
ar
X

iv
:1

90
9.

08
45

8v
1

 [
cs

.D
C

]
 1

8
Se

p
20

19

Introduction to the Tezos Blockchain
HPCS 2019 INVITED TUTORIAL PAPER

Victor Allombert∗, Mathias Bourgoin∗ and Julien Tesson∗

∗ Nomadic Labs, Paris, France

Email: firstname.lastname@nomadic-labs.com

Abstract—Tezos is an innovative blockchain that improves on
several aspects compared to more established blockchains. It
offers an original proof-of-stake consensus algorithm and can
be used as a decentralized smart contract platform. It has the
capacity to amend its own economic protocol through a voting
mechanism and focuses on formal methods to improve safety.

Keywords— distributed systems; decentralized systems;
blockchains; smart contracts; formal verification.

I. INTRODUCTION TO BLOCKCHAINS

At the heart of blockchains lay massively distributed and

decentralized programs that aim at bringing consensus (usually

over a ledger) among thousands of nodes.

Tezos [1] is an innovative blockchain that improves sev-

eral aspects compared to more established blockchains like

Bitcoin [2] or Ethereum [3]. It offers an original ’Proof-

of-Stake’ [4] consensus algorithm and can be used as a

decentralized smart contract platform. It has the capacity to

amend its own consensus algorithm (and more) through a

voting mechanism and focuses on formal methods to improve

safety.

Tezos implementation is designed as a multi-layer software.

A peer-to-peer layer ensures the connectivity with many other

nodes and passes the received messages to the next layer that

sees this network as a distributed database. This layer pulls

block chunks from its neighbors, pushes new block identifiers,

and passes new information to the economic protocol layer

which implements the consensus: it decides which blocks with

which transactions can be included in the ledger.

The economic protocol also embeds a smart contract plat-

form. Smart contracts are small programs that manage their

associated tokens and data storage and perform blockchain

operations. Transactions in the ledger can be more than just

mere transfers of tokens (assets residing on the blockchain),

they can carry data and can be addressed to a smart-contract.

In this case they can be seen as a function call which triggers

the execution of the smart-contracts code.

To ensure the consistency of the ledger state, each block

received by a node has to be validated before the node agrees

This is a draft paper of the tutorial submitted to HPCS 2019
(Dublin, Ireland from 15 to 19 July 2019).
http://hpcs2019.cisedu.info/4-program/tutorials-hpcs2019

to transfer it to its neighbor, thus it is very important for a

smart contract execution to be limited in both time and storage

in order not to slow down the network.

This tutorial aims at giving a broad presentation of what

a blockchain is and how to use and interact with Tezos. We

begin with a short introduction to blockchains in the rest of this

Section. Section 2 will detail some specifics of Tezos. The next

sections will focus on interacting with the Tezos blockchain

through multiple examples. Section 3 shows how to use the

blockchain through a client and via a rich set of RPC calls that

can be used from any programming language. In Section 4,

we present how to use Tezos as a decentralized platform that

can run smart contracts. We present through examples how to

build and run a small contract while providing some technical

details of the Tezos smart contract programming language and

platform.

A. Blockchains building blocks

Blockchains can be seen as an immutable database operating

in a decentralized network. They are built upon several key

concepts and tools:

• They use cryptography heavily to ensure users authenti-

cation as well as the database immutability

• They offer a probabilistic solution to the “Byzantine gen-

erals problem” [5] for consensus among all participants

(that we will call nodes in the rest of this tutorial) in the

decentralized network

• They use a peer to peer (P2P) gossip network for low-

level communications between the nodes.

Thus blockchains are often called crypto-ledgers as they can be

seen as an electronic book, recording transactions where users

identity and book immutability are cryptographically ensured.

In order to validate and append transactions to the ledger,

all blockchains follow a similar generic algorithm:

1) New transactions are broadcasted to all nodes which

aggregate them in blocks.

2) The next block is broadcast by one or several nodes.

3) Nodes express their acceptance of a block by including

its cryptographic hash in the next block they create.

Blockchains face some common distributed systems chal-

lenges. To be resilient to Sybil attacks [6] a solution is to

restrict the pool of block producers by tying it to the use of

a scarce resource. A difficulty is to choose this resource and

create incentives that push the majority of the network to be

honest. Restricting the pool of block producers can also lead

http://arxiv.org/abs/1909.08458v1
http://hpcs2019.cisedu.info/4-program/tutorials-hpcs2019

to liveness issues that have to be taken into account to make

sure that the chain does not stop whenever a block producer

is offline. Blockchains also have to consider malicious block

producers and performance issues such as network delays.

Each blockchain provides its own set of solutions to overcome

these challenges but most of them rely on the foundations set

by Bitcoin. Blockchains also face the risk of forks: to update

their economic protocol, blockchains have to go through social

consensus and risk frictions in their user community that may

lead to the birth of hard forks splitting the community in two

parts agreeing on two different chains. Such hard fork occurred

after the Ethereum DAO hack1 leading to the birth of two

blockchains: Ethereum Classic and Ethereum.

B. Bitcoin: the electronic cash

Bitcoin was introduced in 2008. The main objective behind

Bitcoin was to propose a decentralized electronic cash system.

Bitcoin is the name of the blockchain as well as the name of

the cryptocurrency it uses. Blockchains use tokens to represent

assets stored in the chain. Some of these tokens, as in Bitcoin,

can represent a currency. Bitcoin is also a decentralized system

(the actual blockchain) allowing users to store and transfer

their tokens. This system is the combination of a P2P network

associated with a consensus protocol to maintain consistency

between nodes. This consensus algorithm introduced the no-

tion of ’Proof-of-Work’ (PoW). With PoW, the scarce resource

used to restrict the pool of block producers (that Bitcoin

calls ’miners’) is computing power. High computing power

mostly demands very efficient computing hardware associated

with high energy consumption. The main idea is to request

that miners compete in the solving of a puzzle to earn the

right to produce (mine) the next block. The puzzle is built

to be hard to solve but easy to check. With PoW, Sybil

attacks are difficult and expensive. Associated with incentives

to motivate miners to compete, liveness is easy to achieve.

In case of soft forks (temporary split) of the chain, which

can be caused by bugs, network latency or malicious mining,

and to maintain consistency of the chain among all the nodes,

Bitcoin’s consensus algorithm specifies to always keep the

longest chain between two forks. A chain is considered longer

if its total difficulty (summing the difficulty of the puzzles

solved to mine each block of the chain) is higher. The difficulty

is adapted every two weeks to maintain an average of 10-

minute intervals between two consecutive blocks depending

on the global computing power of the miners. PoW is the

solution currently used by most blockchains.

C. Smart Contracts: decentralized platforms

While Bitcoin focused on electronic cash, it also come with

the concept of decentralized computations: Bitcoin’s script

allows many interesting forms of in-transaction computation,

and others quickly proposed to use blockchains to build de-

centralized computing platforms. This was popularized by the

current second-biggest blockchain, Ethereum, in 2014, which

1https://www.bloomberg.com/features/2017-the-ether-thief/

pushed the concept further. The main idea is to see blockchains

as vending machines where users can pay for a service. In

blockchain platforms, these services are small programs living

on the chain. Users of the blockchain can store code in

blocks and other users can execute this code. These programs

are called Smart Contracts. They can, of course, perform

blockchain operations, such as token transfers, but they can

also be used for access control or to interact with others.

Some smart contracts, being fed with off-chain information,

serve as Oracles selling trusted information. Smart contracts

can be used in many applications such as financial contracts,

developing new currencies on top of the basic crypto-currency

of the blockchain, voting systems, games or crowdfunding.

II. TEZOS SPECIFICS

Tezos is an innovative blockchain which was presented in

2014. Contrarily to most new blockchains at that time, it is

not based on PoW. In the following section, we present some

distinctive features of Tezos briefly such as its self-amending

mechanism, its usage of a ’Proof-of-Stake’ based consensus

algorithm and its strong emphasis on formal verification.

A. Self amending blockchain

Tezos is a self-amending crypto-ledger. The protocol that

validates blocks and implements the consensus algorithm can

amend itself. Concretely a new protocol is downloaded from

the network, compiled and how-swapped to replace the current

one.

The amendment procedure can be triggered in several ways,

depending on the protocol. In the current Tezos economic

protocol, an amendment can only be triggered as the result

of an on-chain voting procedure.

It helps to avoid forks of the chain and reduces friction

and splitting in the community. A protocol amendment may

consist of very important upgrades such as a switch to a

completely different consensus protocol. It can also consist

in smaller modifications such as extending the smart contract

language, modifying the rewarding system to enforce network

participation or adding new kinds of transactions (for instance

adding anonymous ones). In order to amend itself, Tezos uses

an on-chain voting system where users of the blockchain

participate to propose, select, adopt or reject new amendments.

The voting process is currently divided in 4 periods of ~3

weeks (time is measured in blocks, Tezos aiming at a 1-minute

intervals between two consecutive blocks):

1) Participants submit new protocol proposals (i.e. hashes of

the protocol proposals source files)

2) A first vote selects a proposal among the submitted

proposal

3) A side test chain spawns with the elected protocol

4) A final vote occurs that decides whether to up-

grade(needing a supermajority of 80% of positive votes)

Tezos is built specifically in order to be self-amendable.

Tezos nodes are split into two parts: the protocol, which is the

self amendable part, and which is isolated from the shell that

is responsible for the low-level network communications.

https://www.bloomberg.com/features/2017-the-ether-thief/

The shell can be written in any programming language.

There can be multiple implementations with different proper-

ties. It corresponds to the first two layers of Tezos architecture.

The protocol has to run exactly the same way on all nodes. It

is responsible for validating blocks and operations. Operations,

that are aggregated into blocks, are what is stored in the ledger

and are of two kinds:

• ledger operations: transactions and origination (creation)

of contracts

• Proof-of-Stake operations such as endorsements or dele-

gation that are described in Section 2.2.

The protocol can also trigger a protocol upgrade. In order to

allow all kinds of protocols to be compatible with the shell,

Tezos reduces the protocol interface as much as possible.

In Tezos, the generic operations of regular blockchains are

implemented as a purely functional module. Thus, well known

blockchains such as Bitcoin or Ethereum can all be represented

within Tezos by implementing the correct interface to the shell.

The interface of the protocol is primarily composed of two

functions: apply and score.

apply : S ×B → S

score : S → N

where S, the state of the blockchain (the ledger), is an

immutable key-value store and B is a block. apply takes

the current state and a block to produce a new state. score

computes the score of a state to choose the preferred one

between multiple states (implemented as the longest chain

in Bitcoin). A few other functions are exposed for efficiency

purposes, to document errors and provide protocol-dependent

RPCs.

Tezos protocols are written in the OCaml programming

language [7]. OCaml is a powerful functional programming

language offering speed, an unambiguous syntax and semantic,

and a rich ecosystem that makes Tezos a good candidate for

formal proofs of correctness. To make it more resilient and

less error-prone, the protocol has only restricted access to

the standard library: for instance it uses no I/O functions, no

threads, no unsafe language traits. It also has access to specific

libraries such as formally verified cryptographic libraries or

database abstractions.

B. ’Proof-of-stake’ based consensus algorithm

The current Tezos protocol is based on a ’Liquid Proof-of-

Stake’ (LPoS) consensus algorithm.

PoS is very different from PoW. It considers the stake (the

number of tokens) that users hold as the primary resource

used to build the pool of block producers (called bakers in the

Tezos ecosystem). In the current Tezos consensus protocol, to

push a block at a certain level, bakers are randomly selected

using a lazy infinite priority list of baking slots. In order

to participate in this random selection, a baker must hold

at least a roll of tokens (corresponding to 10, 000 tokens2).

The number of baking slots is proportional to the number of

rolls that a baker holds. However, participants that do not hold

enough tokens or who do not wish to bake blocks can delegate

their tokens to another baker, much like in Liquid Democracy

one can delegate its right to vote. They keep the ownership

of their tokens but increase the stake of their delegate in the

random assignment of baking slots. Delegation makes the PoS

system more fair and participative and helps balance a possible

concentration of tokens in few hands.

In order to help the chain reach finality (the guarantee

that a block will not be revoked and that past transactions

can never change) faster, Tezos PoS mechanism introduces

endorsements of baked blocks. For each baked block, 32

endorsements (signatures) slots are created, allowing chosen

bakers to approve a block by signing it. Using endorsements,

the highest block resulting score is considered the head of the

chain where the score is:

score(Bn+1) = 1 + score(Bn) + nb_endorsements

In order to provide incentives to bakers for participating in

the network, the protocol rewards baking and endorsing. A

baker earns 16 tokens for each block it bakes and 2 tokens for

each endorsement it produces.

Two main malicious behaviors are also handled by the

protocol: double baking and double endorsement. A baker

perpetrates double baking when it injects two different blocks

at the same level. Double endorsements happens when a

baker signs two different blocks for the same level. The

system punishes malicious behaviors as follows: when a baker

produces a block, a deposit bond of 256 tokens is frozen for ∼2
weeks (64 tokens for an endorsement). During this period, if

the baker/endorser is caught cheating, the deposit and pending

rewards (summing the rewards earned baking and endorsing in

the last 5 cycles − a cycle equals 4096 blocks) of the cheater

are forfeited.

Tezos LPoS consensus algorithm, via its internal mechanism

and its associated incentives, solves the challenges presented in

Section 1 without requiring significant computational power.

It also focuses on the users of the platform (instead of external

actors as it is possible with PoW): not only stake-holders can

participate but all users can, from large ones with many rolls

to smaller ones that delegate their stake.

C. Strong emphasis on formal verification

Tezos uses as much as possible state-of-the-art program-

ming languages capacities to statically ensure the correctness

of the implementation and limit the possible runtime errors or

attacks.

The code base is mainly written in the OCaml programming

language, whose robust static type system and memory man-

2
10, 000 tokens while writing these lines. An amendment of the protocol,

currently in the testing phase of the voting process described in the previous
subsection, reduces the size of a roll to 8, 000 tokens

agement system rule out many common runtime errors like

null pointer exceptions or buffer overflows.

Regarding cryptographic primitives implementation, whose

importance in terms of security is paramount for the

blockchain, Tezos relies on the HACL* library [8] which is im-

plemented in Low* [9] and extracted to C. The cryptographic

primitive implementation is formally proven to be memory

safe, functionally correct and resistant to side-channel attacks

at least at the level of C (secret independence of branching

and memory access).

Michelson, the Tezos smart contract language, has been

explicitly designed to ease the readability and verifiability of

contracts while being low level enough to comply with the

performance predictability requirement of on-chain execution.

The language is statically typed, its formal semantics has been

written in the Coq proof assistant [10] and formal proofs of

functional correctness of smart contract using this semantics

have been done.

III. INTERACTING WITH THE TEZOS BLOCKCHAIN

The architecture of Tezos is centered around two main

components.

First, the node (the corresponding executable file being

called tezos-node) is responsible for connecting to peers

through the gossip network and updating the ledger’s state

(context). As all the blocks and operations are exchanged

between nodes on the gossip network, the node is able to

filter and propagate data from/to its connected peers. Using

the blocks received on the gossip network, the node keeps an

up-to-date context. The node can be run with several daemons

such as tezos-baker-* and tezos-endorser-*which

take part of the consensus algorithm by, respectively, baking

and endorsing blocks.

Second, the client (tezos-client) is the main tool to

interact with a Tezos blockchain node.

There are currently 3 public Tezos networks:

• mainnet which is the current incarnation of the Tezos

blockchain. It runs with real tez (Tezos tokens) that have

been baked or allocated to the donors of July 2017

fundraiser. It has been live and open since June 30th 2018

• alphanet which is based on the §mainnet§ code base but

uses free tokens. It is the reference network for developers

wanting to test their software.

• zeronet which is the testing network, with free tokens

and frequent resets.

In this tutorial, we will use the §alphanet§ Tezos network.

In the following sections, we assume that the reader have

access to the Tezos binaries. A pre-configured Tezos en-

vironment can be found in the provided virtual machine.

Otherwise, it is possible to install a Tezos environment

from source (using the ocaml package manager (opam) and

compiling from source) or with docker (using scripts and

images). All the instructions to install and run the Tezos

software from source or from docker can be found at

http://tezos.gitlab.io/master/introduction/howtoget.html.

A. Seting up a Tezos node (demo)

The node (tezos-node) can be considered as the access

point to the Tezos blockchain and stores all the data necessary

to run the blockchain. In practice, the node’s data is stored (by

default) into the § /.tezos-node§ directory.

To be connected to the network, a node must have a proper

network identity to be globally identified.

To generate an identity, the following command should be

run:

tezos-node identity generate

The generated identity will be stored as a pair of cryp-

tographic keys that are used by the node to send encrypted

messages, but it is also used as an antispam measure (to

prevent Sybil attacks) based on a lightweight PoW.

When the identity is generated, we can run a node using:

tezos-node run --rpc-addr 127.0.0.1

The -rpc-addr 127.0.0.1 argument is used to allow

communications with clients on the local host only. The node

is now able to connect to the Tezos network and will start its

bootstrap phase. It consists in downloading all the blocks from

the chain using the distributed network. This procedure can be

very long as the chain data is growing invariably every day.

To speedup the process (from days to minutes), it is possible

to start a node from a snapshot of the chain3 by running:

tezos-node snapshot import last.full

This command is able to read all the necessary data stored

in the last.full file, validate it and import it in the node

storage. The imported data consist in a partial ledger state (that

can be reconstructed on request) and all the blocks of the chain

since the genesis. It is also possible to set up a lightweight

node targeting low resource architectures by running a partial

chain using a rolling snapshot. When the import is done, one

can run the node, and wait a few minutes to download the

new blocks spawned since the snapshot file was exported.

B. Using basic client commands (demo)

The client (§tezos-client-full§) is a user-friendly interface

that can be used to interact with a node. As it is based

on JSON RPCS, it can be requested by various third-party

applications. For the sake of brevity, we will use §tezos-client§

instead of §tezos-client-full§ in the rest of the document.

The client can be used to check if the current head of

the local node is up-to-date using §tezos-client bootstrapped§.

This command will hang and return only when the node is

synchronised.

The client is also able to handle a simple wallet, stored

(by default) in the § /.tezos-client§ directory. It mainly

contains 3 files : public_keys, secret_keys and

public_key_hashes (Tezos addresses : tz1). To generate

a new pair of keys to be used locally for Bob, we can run:

3To avoid to download a fake chain, it is necessary to carefully check that
the block hash of the imported block is included in the chain. However, we
do not detail the procedure here.

http://tezos.gitlab.io/master/introduction/howtoget.html

t-c gen keys bob

In order to test the network and help users get familiar

with the system, one can obtain free tokens from a faucet4:

https://faucet.tzalpha.net/. This service will provide a simple

wallet formatted as a JSON file. The account can be activated

for an identity using:

t-c activate account alice with "

→֒ tz1__xxxxxxxxx__.json"

We can now check the balance of this account using:

t-c get balance for alice

It is time to try to transfer some tokens from one account to

another. To transfer 1 token from Alice’s account to Bob’s

one, we can run

t-c transfer 1 from alice to bob --fee 0.05

The -fee argument stands for the fees associated to an

operation in order to encourage bakers to include our operation

in a block. To be sure that the operation is well included in the

chain, it is advised to wait 60 blocks (~60 min) to consider it

as a valid transaction:

t-c wait for <operation hash> to be included

Client commands are high-level operations implemented

using the set of RPCs exposed by the Tezos node. The next

section presents how the transfer operation can be imple-

mented manually using some of these RPCs.

C. Using RPCs

In this section, we show how to transfer tokens from one

account to another by using RPCs. We will use the client to

call the RPCs of the associated node.

The whole set of RPCs can be found in the JSON/RPC

interface section of the online Tezos documentation [11] or

by using the following client command:

t-c rpc list

The -l option of the client logs all the requests to the node.

The following command shows all the RPC calls made during

a transfer.

t-c -l transfer 1 from bob to alice --fee

→֒ 0.05

When executed, we can see that a simple transfer consists

of around 20 calls to the node.

In this tutorial, we will only focus on the 10 mandatory calls

to make a transfer. For readability we will use some shortcuts.

• BOB corresponds to Bob’s public key.

• ALICE corresponds to Alice’s public key.

• HEAD_HASH corresponds to the hash of the block head.

• CHAIN_ID corresponds to the id (hash) of the chain.

1) In Tezos, account operations are numbered, in order

to prevent replay attacks. Nodes can be queried to get

4Please drink carefully and don’t abuse the faucet: it only contains 30,000
wallets for a total amount of 760,000,000 tokens.

the current counter and compute a new counter (by

incrementing the current one) to forge a new operation.

If the new operation has an incorrect counter, it can be

ignored, or delayed. The following command gives the

current counter for Bob’s account.

t-c rpc get

/chains/main/blocks/head/context/

→֒ contracts/BOB/counter

2) For signature check of the incoming transaction, it is

mandatory to verify that the sender public key is known

on the blockchain.

t-c rpc get

/chains/main/blocks/head/context/

→֒ contracts/BOB/manager_key

3) To make sure that the transaction will be added into

the blockchain, we have to make sure that the node is

bootstrapped (ie. that it is synchronized with the other

nodes in the system).

t-c rpc get /monitor/bootstrapped

4) Some values have to be given to the transaction operation,

in particular the gas_limit and storage_limit (see

Sec IV-A and IV-B) constants can be queried :

t-c rpc get

/chains/main/blocks/head/context/

→֒ constants

The needed information can be extracted from the JSON

answer:

{ ...

"hard_gas_limit_per_operation": "

→֒ 400000",

...

"hard_storage_limit_per_operation": "

→֒ 60000" }

5) The hash of the head is also needed:

t-c rpc get /chains/main/blocks/head/

→֒ hash

6) As well as the id of the chain:

t-c rpc get /chains/main/chain_id

7) We can now simulate the execution of our operation:

t-c rpc post /chains/main/blocks/head/

→֒ helpers/scripts/run_operation

Here we use a POST that demands a JSON input.

{ "branch": "HEAD_HASH",

"contents":

[{ "kind": "transaction",

"source": "BOB",

"fee": "50000",

"counter": "4",

"gas_limit": "400000",

"storage_limit": "60000",

"amount": "1000000",

"destination": "ALICE" }],

"signature": ANY_SIGNATURE ... }

https://faucet.tzalpha.net/

We can use ANY_SIGNATURE to make the simulation

without signature checks. In the JSON answer, we get

how much gas and storage were consumed. {... "

→֒ consumed_gas": "10100"...}

8) We can now adjust the fees, gas limit and storage limit

based on the last RPC result and run the simulation with

signature check.

t-c rpc post

/chains/main/blocks/head/helpers/

→֒ preapply/operations

[{ "protocol": "

→֒ ProtoALphaALphaALphaALphaALp...",

"branch": "HEAD_HASH",

"contents":

[{ "kind": "transaction",

"source": "BOB",

"fee": "1269",

"counter": "1",

"gas_limit": "10200",

"storage_limit": "0",

"amount": "1",

"destination": "ALICE" }],

"signature": "edsigtf12Ls...}]

9) We can now inject the operation:

t-c rpc post

injection/operation?chain=main

This RPC call take an hex-encoded signed operation

as input ("09115800...") and returns an operation

identifier ("opDerPd...").

10) An additional POST RPC call (that is not used by the

client) can be helpful to compute the hex-encoded oper-

ation:

t-c rpc post

/chains/main/blocks/head/helpers/forge

→֒ /operations

IV. TEZOS AS A DECENTRALIZED PLATFORM

As mentioned before, Tezos economic protocol not only

handles a registry of transactions, but also has support for

smart contracts.

Smart contracts are small programs registered in the

blockchain together with a private data storage: meaning that

only the contract can interact with the storage, but the data

are publicly visible. A contract registered in the chain is said

to be originated and it has an address prefixed by KT1 which

is given in the contract’s origination block.

They are executed by performing specific transactions to

their associated account. The transaction carries data that are

passed as a program parameters and can thus be viewed as a

procedure call.

The execution of a smart contract can change the state of

its storage and trigger on chain transactions.

Smart contract languages are usually Turing-complete.

However the replicated nature of the contract storage and

the liveliness requirement of the consensus algorithm imposes

some restrictions on their execution.

A. Limited execution time

Any call to a smart contract, once included in a block, will

be executed on every node in the P2P network, because they

have to validate the block before including it in their view of

the chain and before passing it to their neighbors. It means

that the execution time of each smart contract call included in

a block has to fit multiple times in the inter-block time of the

chain (1 minute for Tezos) to ensure its liveliness.

Thus each call is allowed a bounded quantity of computa-

tion: the smart contracts interpreter uses the concept of gas.

Each low-level instruction evaluation burns an amount of gas

which is crafted to be proportional to the actual execution time

and if an execution exceeds its allowed gas consumption, it

is stopped immediately and the effects of the execution are

rolled back. The transaction is still included in the block and

the fees are taken, to prevent the nodes from being spammed

with failing transactions.

In Tezos, the economic protocol sets the gas limit per block

and for each transaction, and the emitter of the transaction also

set an upper bound to the gas consumption for its transaction.

The economic protocol does not require the transaction fee to

be proportional to the gas upper bound, however the default

strategy of the baking software (that forges blocks) provided

with Tezos current implementation does require it.

B. Data storage

Each smart contract on the chain possesses its own storage,

only accessible to the contract. As this storage is replicated on

every node that runs the chain, it has to be of limited size in

order to avoid that the chain context grows out of control. A

cost is set for storage allocation (currently 0.001tez per byte)

to restrain storage usage.

C. Michelson: Tezos’ smart-contract programming language

1) Design rationale: The constrained context in which

smart contracts operate imposes strong contradicting con-

straints on the language design.

Because we need to be able to accurately account for

resources consumption, the language has to be interpreted.

The interpreter is thus counting gas at each “opcode”, and

each opcode cost has to be fairly simple to guess. This tends

to push to a low-level language, at the same time, however, the

resource constraint will lead people to write their program in

this language. Indeed, they do not want to rely on a very high-

level language with a compiler performing many under-the-

hood transformations, preventing cost predictions. Therefore,

the language has to be high-level enough to be programmable

by a human.

Furthermore, as the program will be stored on chain in

this language, it is of paramount importance that they can

be audited easily. The language has to be simple, high-level

enough and should offers as few means of code obfuscation

as possible in order not to mislead the reader.

One more constraint is that the language gives as much

guarantees as possible statically, as once published on the

chain, it is not possible to modify it to correct bugs anymore.

So we want to have a strong type system that prevents as much

runtime error as possible.

2) A stack language with high-level data structures:

Michelson, the smart contract language on Tezos is a stack

based language à la Forth with strict static type checking and

high-level data structures à la ML.

A Michelson program is a sequence of instructions which

modify the stack given as a program input. The initial stack

contains only the calling argument and the contract’s storage,

and the program must end with a stack containing only a list

of operations paired with the new value of the storage.

This led to a rather simple interpreter, with simple cost

model for most operations, but with high-level data structures

(such as maps, sets, lists and algebraic data types) to help the

writing of smart contracts.

The operations – i.e. Tezos transactions (including calls

to other contracts), contract creations and delegate setting –

will only be executed after the program returns. This prevents

reentrancy bugs (which are hard to spot and have costs millions

and provoked the hard fork on Ethereum after the DAO

attack). We will discuss contract interaction with an example

hereinafter (IV-C4).

The type of each instruction describes the states of the stack

before and after the instruction. For example, the instruction

DUP has type 'a:'S →'a:'a:'S meaning that when

starting from a stack whose top element has type int, the

duplication of the top element leads to a stack with one more

element of type int on top of it (i.e. int:int:'S). Thus

the type checking of the contracts ensure that no instruction

can failed because of a malformed stack.

While the type of the Michelson instruction is polymor-

phic, the type of contracts arguments and storage have to

be monomorphic. This is partly to keep the type checking

simple enough to be done efficiently: contract type checking

consumes gas and has to be efficient.

Rather than going into the details of all the language

instructions, we will provide here two programs examples. The

interested reader can find the full description of the language

in the Tezos documentation [12].

3) A voting contract: As a first example, we will describe

a voting contract. The use cases for such a contract range

from voting for your favourite supercomputer in a TV show,

to registering vote for important decisions in a decentralized

infrastructure. The first one is a bit simpler to implement than

the second as we don’t have to check the identities of the

voters, so we will focus on this: an open vote with a fee, to

determine the preference of the voters in a fixed list of choices.

In the following lines, we will present an abstraction of the

state of the stack with a comment (prefixed by #) after each

relevant block of code.

We start with a storage which holds the names that voters

are allowed to vote for, associated with the number of votes

they received. We start our program by declaring the type of

the storage: a map from string to int.

1 storage (map string int);

Then we specify the type of the parameter:

2 parameter string;

and now we can write the code of the contract. The contract

execution starts with the parameter paired on top of an empty

stack:

3 code{

4 # (name,storage)

First we verify that the caller send us enough token to be able

to vote. If not, we make the call fail.

5 AMOUNT;

6 # amount:(name,storage)

7 PUSH mutez 5000 ;

8 # 5000:amount:(name,storage)

9 IFCMPGT{PUSH string "stingy !" ;

FAILWITH}

10 {};

11 # (name,storage)

AMOUNT pushes on the stack the number of tokens received

from the contract caller, PUSH 'a cst pushes the given

constant cst of type 'a on the stack. IFCMPGT is a

macro which compares the two numbers on top of the stack

(removing them in the process) and if the first element was

greater it executes its first parameter, otherwise the second.

If payment is sufficient, we prepare the stack by duplicating

the pair holding the parameter and the storage, the first (name,

map) pair will be consumed by GET to obtain the current

number of votes, while the second will be used to produce the

new map.

12 DUP;

13 # (name,storage):(name,storage)

To get the value of interest from the storage we first destruct

the pair to get a stack with the key on top and the map beneath,

and then we apply the GET instruction.

14 UNPAIR;GET;

15 # (Some current | None):(name,storage)

We get the current count for the voted name or None if the

key was not in the map. If the count is some integer value,

we add 1 to this value, if not we fail because the vote is for

an unknown name.

1 IF_SOME

2 {PUSH int 1;ADD;SOME}

3 {PUSH string "Unknown supercomputer";

FAILWITH};

4 # (Some current+1):(name,storage)

We now reorder the elements to prepare the stack to use

UPDATE in order to update the map with the new count. DIP

allows to work on the element below the stack top, SWAP

exchanges the two top elements of the stack.

1 DIP{UNPAIR}; SWAP;

2 # name:(Some current+1):storage

3 UPDATE;

4 # updated storage

We get a new storage, that we pair with an empty list of

operations to match the return type of the contract, a pair (list

of operations, storage).

5 NIL operation ; PAIR

6 # (nil, updated storage)

7 }

This rather simple program can be extended in many ways.

For example, a deadline for the vote could be fixed by storing

the end date in the storage and comparing it to the value

pushed by NOW on the stack. Or we could grant the right

to add new names to the map for voters transferring a bigger

amount to the contract. Finally, we could store the addresses

of voters (obtained with the instruction SENDER) and reward

the voters who voted for the winner.

All these improvements are left as exercises for the inter-

ested reader.

4) Inter-contract calls: As stated before, to prevent reen-

trancy bugs, calls to other contracts are performed at the end

of the current contract execution, thus to emulate a procedure

call expecting a return data, inter-contract calls will have to

use callbacks.

Let us take as an example an insurance contract A, which

calls a meteorological oracle contract B, with a given param-

eter like a date to obtain a related data (say the hydrometry

of the given date). The contract A will pass to B a callback

identifier, like the insured address, B will now call A with

the relevant data and the callback identifier. The contract A

can now proceed to the refunding of the legitimate contracting

party depending on the data received from the oracle.

We start with a simple oracle which is a contract that just

encapsulates a map but guarantees that only a trusted source

– whose address is in the contract storage – can modify the

map.

For the sake of conciseness, we omit in this contract the

usual code allowing the oracle manager, whose key is stored

in the contract, to withdraw the tokens held by the contract. As

contract will probably be non-spendable in the future, meaning

the owner of the contract will not be able to transfer tokens

of the contract, only code will, this would freeze the tokens

associated to the contract.

The parameter given to the contract is either a new key-data

pair to be updated, or a request for the data matching a given

key.

1 parameter (or (timestamp :lookup_key)

2 (pair

3 (timestamp :lookup_key)

4 (nat :rain_level)));

and the storage is a map together with the manager key:

5 storage (pair

6 (big_map

7 (timestamp :lookup_key)

8 (nat :rain_level))

9 (address :oracle_manager)) ;

The code separates the parameter from the storage and then

checks with IF_RIGHT whether the call is an update (right

of the or type) or a client query (left of the or).

1 code {

2 UNPAIR;

3 # parameter:(map,oracle_addr)

4 IF_RIGHT { # feeding the oracle with data

5 # (timestamp,level):(map,oracle_addr)

For data update, we first check that the data are indeed

provided by the registered manager, and fail if it is not the

case:

6 DIP {

7 UNPAIR;SWAP;DUP;SENDER ;

8 # sender:oracle_addr:oracle_addr:map

9 ASSERT_CMPEQ; SWAP

10 # map:oracle_addr

11 };

12 # (timestamp,level):map:oracle_addr

The map is then updated with the provided values:

13 UNPAIR; DIP{SOME};UPDATE;

14 # map:oracle_addr

15 PAIR ; NIL operation ; PAIR

16 }

If the call is a request from a client we retrieve the data

from the map and then craft a call to the sender with this

value as parameter.

17 {

18 # Getting the data

19 DIP{DUP;CAR};GET;

20 # (Some level|None):(map,oracle_addr)

21 LEFT unit;

22 # (Left (Some level|None)):(map,

oracle_addr)

23 # preparing the reply to the caller

24 DIP {

25 SENDER;

26 CONTRACT (or

27 (option(nat :rain_level))

28 (unit));

29 ASSERT_SOME;

30 PUSH mutez 0

31 };

32 # param:0:sender_ctrct:(map,oracle_addr

)

33 TRANSFER_TOKENS ;

34 NIL operation; SWAP;CONS;PAIR

35 }

36 };

We can now define our insurance contract. Its parameter

type has to be the type expected by the oracle (The one used

in the oracle transfer). In this small example it is easy, but

for more general-purpose oracle interacting with more general

purpose client contract, the later won’t be able to have all

the same type, so the usual mechanism is to originate a proxy

contract whose type satisfies the oracle requirement and which

can relay the calls between the oracle and the client contract.

We will assume here that the insurance contract is issued for

a one-time insurance: given a rain level threshold at a certain

point in time, it will redeem one or the other of the registered

addresses of the contracting parties.

The contract can be called by anyone with Right Unit

to trigger the redeeming mechanism or by the oracle with

Left (Some level) (callback).

1 parameter

2 (or (option(nat :rain_level)) unit);

The storage holds the contract parameters: timestamp at

which the rain level should be checked, rain level threshold,

redeeming addresses and address of the oracle to consult.

4 storage

5 (pair

6 (pair

7 timestamp

8 (pair

9 (pair

10 (contract %under_key unit)

11 (contract %over_key unit))

12 (nat :rain_level %threshold)))

13 (contract %oracle_contract

14 (or

15 (timestamp :lookup_key)

16 (pair (timestamp :lookup_key) (

nat :rain_level))))

17);

The code inspects the given parameter, if the parameter is

Left (Some level) then we first check that the sender

is indeed the oracle and then proceed to the redeeming:

1 code

2 { UNPAIR;

3 IF_LEFT # callback

4 { DIP{DUP;CDR;ADDRESS;SENDER;

ASSERT_CMPEQ};

5 # OK it comes from the Oracle

6 ASSERT_SOME ;

7 #Ok the oracle has data for the

timestamp

8 DIP{DUP;CAR;CDR;UNPAIR;SWAP};

9 IFCMPLT {CAR %under_key} {CDR %

over_key};

10 # We selected contract which receive

tokens

11 BALANCE; UNIT ; TRANSFER_TOKENS;

12 # Setup the transfer, then rework

the stack to satisfy the return

type

13 NIL operation ; SWAP ; CONS ;

14 PAIR

15 }

Else the call triggers the call to the oracle.

16 { DROP; #dropping Unit

17 DUP;UNPAIR;CAR; #getting key

18 LEFT (pair (timestamp :lookup_key)

(nat :rain_level));

19 DIP{PUSH mutez 1000}; # pushing the

fee for the Oracle

20 TRANSFER_TOKENS; #calling the

oracle

21 NIL operation; SWAP; CONS; PAIR

22 }

23 }

D. Contract origination and call

To originate the voting contract for a vote on your favorite

supercomputer, we can use Alice’s account with the following

command:

t-c originate contract vote\

for alice transferring 0 from alice \

running ./vote.tz \

--init\

'{ Elt "Sierra" 0 ; Elt "Summit" 0 ;

Elt "Sunway" 0 ; Elt "Tianhe-2A" 0 }'\

--burn-cap 1

The elements of the storage have to be in alphabetical order.

Then we can vote for Summit, using the following transac-

tion:

t-c transfer 0.005 from bob to vote\

--arg '"Summit"' --burn-cap 1

If we issue the transaction with a 0.001 instead of 0.005,

the transaction will fail, so we will keep the 0.001tez but we

will loose the fees for the baker.

To test our Oracle/insurance example, we first originate the

oracle, as we need to initialise the insurance storage with the

KT1 address of the oracle. This address is generated when the

contract is originated.

The initial storage use the address of Alice, tz1_XXXX,

as oracle manager, meaning that only transactions initiated by

Alice can add data to the contracts map.

t-c originate contract oracle\

for alice transferring 0 from alice\

running ./oracle_ok.tz\

--init 'Pair { } "tz1_XXXX" ' --burn-cap 1

The origination receipt gives us the contract address, or we

can retrieve it later with the client:

t-c show known contract oracle

Let say the address of the contract is KT1_YYYY, we now

can originate our insurance:

t-c originate contract insurance \

for bob transferring 100 from bob\

running ./insurance.tz --init\

'Pair

(Pair "2019-05-07 23:22:25+00:00"

(Pair (Pair "tz1_AAAA" "tz1_BBBB") 10))

KT1_YYYY'

Alice’s account can feed the oracle contract with data:

t-c transfer 0 from bootstrap1 to oracle

--arg 'Right

(Pair "2019-05-07 23:22:25+00:00" 15)'

and we can check that the data is indeed in the storage of

the contract by inspecting it:

t-c get script storage for oracle

Finally anyone can trigger our insurance:

t-c transfer 0 from charlie to insurance

--arg 'Right Unit' --burn-cap 1

The receipt shows that:

• the insurance contract makes a transfer to the oracle

• the oracle makes a transfer back to the insurance contract

• the insurance contract makes a transfer to the registered

contracting address

GLOSSARY

Baker: entity responsible for selecting operations to produce

a block in Tezos

Block: set of operations, aggregated in the blockchain

Blockchain: distributed database formed as a list of blocks

Client: entity responsible for interacting with a node

Context: Ledger’s state (accounts balance, contracts, . . .)

Cycle: set of consecutive blocks

Delegate: entity to which an account has delegated stake

Endorser: seal of approval for a block

Liveness: mandatory property allowing the system to progress

Miner: entity responsible for selecting operations to produce

a block

Node: entity responsible for connecting to a Tezos network

Operation: transforms the context

Oracle: off-chain third party that can deliver data

Origination: operation to create an account that can contains

a contract or be delegated

PoS: Proof-of-Stake

Pow: Proof-of-Work

Roll: amount of tokens used to determine delegates’ rights

RPC: Remote Procedure Call

Self-amending: ability to update itself seamlessly

Smart contract: originated account which is associated to a

Michelson script

Stake: amount of token

Storage: blockchain data necessary to run a node

Sybil attack: take over the network by flooding malicious

identities

Token: unit of value

Tz1: Tezos implicit account address

KT1: Tezos originated account address

REFERENCES

[1] L. Goodman, “Tezos – a self-amending crypto-ledger,”
https://www.tezos.com/static/papers/white_paper.pdf, 2014.

[2] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”
https://bitcoin.com/bitcoin.pdf, 2008.

[3] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” http://gavwood.com/paper.pdf, 2014.

[4] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” self-published paper, August, vol. 19, 2012.

[5] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.
[6] J. R. Douceur, “The Sybil Attack,” in International workshop on peer-

to-peer systems. Springer, 2002, pp. 251–260.
[7] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and

J. Vouillon, “The OCaml system release 4.07: Documentation and
user’s manual,” Inria, Intern report, Jul. 2018. [Online]. Available:
https://hal.inria.fr/hal-00930213

[8] J. K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“Hacl*: A verified modern cryptographic library,” Cryptology ePrint
Archive, Report 2017/536, 2017, https://eprint.iacr.org/2017/536.

[9] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, C. Hritcu, J. Protzenko,
T. Ramananandro, A. Rastogi, N. Swamy, P. Wang, S. Z. Béguelin,
and J. K. Zinzindohoué, “Verified low-level programming embedded
in F*,” CoRR, vol. abs/1703.00053, 2017. [Online]. Available:
http://arxiv.org/abs/1703.00053

[10] The Coq Development Team, “The Coq Proof Assistant,”
http://coq.inria.fr.

[11] “The Tezos Developer Resources,” http://tezos.gitlab.io/master/ .
[12] The Tezos Development Team, “Michelson Reference Manual,”

http://tezos.gitlab.io/master/whitedoc/michelson.html.

https://www.tezos.com/static/papers/white_paper.pdf
https://bitcoin.com/bitcoin.pdf
http://gavwood.com/paper.pdf
https://hal.inria.fr/hal-00930213
https://eprint.iacr.org/2017/536
http://arxiv.org/abs/1703.00053
http://coq.inria.fr
http://tezos.gitlab.io/master/
http://tezos.gitlab.io/master/whitedoc/michelson.html

	I Introduction to Blockchains
	I-A Blockchains building blocks
	I-B Bitcoin: the electronic cash
	I-C Smart Contracts: decentralized platforms

	II Tezos specifics
	II-A Self amending blockchain
	II-B 'Proof-of-stake' based consensus algorithm
	II-C Strong emphasis on formal verification

	III Interacting with the Tezos Blockchain
	III-A Seting up a Tezos node (demo)
	III-B Using basic client commands (demo)
	III-C Using RPCs

	IV Tezos as a decentralized platform
	IV-A Limited execution time
	IV-B Data storage
	IV-C Michelson: Tezos' smart-contract programming language
	IV-C1 Design rationale
	IV-C2 A stack language with high-level data structures
	IV-C3 A voting contract
	IV-C4 Inter-contract calls

	IV-D Contract origination and call

	References

