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Abstract—This work shows how non-binary low-density parity-
check codes over F2p can be combined with probabilistic am-
plitude shaping (PAS) (Böcherer, et al., 2015), which combines
forward-error correction with non-uniform signaling for power-
efficient communication. Ultra-sparse low-density parity-check
codes over F64 and F256 gain 0.6 dB in power efficiency over
state-of-the-art binary LDPC codes at a spectral efficiency of
1.5 bits per channel use and a blocklength of 576 bits. The
simulation results are compared to finite length coding bounds
and complemented by density evolution analysis.

I. INTRODUCTION

Bandwidth-limited communication systems must use
higher-order modulations such as quadrature amplitude modu-
lation (QAM) or amplitude phase-shift keying (APSK) to pro-
vide the required spectral efficiency (SE) for high data rates.
In most standards, these modulation formats are combined
with uniform signaling, i.e., all points in the constellation are
transmitted with the same probability. This approach loses up
to 1.53 dB [1, Sec. IV] in power efficiency and lacks flexibility
because it restricts the choice of SEs to supported modula-
tion order and code rate combinations (modcods). Recently,
probabilistic amplitude shaping (PAS) was proposed [2] to
overcome these shortcomings: PAS closes the shaping gap and
allows seamless rate adaptation by adjusting the channel input
distribution. The enabling device is the distribution matcher
(DM) [3] which transforms uniform input bits into arbitrarily
shaped sequences. The practicality of this scheme has been
demonstrated in a number of optical field trials [4]–[6] and
has been proposed to 3GPP for inclusion in the upcoming
5G standard [7]. In all these works, either binary low-density
parity-check (LDPC), turbo or polar codes [8] have been
employed.

One important scenario in the upcoming standards is ultra
reliable low-latency communication (uRLLC) [9], which re-
quires forward error correction (FEC) with small blocklengths
and very low bit error rates to guarantee the required reliability.
Non-binary codes are particularly good codes in this regime
of operation [10]–[12].

The combination of PAS and non-binary codes was sug-
gested in [13]. Herein, the authors propose a new design for
circular QAM constellations that can be used with non-binary
codes over prime fields of order larger than two.

In this work, we propose a different strategy and consider
non-binary codes over the extension field Fq with q = 2p. We
illustrate the principle by ultra-sparse non-binary low-density
parity-check (NB-LDPC) [14], [15] codes, which have shown
an excellent performance on the binary-input additive white
Gaussian noise (biAWGN) channel for short blocklengths [16].
These codes are also known as cycle codes [17] and have
constant variable and check node degrees, where the former
is fixed to two. Codes over F2p also allow for low complexity
decoding using the Hadamard transform (HT) [18].

This paper is structured as follows. Sec. II reviews the
system model and introduces achievable rate expressions. In
Sec. III, we show how NB-LDPC codes can be combined
with PAS. Sec. IV provides numerical simulation results and a
comparison with binary LDPC codes. We conclude in Sec. V.

II. PRELIMINARIES

A. System Model

Consider transmission over a real-valued additive white
Gaussian noise (AWGN) channel

Yi = Xi + Zi (1)

for i = 1, . . . , n channel uses. The realizations for the channel
input Xi are taken from a scaled M = 2m-ary amplitude shift
keying (ASK) constellation X = {±1,±3, . . . ,±(M − 1)}
such that E

[
X2

i

]
= 1. The results extend directly to QAM,

where we use ASK for the in-phase and quadrature trans-
mission. The noise Zi is a Gaussian random variable with
zero mean and variance σ2. The signal-to-noise ratio (SNR)
is 1/σ2. As the channel is memoryless, we drop the index i
and denote the governing channel law as pY |X . The mutual
information maximizing distribution under an average power
constraint is a zero mean Gaussian input X with unit variance,
and it yields the capacity expression

CAWGN(SNR) =
1

2
log2(1 + SNR). (2)

To approach CAWGN with discrete signaling, either geometric
shaping (GS) or probabilistic shaping (PS) can be employed
to mimic a Gaussian shape. In [19], we demonstrated the
superiority of PS for practical coded modulation scenarios, and
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we use PAS therefore. Numerical comparisons in [2, Table I]
show that Maxwell-Boltzmann (MB) distributions [20]

PX(x) ∝ exp(−νx2) (3)

are nearly optimal. They are also natural choices for power
efficient communication, as they are the solution to the prob-
lem of minimizing the average power of the channel inputs
subject to an entropy constraint.

An achievable rate for symbol-metric decoding (SMD) is

RSMD(SNR;PX) = I(X;Y ) (4)

where I(X;Y ) is the mutual information between the channel
input X and channel output Y . To use binary codes, we label
each constellation point x ∈ X with an m-bit binary label, i.e.,
β : X → {0, 1}m and β(x) = B1B2 . . . Bm = B. A binary
reflected Gray code (BRGC) [21] usually performs well. An
achievable rate for bit-metric decoding (BMD) is given by [22]

RBMD(SNR;PX) =

[
H(B)−

m∑
i=1

H(Bi|Y )

]+
. (5)

We denote the Shannon limits for (2), (4) and (5)
for a fixed SE as SNRCAP, SNRSMD and SNRBMD,
i.e., RSMD(SNRSMD;PX) = RBMD(SNRBMD;PX) =
CAWGN(SNRCAP).

B. Distribution Matching

A DM [3] transforms uniformly distributed bits into shaped
symbols. In our setup, we employ a fixed-to-fixed length
DM which maps k input bits to n output symbols from the
amplitude set A of the M -ASK constellation. The mapping is
invertible, so the input can be recovered from the output. Both
the desired distribution PA and the output length n serve as
an input parameter to the DM. The matcher rate is

Rdm = k/n

[
bits

output symbols

]
.

III. NON-BINARY LDPC CODES OVER Fq WITH PAS

An NB-LDPC code C is defined as the nullspace of the
sparse parity-check matrix H of dimension mc × nc where
the non-zero entries hji of H are taken from the finite field
Fq , i.e., C =

{
c ∈ Fnc

q : cHT = 0
}

. The parity-check matrix
H can be represented by a bipartite graph, called the Tanner
graph [23]. Every codeword symbol ci is represented by one
of the nc variable nodes Vi in the graph. The mc linear
constraints are represented by check nodes Cj . If the edge
label hji is non-zero, then there is an edge between Vi and
Cj . Variable and check node Vi and Cj have degree dv,i and
dc,j , respectively, where the degree specifies the number of
associated edges. In the following, we use a special class of
NB-LDPC codes, namely ultra-sparse regular LDPC codes,
which have a constant variable node degree of dv,i = dv = 2
and a constant check node degree dc. Their design rate is
therefore 1−2/dc. Previous works have shown that this ultra-
sparse structure facilitates the design of graphs with a large

girth [24], which is the length of the smallest cycle in the
bipartite graph and important for iterative decoding. Although
their minimum distance scales only logarithmically with the
blocklength [16, Sec. IV-E], numerical simulation results show
lower error floors than their binary counterparts. We assume
a probability-domain based decoding.

A. PAS with NB Codes: Rate (m− 1)/m

The PAS system model is depicted in Fig. 1. It exploits
the symmetry property of the optimal input distribution PX

to factorize the random variable X into independent random
variables referring to the amplitude and sign (amplitude-sign
factorization), i.e., PX(x) = PA(|x|)PS(sign(x)). The sign
distribution PS is uniform on S = {−1,+1}, while PA is
non-uniform on the amplitude set A = {1, 3, . . . , 2m − 1}.
See [2, Sec. III-IV] for further details.

We first use Rc = (m − 1)/m codes with a 2m-ASK
constellation. In Fig. 1, this corresponds to γ = 0. The DM
maps k data bits to n amplitudes. The FEC encoder generates
redundancy, which is mapped to the n signs. FEC encoding is
systematic, to preserve the amplitude distribution imposed by
the DM. The combination of an amplitude and a sign results
in one channel input symbol. The n channel input symbols
can be represented by mn bits, which requires an NB code
with blocklength nc = (nm)/p.

Each amplitude requires (m− 1) bits for its representation
and we require p = `(m−1) when 2m-ASK PAS is combined
with NB codes over Fq . The variable ` ∈ N defines the
number of amplitudes in A which are mapped to one Fq

symbol. We denote this mapping as

βA : A` → Fq. (6)

The amplitude part has a size of kc = n/` symbols and is
collected in vector u ∈ Fkc

q . Systematic encoding with G =(
I P

)
yields the parity part p = uP of (1− c)nc symbols

that are approximately uniformly distributed [13, Theorem I].
We will therefore assume at the decoder that the signs are
uniformly distributed. Using the inverse of the mapping

βS : {0, 1}p → Fq (7)

we relate each parity symbol to a sign sequence.
For the decoder input we need to calculate the vectors

Pi =


PCi|Y (0|y)
PCi|Y (1|y)

...
PCi|Y

(
αq−2|y

)
 , i = 1, . . . , nc (8)

where α refers to a primitive element of Fq , i.e., Fq =
{0, 1, α, . . . , αq−2}. The value PCi|Y (c|y) denotes the proba-
bility that the i-th codeword symbol is c, when y was received.

We need to distinguish two cases for the soft-input vectors
Pi depending on whether the codeword symbol ci ∈ Fq refers
to an amplitude (6) or sign mapping (7). Let yA

i = (y1, . . . , y`)
be the vector of all received symbols that resulted from the
transmission of the amplitudes associated with the i-th code-
word symbol. Similarly, the vector yS

i = (y1, . . . , yp) refers



data bits DM A1. . .An × X1 . . . Xn

βA(·) P
0 → −1
1 → 1

/
k

/
γn

βS(·)

/
n/` amplitude

symbols

/ β−1
S (·)

(1−γ)n
p

parity symbols

∆

Fig. 1. System model of PAS for NB Fq codes and q = 2p.

to the received symbols that resulted from the transmission of
the signs associated with the i-th codeword symbol.

a) Amplitude Mappings: For i = 1, . . . , kc and a =
(a1, . . . , a`) = β−1A (c), assuming uniform signs, the demapper
calculates the metric

PCi|Y (c|yA
i ) ∝ PCi,Y (c,yA

i ) = PAY (β−1A (c),yA
i )

=
∏̀
j=1

PAY (aj , yj)

=
∏̀
j=1

∑
s∈{±1}

PXY (ajs, yj)

=
∏̀
j=1

1

2
PA(aj)

∑
s∈{±1}

pY |X(yj |ajs). (9)

b) Sign Mappings: For the parity part i = kc +1, . . . , nc
and s =

(
s1, . . . , sp

)
= β−1S (c), assuming uniform signs, the

demapper calculates the metric

PCi|Y (c|yS
i ) ∝ PCi,Y (c,yS

i ) = PSY (β−1S (c),yS
i )

=

p∏
j=1

PSjY (sj , yj)

=

p∏
j=1

∑
x∈X :

sign(x)=sj

PXY (x, yj)

=

p∏
j=1

1

2

∑
a∈A

PY |X(yj |asj)PA(a). (10)

We illustrate the setting for (m − 1)/m codes and a 2m-
ASK constellation in Fig. 2 for m = 3. We consider a code
over F16 (p = 4) and a blocklength of three symbols. Then,
each of the two symbols in the information part represents
` = 4/(3 − 1) = 2 amplitudes. The last codeword symbol
forms the parity part and is mapped to four sign bits.

B. PAS with NB Codes: Rates Larger Than (m− 1)/m

As for the binary case, PAS can also be operated with
non-binary codes of rates larger than (m − 1)/m. In this

c1 c2 c3

u p

A1, A2

yA
1 = (y1, y2)

A3, A4

yA
2 = (y3, y4)

S1, S2, S3, S4

yS
3 = (y1, y2, y3, y4)

Fig. 2. Illustration how the codeword symbols of a F16 code are associated
with amplitudes and signs for 8-ASK with PAS. For the codeword length of
3 symbols, four channel inputs Xi = AiSi, i = 1, . . . , 4 can be generated.

case, (γn)/p information symbols are used as signs, where [2,
Sec. IV-D]

γ = 1− (1− c)m. (11)

This means (9) must only be applied for the first n/` variables
nodes (nodes associated with amplitude mappings) and the
remaining n/p variable nodes (nodes associated with sign
mappings) are initialized with (10).

The overall transmission rate of a PAS transmitter is there-
fore

Rt = Rdm + γ (12)

and the large flexibility in supported SEs is achieved by using
different DM rates Rdm for the same FEC.

IV. FINITE LENGTH SIMULATIONS

We now present simulation results for ultra-sparse NB-
LDPC codes over F64 and F256. The considered codes are
short, so we must account for the rate loss of the DM [3],
which is

Rloss = H(PA)− k/n. (13)

To obtain a desired rate Rt and to mitigate the rate loss,
we tune the parameter ν of the MB distribution PA(a) ∝
exp(−a2ν), a ∈ {1, 3, . . . ,M − 1} to support the desired rate
Rdm = Rt − γ.

A. Finite Length Bounds

To benchmark the finite length performance we use Shan-
non’s sphere packing bound (SPB) [25] on the average frame



9 10 11 12 13
10−6

10−5

10−4

10−3

10−2

10−1

100

0.63 dB

SNR [dB]

FE
R

SPB

RCB

NB-LDPC GF(64) uniform

NB-LDPC GF(64)

NB-LDPC GF(256)

B-LDPC

Fig. 3. Simulation results of suggested NB-LDPC coding scheme for 8-ASK,
Rt = 1.5 bpcu and binary blocklength of nc,bin = 576 bits.

error rate (FER) PB and Gallager’s random coding bound [26,
Theorem 5.6.2]. The latter is

E [PB] ≤ 2−nEG(Rt,PX) (14)

where the Gallager exponent is calculated as

EG(Rt, PX) =

max
ρ∈[0,1]

− log2

 ∞∫
−∞

(∑
x∈X

pY |X(y|x)
1

1+ρPX(x)

)(1+ρ)

dy

−ρRt.

The distribution PX is the one chosen to guarantee the desired
SE Rt.

B. Numerical Results

We compare the FER of our NB-LDPC codes with the
binary LDPC codes suggested for 5G by Qualcomm [27].
The latter codes are protograph-based [28] and constructed
via liftings from a set of three base matrices for low, medium
and high code rates. These base matrices have two punctured
(state) and degree one variable nodes. This construction yields
a significant performance improvement in the waterfall re-
gion [28]. Two hundred belief propagation (BP) iterations were
used. The codes were derived from the high-rate basematrix
of the proposal [27] and have girth 4 (nc,bin = 576, Rc = 3/4)
and 6 (nc,bin = 768, Rc = 3/4; nc,bin = 1008, Rc = 5/6).

The non-binary LDPC codes were constructed from pro-
tographs of the form

[2 2 . . . 2︸ ︷︷ ︸
dc/2

]

via cyclic liftings and a progressive edge-growth (PEG)-like
algorithm [29]. All constructed matrices have girth 8. The
coefficients were optimized row-wise by following the binary
image approach of [16]. As in the binary case, we performed
a maximum of 200 BP iterations for decoding. The parameters
are summarized in Table I.
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Fig. 4. Simulation results of suggested NB-LDPC coding scheme for 8-ASK,
Rt = 2.0 bpcu and binary blocklength of nc,bin = 768 bits.

Fig. 3 shows simulation results for a blocklength of nc,bin =
576 bits and Rt = 1.5 bpcu. We first compare two F64 codes
(nc = 96 symbols), where the green line with squares refers
to the shaped scenario with a rate 3/4 (dc = 8) code, whereas
the orange line with triangles is its uniform counterpart of
rate 1/2 (dc = 4). The shaped case clearly improves over the
uniform one. We also show a curve for a F256 code of rate 3/4
which has almost the same performance as the F64 version.
These results are complemented by a Monte Carlo density
evolution (DE) analysis which yields asymptotic decoding
thresholds of 9.54 dB (uniform), 8.76 dB (shaped, F64) and
8.79 dB (shaped, F256). The latter two thresholds only exhibit
a gap of about 0.3 dB to the respective Shannon limit (cf.
Table I). Comparing both NB approaches to the binary LDPC
code, we see an improvement of 0.63 dB at a FER of 10−3.
The same DM with the same shaping parameters is used for
both settings. We emphasize that the gain is not due to the
different decoding metrics (BMD vs. SMD) as suggested by
the asymptotic Shannon limits in Table I.

Fig. 4 shows simulation results for nc,bin = 768 bits and
Rt = 2.0 bpcu. As before, we see a clear improvement of
0.35 dB over the binary LDPC code.

Finally, Fig. 5 depicts the performance for nc,bin = 1008 bits
and Rt = 2.75 bpcu. Here, we use a 16-ASK constellation and
code rate 5/6. The observations from Figs. 3 and 4 also carry
on to higher SEs.

V. CONCLUSION

In this paper, we showed how to combine non-binary
codes over F2p with PAS. Numerical simulation results with
ultra-sparse high order NB-LDPC codes show a significant
improvement of up to 0.63 dB over state-of-the-art binary
LDPC codes combined with PAS for the shortest considered
blocklength of 576 bits at a FER of 10−3. For future research,
we plan to tackle the issue of code design using a protograph
based approach to take the different variable node input prob-



TABLE I
SUMMARY OF THE SHAPED MODES USED IN THE NUMERICAL SIMULATION RESULTS.

Mode M Rc k/n Rdm γ SNRCAP [dB] SNRSMD [dB] SNRBMD [dB]

8-ASK, Rt = 1.5 bpcu 8 3/4 240/192 1.25 1/4 8.451 8.462 8.484
8-ASK, Rt = 2.0 bpcu 8 3/4 448/256 1.75 1/4 11.761 11.898 11.920
16-ASK, Rt = 2.75 bpcu 16 5/6 609/252 2.4167 1/3 16.460 16.497 16.512

17 18 19 20
10−6
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10−3

10−2

10−1

100

0.36 dB

SNR [dB]

FE
R

SPB

RCB

NB-LDPC GF(64)

B-LDPC

Fig. 5. Simulation results of suggested NB-LDPC coding scheme for 16-ASK,
Rt = 2.75 bpcu and binary blocklength of nc,bin = 1008 bits.

ability mass functions (PMFs) into account (see (9), (10)). For
instance, we combine the approaches of [30]–[32]. Additional
work should also focus on code designs for smaller field sizes
to decrease the decoding complexity, see e.g., [12].
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[3] P. Schulte and G. Böcherer, “Constant Composition Distribution Match-
ing,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434, Jan. 2016.
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