j , (12)

which returns the foot forcew2, in case the joint torqueτ j

and the foot acceleration ¨z2 are known.
Equation (12) can be applied to estimate the foot force

w2,est, given the commanded joint torqueτ j,cmd and an estimate
of the foot acceleration ¨z2,est:

w2,est = m2(z̈2,est−g)− τ j,cmd (13)

2Note: the dependencies of the matrices onq and q̇ are omitted here.



III. R ECAPITULATION OF OUR PREVIOUS PUBLICATION

ON MODULAR PASSIVE TRACKING CONTROL (MPTC)

In our previous work [25], we proposed the Modular
Passive Tracking Control (MPTC), which is a generic control
framework, serving as template for arbitrary specific con-
trollers, e.g. Cartesian or joint controllers. For the SAFF
model (see Fig. 1) with its lack of Coriolis terms, MPTC
results in the same control law as an Inverse Dynamics
controller (see section IV-A in [25]). Nevertheless, we re-
capitulate some of the most relevant equations from [25],
since they facilitate the analysis of different controllers,
especially with regard to passivity. Also, we intend to apply
MPTC theory when extending the Relative-CoM-to-Foot
(RCF) controller that will be presented in Sec. V-C to full 3D
robot models, e.g. humanoids, motivating the short summary
here.

In [25], we proposed to use oneseparate Lyapunov
functionbased on the task-related relative kinetic energyEkin,k

and relative potential energyEpot,k for each one of thenT

tasks:
Vk =

1
2

˙̃x
T
k Mk

˙̃xk

︸ ︷︷ ︸

Ekin,k

+
1
2
x̃T

k Kk x̃k

︸ ︷︷ ︸

Epot,k

, (14)

where the positive definite, symmetric matrixKk denotes the
task stiffness, andMk is the task inertia (see [25] for details).
This Lyapunov function is positive definite in the task posi-
tion errorx̃k and the task velocity error̃̇xk = ẋk,re f − Jk q̇

︸︷︷︸

ẋk

,

with Jk denoting the task Jacobian. Accordingly, we defined
the (actual)task force3 fk as:

fk = Mk Jk M
−1

︸ ︷︷ ︸

Tk

τ , (15)

whereTk denotes the dynamically consistent pseudo-inverse
of JT

k . By choosing thedesired task forcefk,des as

fk,des = Tkτg+MkQk q̇+Mk ẍk,re f +(Ck+Dk) ˙̃xk+Kk x̃k ,

(16)

whereCk is the task Coriolis matrix,Qk is another Coriolis
related matrix andDk is a positive definite damping matrix,
the time derivative of (14) is brought into the following form:

V̇k = − ˙̃x
T
k Dk

˙̃xk
︸ ︷︷ ︸

V̇k,des, purely dissipative

+ ˙̃x
T
k f̃k

︸ ︷︷ ︸

˙̃Vk

, (17)

wheref̃k = fk,des−fk. Accordingly, the task error dynamics
becomes

Mk
¨̃xk +

(

Ck+Dk

)

˙̃xk + Kk x̃k = f̃k . (18)

It is important to note that (17) yields perfect dissipation
of task errors and (18) yields an asymptotically converging,
compliant task behavioronly if the corresponding task force
error f̃k is zero. Thus, (17) and (18) have to be interpreted

3Note: depending on the task, the task force may contain linearforces,
torques, wrenches, etc.

as representations of the task-related overall system energies
and dynamics from the perspective of the task objectives
(16), until an actual controller is inserted through (15) by
setting the joint torque to the commanded one, i.e.τ j = τ j,cmd.

IV. OVERVIEW OF CONSIDERED TASKS

In this section, we introduce three different tasks, namely:
• a CoM task that is defined w.r.t. the inertial frame,
• a foot task that is defined w.r.t. the inertial frame, and
• a relative CoM-vs-foot task.

Note: Each controller presented in Sec. V implements a
subset of these tasks.

A. CoM task (w.r.t. inertial frame)

Applying (16), we find the desired CoM task force as

fcom,des = Tcomτg + mz̈com,re f + dcom
˙̃zcom + kcom z̃com

= m(z̈com,re f −g) + dcom
˙̃zcom + kcom z̃com , (19)

where mcom = (JcomM
−1JT

com)
−1 = m, Qcom= Ccom= 0,

Tcom = mJcom M−1 = [1,0], and dcom and kcom denote the
CoM damping and stiffness. Applying (15) and (10) yields

fcom = Tcomτ = TcomU
︸ ︷︷ ︸

TU,com

[
τ j

w2

]

︸︷︷︸

u

= [0,1]
︸︷︷︸

TU,com

[
τ j

w2

]

= w2 . (20)

Similarly, applying (17) and (18) to the CoM task yields the
(absolute) CoM Lyapunov rate

V̇com = −dcom
˙̃z2
com + ˙̃zcom ( fcom,des− fcom) (21)

= ˙̃zcom

(

m(z̈com,re f − g) + kcom z̃com − w2

)

,

and the (absolute) CoM error dynamics

m ¨̃zcom + dcom
˙̃zcom + kcom z̃com = fcom,des− fcom , (22)

respectively.

B. Foot task (w.r.t. inertial frame)

As for the CoM, we apply (16) to the foot task to obtain

f2,des = T2 τg + m2 z̈2,re f + d2 ˙̃z2 + k2 z̃2

= m2 (z̈2,re f −g) + d2 ˙̃z2 + k2 z̃2 , (23)

wherem2 = (J2M
−1JT

2 )
−1, T2 = m2J2M

−1 = [0,1], Q2 =
C2 = 0, andd2 andk2 denote the foot damping and stiffness
gains. Again, applying (15) and (10) yields

f2 = T2 τ = T2 U
︸ ︷︷ ︸

TU,2

[
τ j

w2

]

︸︷︷︸

u

= [1,1]
︸︷︷︸

TU,2

[
τ j

w2

]

= τ j + w2 (24)

Similarly, applying (17) and (18) to the foot task yields the
(absolute) foot Lyapunov rate

V̇2 = −d2 ˙̃z2
2 + ˙̃z2 ( f2,des− f2) (25)

= ˙̃z2

(

m2 (z̈2,re f − g) + k2 z̃2 − τ j − w2

)

,

and the (absolute) foot error dynamics

m2 ¨̃z2 + d2 ˙̃z2 + k2 z̃2 = f2,des− f2 , (26)

respectively.



C. Relative CoM-to-foot task

Now, in addition to the previously introducedabsolute
CoM and foot tasks, we define arelative CoM-to-foot task,
which is based on the relative task coordinate

zR = zcom − z2 . (27)

The corresponding task velocity can be computed as

żR = żcom − ż2 = (Jcom − J2) q̇ =
[

0,−
m1

m

]

︸ ︷︷ ︸

JR

q̇ . (28)

The task JacobianJR is used to compute the task inertia

mR =
(

JR M
−1 JT

R

)
−1

=
m2 m
m1

, (29)

and the task mapping matrix

TR = mR JR M
−1 =

[m2

m1
,−

m
m1

]

. (30)

Applying (16) we find the desired task force

fR,des = mR z̈R,re f + dR
˙̃zR + kR z̃R , (31)

where z̃R = zR,re f − zR and ˙̃zR = żR,re f − żR denote the relative
position and velocity errors, respectively. Interestingly, in
contrast to (19) and (23), the termTR τg = 0 cancels. As
for the other tasks,QR =CR = 0, making (31) a particularly
simple controller objective. Using (15) and (10), we find the
actual relative CoM-to-foot task force as:

fR = TR U u
︸︷︷︸

τ

=
[

−

m
m1

,−1
]

︸ ︷︷ ︸

TU,R

[
τ j

w2

]

︸︷︷︸

u

= −

m
m1

τ j − w2 .

(32)
Applying (17) and (18) to the CoM-vs-foot task yields the
corresponding Lyapunov rate

V̇R = −dR
˙̃z2
R + ˙̃zR ( fR,des − fR

︸ ︷︷ ︸

f̃R

) (33)

= ˙̃zR

(

mR z̈R,re f +kR z̃R +
m
m1

τ j + w2

︸ ︷︷ ︸

− fR

)

,

and the task error dynamics

mR
¨̃zR + dR

˙̃zR + kR z̃R = fR,des − fR
︸ ︷︷ ︸

f̃R

. (34)

Finally, inserting (31) into (34) yields

mR z̈R = −

m
m1

τ j − w2

︸ ︷︷ ︸

fR

. (35)

Again note that (35) is not a function of gravity.

V. DERIVATION AND ROBUSTNESS ANALYSIS OF

DIFFERENT CONTROLLER SETUPS

In this section, we will present three different controllers:
two controllers from the literature and the newly proposed
one. Each of them is examined regarding its stability prop-
erties and robustness against contact imperfections. In par-
ticular, two extreme contact scenarios are considered: a fully
constrained foot motion (considering zero foot acceleration,
i.e. z̈2 = 0), and a completely free foot (i.e. foot forcew2 = 0).

A. Absolute CoM task with foot acceleration assumption

In this subsection, we derive a controller that tracks
absoluteCoM trajectories (i.e. in world frame), while being
based on anassumption / estimatefor the foot acceleration,
typically z̈2,est = 0. This type of controller has been widely
used in research [20]–[23] and can be seen as the state of
the art in humanoid and bipedal whole-body control (WBC).
It comes, however, with two disadvantages:

• It is likely to become unstable in case of imperfect foot
contact conditions (see Sec. V-A.3).

• It requires a switching of controllers when transitioning
from stance to swing and/or back.

The latter leads to high sensitivity regarding timing issues,
leading to an increased effort for ensuring safe and continu-
ous transitions between the different controller modes.

1) Controller derivation: In (20), we replaceτ j by the
estimated joint torqueτ j,est = τ j,cmd, and w2 by w2,est from
(13), which yields the estimated absolute CoM task force

fcom,est = TU,com

[
τ j,est

w2,est

]

=
[

0,1
] [

τ j,cmd

m2 (z̈2,est−g)− τ j,cmd

]

= m2 (z̈2,est−g)− τ j,cmd . (36)

Now, setting fcom,est = fcom,des from (19) and solving for the
commanded joint torqueτ j,cmd yields the control law

τ j,cmd = m1 g+m2 z̈2,est−mz̈com,re f −dcom
˙̃zcom−kcomz̃com .

(37)
Note that the Lyapunov rate from (21) and the absolute CoM
task error dynamics from (22) are primarily independent
from the joint torqueτ j , as long asw2 remains unspecified.

2) Control performance for fully constrained foot motion:
In case of a fully constrained foot, the foot acceleration is
zero, i.e. ¨z2 = 0. Here, we also assume that the estimated
foot acceleration is zero, i.e. ¨z2,est = 0. For this case and
additionally insertingτ j = τ j,cmd, (12) becomes

w2
︸︷︷︸

fcom

= m(z̈com,re f −g)+ dcom
˙̃zcom + kcom z̃com

︸ ︷︷ ︸

fcom,des

, (38)

i.e. the desired CoM task force is perfectly achieved. Insert-
ing (38) into (21) and (22) yields thecontact-constrained
absolute CoM task Lyapunov rate

V̇com = −dcom
˙̃z2
com , (39)

and thecontact-constrained absolute CoM error dynamics

mcom
¨̃zcom + dcom

˙̃zcom + kcom z̃com = 0 , (40)

which reveals that the absolute CoM controller is exponen-
tially stable in the fully constrained case.

3) Control performance for completely unconstrained
foot: If the robot’s foot looses contact to the ground com-
pletely (e.g. when stepping into a deep hollow), it is fully
unconstrained, such thatw2 = 0, and equation (21) becomes

V̇com = ˙̃zcom

(

m(z̈com,re f − g) + kcom z̃com

)

, (41)

while (22) turns into ¨zcom = g, i.e. the CoM accelerates
downwards, following its natural falling dynamics.



B. Absolute CoM task and additional foot control

This subsection examines the controller presented in [25]
that works with an absolute CoM controllerand an absolute
foot controller (both defined w.r.t. the inertial frame).

1) Controller derivation: Collecting the desired absolute
CoM and foot task forces from (19) and (23) yields
[

fcom,des

f2,des

]

︸ ︷︷ ︸

fdes

=

[
m(z̈com,re f −g)+dcom

˙̃zcom+kcom z̃com

m2 (z̈2,re f −g)+d2 ˙̃z2+k2 z̃2

]

. (42)

Applying (20) and (24) to the controller commands, we find
[

fcom,cmd

f2,cmd

]

︸ ︷︷ ︸

fcmd

=

[
TU,com

TU,2

]

︸ ︷︷ ︸

TU

[
τ j,cmd

w2,cmd

]

=

[
0 1
1 1

]

︸ ︷︷ ︸

TU

[
τ j,cmd

w2,cmd

]

︸ ︷︷ ︸

ucmd

. (43)

Obviously,TU is invertible. We can setfcmd= fdes and solve
for the commanded control inputucmd. Its elements are

τ j,cmd = m1(g− z̈com,re f)+m2(z̈2,re f − z̈com,re f)

−dcom
˙̃zcom−kcom z̃com+d2 ˙̃z2+k2 z̃2 ,

(44)

and
w2,cmd = m(z̈com,re f −g) + dcom

˙̃zcom + kcom z̃com . (45)

While the actual controller consists of (44), i.e. of the
commanded joint torquesτ j,cmd, the commanded foot force
(45) can be seen aspseudo-control input. Basically, the
controller assumes to have a thruster in the foot, which is
obviously wrong and may lead to controller imperfections
(e.g. regarding tracking performance, see Table I). Theactual
foot force w2 cannot be controlled directly, but only via the
commanded joint torques in combination withcorrectly esti-
matedfoot constraints. The motivation of using this pseudo-
control in [25] was to keep the foot controllersactivated and
unmodifiedat all times, i.e. throughout stance and swing
phases, avoiding a switching of controllers. Despite the
mentioned imperfections, this facilitated the implementation
of a WBC that enabled TORO [10] to walk in experiments
with low tuning effort (see [25]). However, in case of foot
positioning errors, we observed CoM and posture deviations.

In the following, we examine the behavior of controller
(44) assuming an ideal torque source, i.e.τ j = τ j,cmd. Note
that the CoM Lyapunov rate (21) and CoM dynamics (6) are
not affected byτ j and thus neither byτ j,cmd, as long asw2

is considered to be generic, i.e. (possibly) independent from
the joint torquesτ j . In contrast, the foot Lyapunov rate (25)
and foot error dynamics (26) are functions of the joint torque
τ j , and, through settingτ j = τ j,cmd, turn into

V̇2 =−d2 ˙̃z2
2 + ˙̃z2 (m(z̈com,re f −g)+dcom

˙̃zcom+kcomz̃com
︸ ︷︷ ︸

fcom,des= w2,cmd

−w2) ,

(46)
and

m2 ¨̃z2+d2 ˙̃z2+k2z̃2 = m(z̈com,re f −g)+dcom
˙̃zcom+kcomz̃com

︸ ︷︷ ︸

fcom,des= w2,cmd

−w2 .

(47)

2) Control performance for fully constrained foot motion:
If the foot is constrained to not accelerate, i.e. ¨z2 = 0, and if
the joint torqueτ j = τ j,cmd, equation (12) turns into

w2 = m(z̈com,re f −g) + dcom
˙̃zcom + kcom z̃com

︸ ︷︷ ︸

w2,cmd

− (m2 z̈2,re f + d2 ˙̃z2 + k2 z̃2
︸ ︷︷ ︸

∆w2

) .

(48)

Now, with this particular foot forcew2, (21) turns into

V̇com = −dcom
˙̃z2
com

︸ ︷︷ ︸

V̇com,des

+ ˙̃zcom (m2 z̈2,re f + d2 ˙̃z2 + k2 z̃2
︸ ︷︷ ︸

∆w2

) , (49)

while the error CoM dynamics (22) becomes

m ¨̃zcom+dcom
˙̃zcom+kcom z̃com= m2 z̈2,re f +d2 ˙̃z2+k2 z̃2

︸ ︷︷ ︸

∆w2

. (50)

Assuming a bounded foot force error∆w2 as input, this CoM
dynamics is bounded-input-boundet-output (BIBO) stable.
For this controller setup, the CoM dynamics is perturbed
by the foot tracking errors (i.e. the right hand side of (50)).
The latter may e.g. be caused by disturbances or unexpected
ground heights (planned foot position below/above actual
ground).

Note: in a fully static case, i.e. for ˙zcom= żcom,re f = z̈com=
z̈com,re f = ż2 = ż2,re f = z̈2 = z̈2,re f = 0, the CoM error is directly
proportional to the foot placement error:

z̃com =
k2

kcom

z̃2 . (51)

Also note that since the foot is considered to be fully
constrained here, there is no need to explicitly examine the
corresponding Lyapunov rate and task error dynamics.

3) Control performance for completely unconstrained
foot: For a complete foot contact loss (w2 = 0), (6) becomes

z̈com = g , (52)

which shows that the CoM simply accelerates downward4

due to gravity. In that case, (21), (46) and (47) become

V̇com = ˙̃zcom

(

m(z̈com,re f − g) + kcom z̃com

)

, (53)

V̇2 = −d2 ˙̃z2
2 + ˙̃z2 ( m(z̈com,re f −g) + dcom

˙̃zcom + kcom z̃com
︸ ︷︷ ︸

fcom,des= w2,cmd

) ,

(54)
and

m2 ¨̃z2+d2 ˙̃z2+k2 z̃2 = m(z̈com,re f −g)+dcom
˙̃zcom+kcom z̃com

︸ ︷︷ ︸

fcom,des= w2,cmd

,

(55)
respectively. While the left side of (55) is BIBO stable, the
right side is unbounded due to the infinitly growing CoM
position and velocity errors, making the system unstable.

4The positive sign here results from the convention of a downward
pointing z-coordinate axis in Fig. 1.



controllers
absolute CoM control + foot accel. assumpt.absolute CoM + foot control relative CoM-vs-foot control

(Sec. V-A) (Sec. V-B) (Sec. V-C)
precise trajectory tracking

✓ (✓) ✓
for nominal contact conditions

single controller supports
✗ ✓ ✓ (future research)

swing and stance (no switching)
robust to ground loss ✗ ✗ ✓

TABLE I: Overview of features of the different examined controllers.

Note however: if (and only if) the damping and stiffness
gains are chosen asd2 = dcom andk2 = kcom, respectively, this
controller becomes equivalent to RCF control presented in
the next section, and thus the system is BIBO stable.

C. Relative-CoM-to-Foot (RCF) controller with foot accel-
eration assumption

This subsection finally introduces our proposed controller
setup that stands out due to its high contact robustness. It
combines the advantages of the two controllers from sections
V-A and V-B. These are

• precise CoM trajectory trackingin case of well-
established foot contact

• the possibility of usingone single relative CoM-to-foot
controller during different contact phases, facilitating
implementation and improving robustness.

Additionally, in contrast to the other two controllers, it is
robust to severe contact imperfections, including a complete
loss of foot contact.

1) Controller derivation: In (32), we replaceτ j by the
estimated joint torqueτ j,est = τ j,cmd, and w2 by w2,est from
(13), which yields the estimated relative task force

fR,est = TU,R

[
τ j,est

w2,est

]

=
[

−

m
m1

,−1
][ τ j,cmd

m2 (z̈2,est−g)− τ j,cmd

]

= −m2 (z̈2,est−g)−
m2

m1
τ j,cmd . (56)

Now, setting fR,est = fR,des from (31), and solving for the
commanded joint torqueτ j,cmd yields the control law

τ j,cmd =−m1 (z̈2,est−g)−mz̈R,re f −
m1

m2
dR

˙̃zR−
m1

m2
kR z̃R .

(57)
Now, we first insert the controller (57) into the Lyapunov rate
from (33) and the relative task dynamics from (34), while
leaving w2 unspecified. Given a perfect joint torque source,
i.e. τ j = τ j,cmd, this yields the following Lyapunov rate

V̇R = ˙̃zR

(

−

m
m2

dR
˙̃zR −

m1

m2
kR z̃R + m(g− z̈2,est− z̈R,re f)+w2

)

(58)
and the following relative task error dynamics

mR
¨̃zR +

m
m2

dR
˙̃zR +

m
m2

kR z̃R = w2+m(g− z̈2,est− z̈R,re f) .

(59)

2) Control performance for fully constrained foot motion:
The acceleration of a fully constrained foot is zero, i.e. ¨z2 = 0.
Here, we will also assume that the estimated foot acceleration
is zero, i.e. ¨z2,est = 0. For this case and additionally inserting
τ j = τ j,cmd, the foot force from (12) becomes

w2 = m(z̈R,re f − g) +
m1

m2
dR

˙̃zR +
m1

m2
kR z̃R . (60)

Inserting (60) into (58) and (59) yields thecontact-
constrained relative task Lyapunov rate

V̇R = −dR
˙̃z2
R (61)

and thecontact-constrained relative task error dynamics

mR
¨̃zR + dR

˙̃zR + kR z̃R = 0 , (62)

revealing that the Relative-CoM-to-Foot (RCF) controlleris
exponentially stable in the fully constrained case.

3) Control performance for completely unconstrained
foot: If the robot’s foot looses contact to the ground com-
pletely, it is fully unconstrained, such thatw2 = 0. If the foot
acceleration isestimatedto be z̈2,est = 0, (58) turns into

V̇R = ˙̃zR

(

m(g − z̈R,re f) −
m
m2

dR
˙̃zR −

m1

m2
kR z̃R

)

, (63)

and the relative CoM-to-foot error dynamics (59) becomes

mR
¨̃zR +

m
m2

dR
˙̃zR +

m
m2

kR z̃R = m(g − z̈R,re f)
︸ ︷︷ ︸

bounded

, (64)

which is BIBO stable for the inputm(g − z̈R,re f).
For the regulation case (i.e. ˙zR,re f = z̈R,re f = 0), the system is

asymptotically stable, but the relative coordinate converges
to zR = zR,re f −

m2 g
kR

, corresponding to an over-stretching of
the leg relative to the CoM. This can also be observed in
Fig. 2 (center plot) during the fall. The Lyapunov rate (63)
may become positive especially right after the contact loss
due to the gravity over-compensation and the corresponding
leg over-stretching. However, another Lyapunov function can
be designed, for which the error dynamics (64) can be shown
to be passive.

Another interesting observation is the following: One can
show that for a stiffness and damping design that results in
two equal negative eigenvalues (and thus critical damping)
for the nominal error dynamics (62), also the resulting
eigenvalues of the free-falling error dynamics (64) are real
and negative, resulting in a straight convergence during fall,
rather than an excessive oscillatory behavior.
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Fig. 2: Standing-falling-standing scenario: forzR,re f = const.= 1m.

VI. SIMULATION RESULTS

In a first simulation, the robot (m1 = 40kg, m2 = 10kg)
tries to stabilize a stationary relative reference pose between
the CoM and the foot (corresponding tozR = 1m). After
an initial convergence from a random starting condition, the
ground breaks away att = 1.0s and the robot falls for 0.6s
and about 1.8m deep. Afterwards, the foot re-establishes
ground contact. During the fall, the relative coordinatezR,
i.e. the distance between the CoM and the foot, grows for
the proposed RCF controller. Since the controller does not
know that the contact is lost, it still tries to compensate for
gravity. However, the corresponding pushing force is quickly
and continuously compensated by the growing impedance
force, such that a new equilibrium5 is reached. After the
impact, the controller quickly converges back to the setpoint
(see Fig. 2). In contrast, both controllers from the state of
the art (sections (V-A) and (V-B)) become unstable6 right
after the loss of contact for a comparable simulation.

In a further simulation we used the exact same setup as
in the first one, however, imposing a sinusoidal reference
trajectory for the relative coordinatezR. Again, the RCF
controller shows perfect tracking performance in case of
firm ground contact, while a safely bounded tracking error
is observed during the fall (see Fig. 3).

VII. I NSIGHTS, DISCUSSION AND FUTURE RESEARCH

The main insight of the paper is the following: The ab-
solute CoM dynamics is only guaranteed to be controllable,
if the assumptions made about the foot contact situation at
hand (e.g. zero foot acceleration) hold true, i.e. it is only
conditionally controllable. The truly controllable quantity is
therelative CoM-to-foot dynamics(or similar quantities), and
this regardless of the contact situation. The Relative-CoM-
to-Foot (RCF) controller presented in Sec. V-C yields precise
tracking if the foot dynamics is naturally constrained (zero
foot acceleration). In a free fall situation, it proves to be
BIBO stable. We speculate that our claims regarding BIBO

5Remember: steady state:zR =−
m2 g
kR

in (64) for w2 = 0 andz̈R,re f = 0
6except for the case (as mentioned above) in which the controller from

Sec. V-B uses equal CoM and foot damping and stiffness gains for which
it is equivalent to the presented RCF controller, and thus remains stable.

stability can be generalized to any foot contact scenario
(e.g. contact of foot with compliant terrain, slipping, etc.). A
corresponding in-depth analysis is part of our future research.
It is, however, also important to note that our proposed RCF
controller partially leaves aside the problem of the possibly
uncontrollable CoM dynamics, which becomes most obvious
in case of a free falling scenario: While the relative CoM-to-
foot dynamics is stable and behaves well, the CoM itself,
lacking any means of counteraction, is subject to gravity
and thus follows a free-fall. This means, the absolute CoM
dynamics is unstable in that case. However, especially with
regard to an eventual recovery in case of a timely landing on
a lower ground level (see accompanying video), the natural
stability of the RCF controller can be seen as an important
advantage over other controllers: it preserves the robot’s
posture rather than becoming unstable.

In this paper, we assume that the foot constraint force is the
only external force acting on the system. In case of external
disturbances (pushes etc.), the presented Lyapunov rates
and task error dynamics would have additional perturbation
terms. We believe that the latter do not have an impact on
passivity, while an impedance / compliance behavior would
take the place of the nominally exponential stability (if
applicable in the unperturbed case). The detailed examination
of such effects is also part of our future research.

VIII. C ONCLUSION

In this paper, we introduced the Simplest Articulated Free-
Floating (SAFF) model, which due to its low complexity and
dimensionality facilitates the examination of free-floating
robot controllers. We could show that two different control
approaches, namely absolute CoM control accompanied by
an assumption about the foot acceleration (state of the art)
and a controller combining both an absolute CoM and foot
control objective, may yield exponential stability in the
nominal case (foot in contact with firm ground), while be-
coming unstable if the contact is lost. We then presented the
so-called Relative-CoM-to-Foot (RCF) controller that again
yields exponential stability nominally, while preservinga
passive and BIBO stable behavior even in case of a complete
contact loss. The controller performance was validated in
simulations, both for regulation and tracking cases.
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Fig. 3: Standing-falling-standing scenario:zR,re f following a sinusoidal reference.
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