From Space to Earth —
Relative-CoM-to-Foot (RCF) control yields high contacbustness

Johannes Englsberger, Alessandro M. Giordano, Achraf HigldRobert Schuller,
Florian Loeffl, George Mesesan, Christian Ott

Free-Floating (SAFF) model, a low-dimensional model facilitat-
ing the examination of controllers, which are designed for free-
floating robots that are subject to gravity. Two different state- v ‘ m

of-the-art control approaches, namely absolute CoM control A m. g
accompanied by an assumption about the foot acceleration, Zeom L CoM

and a controller combining absolute CoM and foot control m
objectives, are shown to yield exponential stability in the
nominal case, while becoming unstable if the foot contact is 2 % T
lost. As an improvement over the state of the art, the so-called 2
Relative-CoM-to-Foot (RCF) controller is introduced, which

Abstract— This paper introduces the Simplest Articulated
Zl{ % - trunk

again yields exponential stability nominally, while preserving Ly for?{[z

a BIBO stable behavior even in case of a complete contact loss. ‘ ____________ _|Img

The controller performance is validated in various simulations. ~ (ground) Wy | W
I. INTRODUCTION \

The control of free-floating robots, whether in spacdrig. 1: Simplest Articulated Free-Floating (SAFF) model
or on earth, is an exciting field of research. One of th&wo links (trunk, foot) that are constrained to move veitica
biggest challenges with regard to such robots is theimisici ~Subject to gravity; one actuated joint between trunk and foo
under-actuation: According to Newton's second law, theit— T;); foot may potentially apply forcev, towards ground.
centroidal dynamics, which includes both angular momentum
and linear momentum (the latter being directly related # th
robot’s Center of Mass (CoM) dynamics), may under certaifs very unlikely, because the latter are directly commanded
circumstances be completely uncontrollable, e.g. in space by the controls or planning algorithm, and strictly follove
conditionally controllable, e.g. on earth. In contrast, torque-controllable robots such as [10], Hiaje

This paper takes inspiration from the field of spacehe advantage of an intrinsically more compliant inteacti
robotics. The dynamics modeling w.r.t. the CoM was introwith their environment. However, in comparison to position
duced in [1]. So-called barycentric vectors were exploitedontrol, torque-based whole-body controllers (WBC) have
for modeling in [2]. A first step towards the use of relativemuch more feedback channels, torque-based position con-
quantities in control was taken in [3], where the so-calledol is only achieved indirectly and stability cannot ahsay
generalized Jacobian was introduced to control the enge guaranteed. Henze et al. [12] achieved passivity-based
effector of a space robot assuming zero linear and angulealancing on compliant ground surfaces with the humanoid
momenta. In [4]-[6], the generalized Jacobian-relatedr-  robot TORO [10], while Mesesan et al. [13] made the same
nal and circumcentroidalvelocities of a frame were defined robot walk over compliant mattresses and gravel. Bellicoso
and used for end effector control without excitation of thest al. [14] perform various dynamic gaits with the quadruped
CoM. The velocities correspond to the relative CoM-toANYmal [15] by optimizing the whole-body motion and
end-effector velocity measured in rotating and non-rotati contact forces. Fahmi et al. introduced STANCE [16], a
centroidal frames, respectively. quadratic programming (QP) based soft terrain adaptation

As compared to space-related applications, the control afgorithm. STANCE allows for locomotion over multiple
free-floating robots on earth has a more recent past. Untirrains of different compliances and is able to withstand
today, many humanoid and other legged robots are positiogxternal perturbations. However, it cannot handle cases of
controlled [7]-[9]. Due to their rigidity, they have to be complete contact loss.
carefully controlled when interacting with unstructuretie This paper new|y introduces the so-called Relative-CoM-
ronments, e.g. while walking. While keeping balance of thgp-Foot (RCF) controller. It is based on the insight that
overall system is a challenge, an instability of joint postu the relative CoM-to-foot dynamics is always controllable,

) ) i ) while the absolute CoM dynamics, i.e. with respect to the
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fall), and thus can be used without switching. In case oivherem= m, +m, denotes the total robot mass. The CoM
appropriate foot constraints, i.e. ground contact, thiatisee  velocity can be computed as
controller can be anyhow used for absolute CoM tracking St M 7. M1
control, since the constraints cause a concordance oiveelat Zon = [ WTa=[1 ®ld. “)
’ N——

and absolute CoM coordinates. This is due to the fact that Jcom
controlling the CoM w.r.t. the world is kind of equivalent to ) pynamics:Applying the balance of forces (see Fig. 1),
controlling it w.r.t. its world-fixed foot. In case of unstab \ye find the trunk and foot dynamics to be
contact, e.g. when slipping or stepping into a hollow, RCF
control guarantees postural stability, thereby incrapghe Mz =mg—T7 and Mm% = mg+ T+ W, . (5)
likelihood of an eventual recovery after ground contact haghe CoM dynamics is
been re-established. To the best of our knowledge, RCF is
the first heuristic-free, purely torque-based whole-boay-c MZom = M2z + M2 = Mg+ W, . (6)
troller (WBC) that is robust to severe contact imperfectjonssgjiecting the CoM and foot dynamics in matrix form yields
while the state of the art (e.g. [17]-[23]) is either not rsbu )
w.r.t. this issue, or uses heuristics that are hard to presid m 0| Zm _ |-mgl _ O] |11, @)
cannot guarantee stability. 0 my| 2% —mg 1 17

The paper is organized as follows: Sectioh Il introducegxpressing the absolute CoM and foot acceleration as a
the low-dimensional model used throughout the paper, whilginction of generalized acceleratiofjs namely
Sec/[Tll recapitulates our previous work on Modular Passive . m
Tracking Control (MPTC). Sectioris]V arid V introduce the {Z?Pm] = [Jcom} = {1 m } §. (8)
considered tasks and derive different controllers, respy. 2 % 11
In Sec.[V], simulation results are presented. Secliod Vkquation[(¥) can be rewritten as

provides a discussion, while Séc. YIIl concludes the paper. m “mg 0 1
ot mg e [ o

II. EQUATION OF MOTION AND CONSTRAINT FORCES m m -myg| |1 1
A. Simplest Articulated Free-Floating (SAFF) model M tg=—JLnmg ST 7]

Flcl)gt;[:és zé?;l;’F\)N?nE:joeﬁOise;hepij:l]mlp)leS|I ﬁ(r)t:qcsuils?;e%flz:\?vi‘_"’hk:h is theequation of motiornof the SAFF model. The
. T right hand side of[{9) can be interpreted as the generalized
point-massesnf, and m, representing the trunk and thetorques
foot, respectively) and one actuated joint between them (th T 0 1
corresponding joint torque; denotes here a linear force). T = [ST JzT} { '} = {1 1} u .
The foot may potentiaIE/ be in contact with the ground and e ~——
be subject to a contact / foot foree. w U
1) Kinematics: The SAFF model is based on twgen- Note that [®) has precisely the form of the general free-
eralized coordinates ;qand ¢, collected in the generalized floating robot equation of moti&(EoM, see e.g. [24], [25]):

coordinate vector; = [0;,0,]T, wheregq, corresponds to the

" (10)

. . _ ol T
trunk position andy, is the relative coordinate between trunk MG+Cq+m= \S T+ We > (11
and foot. Theabsolute coordinates, andz, of the trunk and T
foot, respectively, are collected as where J. and w, are the stacks of contact Jacobians and
z 1 0 wrenches, respectively, relating to links in contact witle t
z = [zj = {1 1} q. (1) environment. Note that if {9 = 0 since M is constant.
7 B. Actual and estimated constraint force

Note that due to the linearity of the SAFF model, the This section provides the actual and estimated constraint
forward kinematics mag is equivalent to the corresponding force, for the case that the foot is in contact with the ground
Jacobian matrix. Also note that the downward direction iFhis is typically modeled by imposing a constraint on the
defined agpositive The absolute trunk velocity, ‘and foot foot acceleratiorg,. Solving [B, right) forw,, we find

velocity z, are

d W, =my(%—0)—Tj , (12)

z7 =11 0] q an =11 1q. (2 . : .-

' L,_]/ 1 : L,_]/ 1 @ which returns the foot forcev,, in case the joint torque;
J1 J2 and the foot acceleration are known.

The robot’s Center of Mass (CoM) can be computed as Equation [[IR) can be applied to estimate the foot force

_m _— m . 3) W, s, given the commanded joint torqag.mg and an estimate
Zeom = m*T"T m®®> of the foot acceleratiom, o
1This paper examines several controllers regarding theitacbmobust- Waest = Mp(Z2e5t— ) — Tj.omd (13)

ness. Accordingly, we consider the case of firm foot contaitt the ground,
and the case for which the foot is completely free, i.e. thenea ground. ’Note: the dependencies of the matricesgoand ¢ are omitted here.



[1l. RECAPITULATION OF OUR PREVIOUS PUBLICATION  as representations of the task-related overall systengieser

ON MODULAR PASSIVE TRACKING CONTROL (MPTC) and dynamics from the perspective of the task objectives

In our previous work [25], we proposed the Modular@).v until an actual controller is inserted thrqu@(lS) by
Passive Tracking Control (MPTC), which is a generic contropetting the joint torque to the commanded one, Ti,&x T cm.
framework, serving as template for arbitrary specific con- IV. OVERVIEW OF CONSIDERED TASKS
trollers, e.g. Cartesian or joint controllers. For the SAFF
model (see Figl]l) with its lack of Coriolis terms, MPTC
results in the same control law as an Inverse Dynamics
controller (see section IV-A in [25]). Nevertheless, we re-
capitulate some of the most relevant equations from [25
since they facilitate the analysis of different contradler
especially with regard to passivity. Also, we intend to gppl SUPset of these tasks.
MPTC theory when extending the Relative-CoM-to-FoojA, CoM task (w.rt. inertial frame)
(RCF) controller that will be.present.ed jn Sec. V-C to full 3D Applying (T8), we find the desired CoM task force as
robot models, e.g. humanoids, motivating the short summary .
here. fcomdes = Tiom Ty + mzcomref + dcom zcom + kcom 2com

In [25], we proposed to use onseparate Lyapunov = M (Zomer —9) + Geom Zeom + Keom Zeom > (19)
functionbased on the task-related relative kinetic endggy. B B

where Meon = (JeomM 1J50) 1 =M, Qcom= Coom=0,

and relative potential ener for each one of th
tasks: P OBtpor o Toom = M Jeom M1 = [1,0], and dom and ke, denote the

In this section, we introduce three different tasks, namely

« a CoM task that is defined w.r.t. the inertial frame,
« a foot task that is defined w.r.t. the inertial frame, and
« a relative CoM-vs-foot task.

klote: Each controller presented in Sé&d. V implements a

1. . 1 : ; _ inG )
V, = 5 j: M. & + 5 zEI K &, | (14) CoM damping and stiffness. Applying_(15) and}(10) yields
_ _ | _ bl _
Exin k Epotk feom = Teom T = ,TCmeU [WJ = [0, 1] [Wz] =W, . (20)

.. .. . T ~—~—
where the positive definite, symmetric mati#& denotes the Y.eom T com

task stiffness, and/, is the task inertia (see [25] for details). Similarly, applying [IV) and{8) to the CoM task yields the
This Lyapunov function is positive definite in the task posi{absolute) CoM Lyapunov rate

tion errorZ, and the task velocity errat, = @yer — Ji g, : y .
¢ v Vcom = _dcom ZSom + Zeom (fcomdes_ fcom) (21)
Tk .
with Jy denoting the task Jacobian. Accordingly, we defined = Zom (m(zcomref — 09) + Keom Zeom — W2) ,
the (actual)task forcB f, as: .
and the (absolute) CoM error dynamics
= M JM*r | 15 : .
fk u/—’ ( ) M Zeom + dcom Zeom + kcom Zeom = fcomdes_ fcom ; (22)
T
k_ ) . respectively.
whereT, denotes the dynamically consistent pseudo-inverse o
of JT. By choosing thedesired task forcefiqes as B. Foot task (w.rt. inertial frame)
. . ; - As for the CoM, we appl 6) to the foot task to obtain
fedes = Tirg+ My Qu g + My &y res + (C+ Dy) T + Ky &y ppiyL(16) )
(16) fodes = ToTy + Mbyes + b + K 2%
whereC, is the task Coriolis matrix@y is another Coriolis =M (%ei—0) + k2 +kZ, (23)

related matrix andDy is a positive definite damping matrix, wherem, = (LM a7, T, =myJ,M~1=1[0,1], Q2 =
the time derivative of[(14) is brought into the following for ¢, = 0, andd, andk, denote the foot damping and stiffness

Vi — 751: Dd 4+ 5}: i (17) gains. Again, applying(15) and_(110) yields
: — e _ _ T _ T| _
Vides Purely dissipative Vi fpb=T1= EE {WJ - @ [Wz] =T + W, (24)
where f = figes— fx. Accordingly, the task error dynamics Tz == Toe
becomes Similarly, applying [1¥) and[{18) to the foot task yields the
MG, + (Ck I Dk) o+ K@ = fi . (18) (absolute) foot Lyapunov rate
V, = —d 25 + % (faqes— f2) (25)

It is important to note that (17) yields perfect dissipation .
of task errors and_(18) yields an asymptotically converging = % (mz (Zrer — Q) + ke — 1) — Wz) )
compliant task behaviasnly if the corresponding task force nd the (absolute) foot error dynamics
error f, is zero. Thus,[(417) and(1L8) have to be interpreteg y

_ o M2+ hz + k2 =fhes—f, (26)
SNote: depending on the task, the task force may contain lifwaes, )
torques, wrenches, etc. respectively.



C. Relative CoM-to-foot task A. Absolute CoM task with foot acceleration assumption

Now, in addition to the previously introduceabsolute In this subsection, we derive a controller that tracks
CoM and foot tasks, we defineralative CoM-to-foot task, absoluteCoM trajectories (i.e. in world frame), while being
which is based on the relative task coordinate based on amssumption / estimat®r the foot acceleration,

_ typically Z .= 0. This type of controller has been widely
R=Zom— 2 - (27)

. _ used in research [20]-[23] and can be seen as the state of
The corresponding task velocity can be computed as  the art in humanoid and bipedal whole-body control (WBC).
. . . . mJ . i i :
0 = Zeom — 2 = (Jeom — J) § = [07_7} q. (28) It comfes,. however, with two dlsad\{antages .
« Itis likely to become unstable in case of imperfect foot

——
Jr contact conditions (see Séc. V-A.3).
The task JacobiaﬂR is used to compute the task inertia o It requires a SWitChing of controllers when transitioning
_1 from stance to swing and/or back.
= (JemtgT) = M0 29 i ing timing i
Mg = ( R R> T Ty (29)  The latter leads to high sensitivity regarding timing issue

leading to an increased effort for ensuring safe and continu

and the task mapping matrix " )
ppIng ous transitions between the different controller modes.

Th = Mg JJg M1 = [@,_m} ) (30) 1) Controller derivation: In (20), we replacer; by the
. ] ) m m estimated joint torque;j est = Tjcmd, @andw, by W, from
Applying (18) we find the desired task force (@3), which yields the estimated absolute CoM task force
1:Rdes = rn?zR.ref + dRZR + kRzR ) (31) - T |:Tj.est:| |:0 l:| l: Tj‘cmd
WhereZ; = Znrer — 2 and %z = Zarer — 7 denote the relative " [Waes]  L7) [ M (Z2est— ) — Tjemd
position and velocity errors, respectively. Interestngh = My (Z2est—9) — Tjemd - (36)

contrast to [(I9) and(23), the terffk 7, = 0 cancels. As
for the other tasksr = Cr = 0, making [31) a particularly
simple controller objective. Usin§ (IL5) arld [10), we find th

Now, setting feomest = feomaes from (I3) and solving for the
ecommanded joint torque; ;mg yields the control law

actual relative CoM-to-foot task force as: Tjomd = My G+ My Zoeq— M Zeompes — oo wZeom— KeomZeom -
m T; m @7
R RUY m,’ [WJ m, - 2 Note that the Lyapunov rate frofi{21) and the absolute CoM
T T~ T task error dynamics from{22) are primarily independent

(32) from the joint torquer;, as long asv, remains unspecified.
Applying (I7) and [(IB) to the CoM-vs-foot task yields the 2) Control performance for fully constrained foot motion:
corresponding Lyapunov rate In case of a fully constrained foot, the foot acceleration is
. zero, i.e.z, = 0. Here, we also assume that the estimated

e = —hkZ+% (‘fR“es — fR,) (33) foot acceleration is zero, i.eq = 0. For this case and
fr additionally insertingtj = Tj cme, (1) becomes
X . 5 m . s s
= R (nh LRref +kR R + a Tj + WZ) 5 W, = m(zcomref _g) + dcom Zeom t+ k<:om Zeom 5 (38)
f feom fcomdes
. - R '
and the task error dynamics i.e. the desired CoM task force is perfectly achieved. trser
Me3r + O 5k + KeZs = frgee — fn . (34) ing (38) into [21) and[{22) yields theontact-constrained
N absolute CoM task Lyapunov rate
f . .
Finally, inserting [[(31L) into[(34) yields A Veom = —COcom Zyry » (39)
m . .
Mg 2z = o T — W, . (35) and thecontact-constrained absolute CoM error dynamics
al . A ~
fr Meom Z:om + dcom Zeom + kcom Zeom = 0 5 (40)
Again note that[(35) is not a function of gravity. which reveals that the absolute CoM controller is exponen-
V. DERIVATION AND ROBUSTNESS ANALYSIS OF tially stable in the fully constrained case.
DIFFERENT CONTROLLER SETUPS 3) Control performance for completely unconstrained

In this section, we will present three different contradter foot: If the robot's foot looses contact to the ground com-
two controllers from the literature and the newly propose@letely (e.g. when stepping into a deep hollow), it is fully
one. Each of them is examined regarding its stability proginconstrained, such that =0, and equatior{{21) becomes
erties and robustness against contact imperfections. th pa : i . s
ticular, two extreme contact scenarios are considerediya fu Veom = Zon (m(z“’""ef 9) + keom z°°'") NG
constrained foot motion (considering zero foot accelemati while (22) turns intoz,, = g, i.e. the CoM accelerates
i.e.z =0), and a completely free foot (i.e. foot forag=0). downwards, following its natural falling dynamics.



B. Absolute CoM task and additional foot control 2) Control performance for fully constrained foot motion:

This subsection examines the controller presented in [Z‘I‘i“]thfa foot is constrained to not accelerate, =10, and if
that works with an absolute CoM controlland an absolute e joint torquet; = T; cme, equation[(IR) turns into

foot controller (both defined w.r.t. the inertial frame). Wy = M (Zeomret — 9) + Geom Zeom + Keom Zeom
1) Controller derivation: Collecting the desired absolute - -
CoM and foot task forces froni (1L9) and {23) yields 2.cmd (48)

— (M Zorer + %+ k %) .

Awy

l:fcomdesi| — |:m (zmmref - g) + dcom .zc_om“i’ k(:om Z:omil ) (42)
Now, with this particular foot forcev,, (ZI) turns into

f2.des M (Zoret —9)+h 2+ ko 2

Sdes

i ind Veom = —Gcom Zo + Zeom (Mp Zoer + G2 2 + ko ) , (49
Applying (20) and[(24) to the controller commands, we find Ycom Z (Mg Z e b + k), (49)

[fcomcmd] _ |:TU,com:| |:Tj7cmd:| _ |:0 1:| |:Tj,cmd:| (43) Vcomdes Awsp
f2.cmd Ty2 | [Waemd 1 1] Woema| - while the error CoM dynamic$ (22) becomes
femd T T “emd m 2:0m+ dcom icom+ kcom 2com =M z2.ref + d2 22 + k2 22 . (50)

Obviously, Ty, is invertible. We can sef.nq= f4es and solve D,
for the commanded control input.yg. Its elements are

Assuming a bounded foot force eriwv, as input, this CoM
Tiomd = Mu(0— Zeomret) + Ma(Zarer — Zoomret) dynam_ics is bounded-input-boundet-output_ (B!BO) stable.
e Fos Koo B Oy 3 LKy 3 (44) For this controller setup, the CoM dynamics is perturbed

com Zeom — Keom Zeom+ 02 22+ %2 2 by the foot tracking errors (i.e. the right hand side[ofl (50))
and The latter may e.g. be caused by disturbances or unexpected

Wocng = M (Zoomrer —0) + Geom Zeom + Koom Zom - (45) groung) heights (planned foot position below/above actual
ground).

While the actual controller consists of _{44), i.e. of the Note: in a fully static case, i.e. f®om = Zomer = Zeom=
commanded joint torques; cmg, the commanded foot force Zyyer = 2 = Zyret = 2, = Z 61 = 0, the CoM error is directly
(49) can be seen apseudo-control inputBasically, the proportional to the foot placement error:
controller assumes to have a thruster in the foot, which is K,
obviously wrong and may lead to controller imperfections Zom = Ko z . (51)
(e.g. regarding tracking performance, see Table |). 3dtaal . om .
foot force w cannot be controlled directly, but only via the AlS0 note that since the foot is considered to be fully
commanded joint torques in combination witbrrectly esti- constralneq here, there is no need to explicitly examine the
matedfoot constraints. The motivation of using this pseudo¢0rresponding Lyapunov rate and task error dynamics.
control in [25] was to keep the foot controlleastivated and ~ 3) Control performance for completely unconstrained
unmodifiedat all times, i.e. throughout stance and swing0Ot: For a complete foot contact losay(= 0), (€) becomes
phasgs, a\{oiding a_switch[ng o'f.controller.s. Despite the Zom = G , (52)
mentioned imperfections, this facilitated the impleménta
of a WBC that enabled TORO [10] to walk in experimentsvhich shows that the CoM simply accelerates downf¥ard
with low tuning effort (see [25]). However, in case of footdue to gravity. In that case, (21). (46) ahdl(47) become
positioning errors, we observed CoM and posture deviations . g . s

In the following, we examine the behavior of controller Veom = Zom (m(z“’""e‘ -9+ kc°’"z°°’“) - (53)
(44) assuming an ideal torque source, Lp= Tjcms. Note
that the CoM Lyapunov raté€ (21) and CoM dynamlds (6) are PR . N .
not affected byr; and thus neither by, e as long asw, V2 = ~G:Z + % (M (Zomrer —0) + ceom Zeom + Keom Zeon)
is considered to be generic, i.e. (possibly) independem fr feomdes= W2.cmd
the joint torquest;. In contrast, the foot Lyapunov rate {25) (54)
and foot error dynamic§ (26) are functions of the joint tarquand

1;, and, through setting; = T; ;ng, turn into 5 3 5 . s s
! g gJ J,emd mz Z2 + d2 Z2 + k2 ZZ =m (Zcomref - 9) + dcom Zcom"‘ kcom Zcom ’

V2 = _d2 75 + -22 (m (zzomref - g) + dcomiom"’ kcomzcom_WZ) P fcomdes: W2 cmd
55)
f Z (
des™ Waemd respectively. While the left side of (55) is BIBO stable, the
comdes (46)
and right side is unbounded due to the infinitly growing CoM

n1222+d2'22+k222:m(zcomref_g)+dcom'zcom+ KeonZ-om—W, . POSition and velocity errors, making the system unstable.

feomdes= W2,cmd “The positive sign here results from the convention of a doamw
(47)  pointing z-coordinate axis in Figl 1.



controllers
absolute CoM control + foot accel. assumpt.absolute CoM + foot control relative CoM-vs-foot control
(SecNV-A) (Sec[V-B) (SecNVEQ)
precise trajectory tracking - @) -
for nominal contact conditions - - -
single controller supports o o
swing and stance (no switching) : (future research)
robust to ground Toss O O O

TABLE I: Overview of features of the different examined cantiers.

Note however: if (and only if) the damping and stiffness 2) Control performance for fully constrained foot motion:

gains are chosen ab = d.,, andk, = k., respectively, this The acceleration of a fully constrained foot is zero,4,e= 0.

controller becomes equivalent to RCF control presented idere, we will also assume that the estimated foot acceberati

the next section, and thus the system is BIBO stable. is zero, i.e.z;.q = 0. For this case and additionally inserting
T, = T;ma, the foot force from[(I2) becomes

C. Relative-CoM-to-Foot (RCF) controller with foot accel-

. m . m .
eration assumption Wy =M (Zrrer — @) + P dr Zr + m ke Zr . (60)

This subsection finally introduces our proposed controlldnserting [60) into [(58) and[{59) yields theontact-
setup that stands out due to its high contact robustness.ctinstrained relative task Lyapunov rate
combines the advantages of the two controllers from sextion . .
V-Aland[V-B. These are Ve = —dk % (61)

+ precise CoM trajectory trackingin case of well- and thecontact-constrained relative task error dynamics
established foot contact

. the possibility of usingone single relative CoM-to-foot MeZz + OrZz + keZr = 0, (62)
controller during different contact phases, facilitating

implementation and improving robustness. revealing that the Relative-CoM-to-Foot (RCF) controlter

o ) _ . exponentially stable in the fully constrained case.
Additionally, in contrast to the other two controllers, st i 3) Control performance for completely unconstrained
robust to severe contact imperfections, including a coteple¢, v ¢ the robot's foot looses contact to the ground com-
loss of foot contact. pletely, it is fully unconstrained, such thag = 0. If the foot

1) Controller derivation: In (32), we replacer; by the  acceleration isstimatedto be zeq = 0, (58) turns into
estimated joint torque;jest = Tjcmd, andw, by W, from

(@3), which yields the estimated relative task force Ve = % (m(g — ZRref) — % ds 72 — % kRzR) , (63)
fros = Tyr | 0o | = [_ m,_l} . Tiomd and the relative CoM-to-foot error dynami¢s(59) becomes
' T [ Waest m, M, (Z2.est—9) — Tj.cmd
, m, “+md'“+mk{—m(—" ), (64)
= —My (Zes— Q) — a Tjcmd - (56) Mg 25 m R ZR m R = g — ZRref)
bounded
Now, setting fres = fraes from (31), and solving for the which is BIBO stable for the input (g — Zrref)- _
commanded joint torque; .,q Yields the control law For the regulation case (i.Byer = Zrrer = 0), the system is
asymptotically stable, but the relative coordinate cogesr
. . m . M 0 zz = — ™3 corresponding to an over-stretching of
Tj.cmd = *ml (Zz,estf g) - mZRref - E dR R— E kR L . = ZR,ref ke p g g

the leg relative to the CoM. This can also be observed in
(57) Fig.[2 (center plot) during the fall. The Lyapunov rafel(63)
Now, we first insert the controllef (57) into the Lyapunowerat may become positive especially right after the contact loss
from (33) and the relative task dynamics from](34), whiledue to the gravity over-compensation and the corresponding
leavingw, unspecified. Given a perfect joint torque sourceleg over-stretching. However, another Lyapunov functian c

i.e. T; = T;.ma this yields the following Lyapunov rate be designed, for which the error dynamics](64) can be shown
to be passive.
Vi = .ZR(_ o g 2 — UL krZr + M(9—Zest— ZRref) +Wo Another interesting observation is the following: One can
m, ’ ’ show that for a stiffness and damping design that results in

(58) two equal negative eigenvalues (and thus critical damping)

for the nominal error dynamicd (62), also the resulting

N m . m. . ) ) eigenvalues of the free-falling error dynami€s](64) ard rea
Mk Zr + m dr 2R + m keZr = W2+ M(9—2ea—Zrref) - and negative, resulting in a straight convergence duritig fa
(59) rather than an excessive oscillatory behavior.

and the following relative task error dynamics
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Fig. 2: Standing-falling-standing scenario: &, = const.= 1m.
VI. SIMULATION RESULTS stability can be generalized to any foot contact scenario

(e.g. contact of foot with compliant terrain, slipping, @t&A

corresponding in-depth analysis is part of our future negea

It is, however, also important to note that our proposed RCF
hcontroller partially leaves aside the problem of the pdgsib

uncontrollable CoM dynamics, which becomes most obvious

%n case of a free falling scenario: While the relative CoM-to-
oot dynamics is stable and behaves well, the CoM itself,

i.e. the distance between the CoM and the foot, grows fé?cking any means of counter.action, is subject to gravity
the proposed RCF controller. Since the controller does ngpd thgs f.O”OWS a freg-fall. This means, the absolgte CO.M
know that the contact is lost, it still tries to compensate fodynamlcs is unstable in that case. However_, espeC|aII_y with
gravity. However, the corresponding pushing force is dyick regard to an eventual recovery in case of a_t|mely landing on
and continuously compensated by the growing impedan lower ground level (see accompanying video), the natural
force. such that a new equilibridﬁ)r/is reached. After the stability of the RCF controller can be seen as an important
impa(,:t, the controller quickly converges back to the setpoi advantage over other coqtrollers: it preserves the robot’s
(see Fig[R). In contrast, both controllers from the state Josture rather than becoming unstable.

the art (sections.(V-A) and (VIB)) become unst&h’ght In this paper, we assume that the foot constraint force is the
after the loss of contact for a comparable simulation only external force acting on the system. In case of external

In a further simulation we used the exact same setup gés(;utrbal?ces (EUSheS. etc.), It:i preszgt.(ta_d LlyaputnoE)/ tr.ates
in the first one, however, imposing a sinusoidal referenct nrm asWertr)o:i \yn?;r"fsthwﬂutt r?jver?t ;]'?/na Eeirmur at|orr1]
trajectory for the relative coordinates. Again, the RCF erms. Ve believe that Ine latter do not have a pact 0

controller shows perfect tracking performance in case (Rasswlty, while an impedance / compliance behavior would

firm ground contact, while a safely bounded tracking errotrake_ the place of the nominally exponenu_al stab|_l|t_y (if
is observed during the fall (see FIg. 3). applicable in the unperturbed case). The detailed exainimat

of such effects is also part of our future research.

In a first simulation, the robotnf, = 40kg, m, = 10kg)
tries to stabilize a stationary relative reference pose/den
the CoM and the foot (corresponding & = 1m). After
an initial convergence from a random starting conditioe, t
ground breaks away at= 1.0s and the robot falls for &s
and about Bm deep. Afterwards, the foot re-establishe
ground contact. During the fall, the relative coordinate

VII. I NSIGHTS, DISCUSSION AND FUTURE RESEARCH VIIl. CONCLUSION

The main insight of the paper is the following: The ab- |n this paper, we introduced the Simplest Articulated Free-
solute CoM dynamics is only guaranteed to be controllablg|oating (SAFF) model, which due to its low complexity and
if the assumptions made about the foot contact situation gfmensionality facilitates the examination of free-floati
hand (e.g. zero foot acceleration) hold true, i.e. it is onlyohot controllers. We could show that two different control
therelative CoM-to-foot dynamic®r similar quantities), and an assumption about the foot acceleration (state of the art)
this regardless of the contact situation. The Re_:latlve-Co_l\/hnd a controller combining both an absolute CoM and foot
to-Foot (RCF) controller presented in Sec. V-C yields eci control objective, may yield exponential stability in the
tracking if the foot dynamics is naturally constrained (zer nominal case (foot in contact with firm ground), while be-
foot acceleration). In a free fall situation, it proves to b&oming unstable if the contact is lost. We then presented the

s .  mg o ) yields exponential stability nominally, while preservirgg

_Remenmber: steady stag =~ " in (&4) forw, =0 andzrrer =0 h55qive and BIBO stable behavior even in case of a complete

except for the case (as mentioned above) in which the coatrfsbm tact | Th troll £ lidated i
Sec[V-B uses equal CoM and foot damping and stiffness gainalfiich C_on aC_ 0ss. € contro er_ per Ormance_ was validated In
it is equivalent to the presented RCF controller, and thusaies stable. ~ Simulations, both for regulation and tracking cases.
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Fig. 3: Standing-falling-standing scenarig;.; following a sinusoidal reference.
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