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Abstract—The Internet of Things (IoT) paradigm makes the
Internet more pervasive, interconnecting objects of everyday
life, and is a promising solution for the development of next-
generation services. Smart cities exploit the most advanced
information technologies to improve and add value to existing
public services. Applying the IoT paradigm to smart cities is
fundamental to build sustainable Information and Communi-
cation Technology (ICT) platforms. Having citizens involved
in the process through mobile crowdsensing (MCS) techniques
unleashes potential benefits as MCS augments the capabilities of
the platform without additional costs. Recruitment of participants
is a key challenge when MCS systems assign sensing tasks to the
users. Proper recruitment both minimizes the cost and maximizes
the return, such as the number and the accuracy of accomplished
tasks. In this paper, we propose a novel user recruitment policy
for data acquisition in mobile crowdsensing systems. The policy
can be employed in two modes, namely sociability-driven mode
and distance-based mode. Sociability stands for the willingness
of users in contributing to sensing tasks. Performance evaluation,
conducted in a real urban environment for a large number of
participants, reveals the effectiveness of sociability-driven user
recruitment as the average number of recruited users improves
by at least a factor of two.

I. INTRODUCTION

The Internet of Things (IoT) paradigm envisions everyday
life objects to be “smart”, to communicate with each other
and with the users and to enable pervasive and ubiquitous
computing [1]. IoT devices are uniquely identifiable and
are equipped with communications, computing and sensing
capabilities. Taking advantage of the variety and the potentially
enormous volume of the data generated by these devices
will foster the development of innovative applications in
a broad range of domains. Applying the IoT paradigm to
urban scenarios is of special interest to support the smart
cities vision [2], [3]. Smart cities aim at using ICT solutions
to improve the quality of life of citizens by provisioning
innovative solutions for public services such as healthcare,
public safety and smart transportation among others [2], [4].
The IoT paradigm is the candidate building block to develop
sustainable ICT platforms for smart cities. Including citizens in
the loop with crowdsensing approaches augments capabilities
of existing infrastructures without additional costs and is proved
to be a win-win strategy for urban applications [5].

Mobile crowdsensing (MCS) has emerged in the recent years,
becoming an appealing paradigm for sensing data. In MCS,
users contribute data generated from sensors embedded in

mobile IoT devices such as smartphones, tablets and wearables.
The aggregated information is then delivered to a collector [6].
The pervasive diffusion of smartphones and wearables along
with the rich set of built-in sensors in these devices, are the
primary enablers leading to the success of MCS paradigm.
Accelerometer, gyroscope, GPS, microphone and camera are
only a representative set of sensors that have facilitated the
development of a number of applications in a wide range
of scenarios, including health care, environmental and traffic
monitoring and management [7].

Data acquisition in MCS can be either participatory or
opportunistic [7]. In opportunistic sensing systems, the user
involvement is minimal: sensing decisions are application-
or device-driven. In participatory sensing systems, users are
actively engaged in the sensing process. The users are recruited
by a central platform, which dispatches sensing tasks. Users
can decide which request to accept and, upon acceptance, they
have to accomplish the tasks by sensing and reporting data.
From one point of view, opportunistic sensing systems lower
the burden to user participation as devices or applications are
responsible to take sensing decisions. Conversely, participatory
sensing systems are tailored to crowdsensing architectures with
a “central platform”, which facilitates system control operations
such as task assignment and rewarding to compensate user
contribution. Participatory systems can also mitigate some
of the privacy concerns about enabling opportunistic data
collection.

One of the key challenges in MCS is user recruitment. In
urban environments, the high number of potential contributors
calls for the design of efficient recruitment policies. Proper
policies allow selection of well-suited users able to fulfill
sensing tasks with high accuracy while minimizing the system
costs. Such costs have a double nature. On one hand, the
central platform organizes and dispatches tasks and thus
sustains a monetary cost to recruit and reward users for their
contribution. On the other hand, users also sustain costs for
their contributions such as spending energy from batteries for
sensing and eventually using their data subscription plan for
reporting.

In this paper, we define a novel user recruitment policy
for data acquisition in MCS systems for smart cities. The
proposed policy leverages two criteria, i) user sociability, which
is an estimate of the willingness of users to participate in and
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Figure 1. System scenario

contribute to sensing tasks, and ii) the spatial distance between
users and tasks. The policy can be employed in two modes: the
social-driven recruitment mode (SDRM) and the distance-based
recruitment mode (DBRM). The latter assigns sensing tasks to
the users on the sole basis of their distance to the location of
the task. The former also includes user sociability during the
selection process. Highly sociable users share many interests
with friends and are more active, i.e., they are constantly using
their devices online, which makes them excellent candidates
for data acquisition. We evaluate the performance of SDRM
via simulations in a real urban environment and with a large
number of participants. Through simulations, we have shown
that sociability-driven user recruitment improves the average
number of recruited users by at least a factor of two. Moreover,
SDRM always outperforms DBRM in terms of number of
accomplished tasks. Even in the extreme case of complete
failure of DBRM, SDRM can successfully accomplish 10% of
the tasks.

The rest of the paper is organized as follows. Section II
presents background on MCS and motivates the need for social-
based recruitment policies. Section III details the proposed
methodologies for user recruitment. Section IV provides
performance evaluation and Section V concludes the work
and outlines future research directions on the topic.

II. BACKGROUND AND MOTIVATION

MCS data acquisition platforms are systems in which
users contribute information from IoT mobile devices. Such
information is then delivered to a collector, typically located
in the cloud, to be at disposal of the organizer of the sensing
campaign for processing and analysis. Fig. 1 illustrates the
main elements of a typical MCS system.

To organize a MCS campaign, the organizer, such as
a government agency, an academic institution or business
corporation, sustains costs to recruit and compensate users
for their involvement. Therefore, devising a proper recruitment
policy is essential. On one hand, it allows the organizer to
minimize the expenditure. On the other hand, it helps to choose
those users that will successfully carry out the campaign.
For example, in the public safety context, selecting users to
maximize the trustworthiness in data acquisition is critical [8],
[9].

Several research efforts investigate task assignment and user
recruitment in MCS systems, also called participant selection.
The majority of the proposed policies aim at minimizing the
sensing cost for the organizer while guaranteeing a certain
level of system accuracy, such as coverage of the sensing
area [10], [11], [12], [13]. Reddy et al. [10] propose a
recruitment policy which selects the participants on the basis
of their availability in collecting data in a given geographical
area and at a defined time. In the context of opportunistic
sensing systems, Karaliopoulos et al. formulate an optimization
problem for cost minimization and predict user location with
deterministic and stochastic mobility models [11]. With the
objective of minimizing energy consumption to report sensed
data, piggyback crowdsensing techniques can be employed [12],
[13]. More precisely, piggyback crowdsensing leverages users’
phone call and other application usage to upload gathered
information [14]. The authors of [12] propose three greedy
algorithms to find the minimum number of participants to
guarantee a minimum coverage level, whereas the authors
of [13] exploit historical records to predict user call and thus
determining coverage of sensing area. He et al. [15] not only
propose an efficient algorithm for time-dependent assignment of
tasks, but they also devise a novel pricing mechanism to reward
users based on bargaining theory. Unlike the aforementioned
works, Liu et al. [16] propose an energy-efficient participant
selection scheme, which relates the residual battery charge of
the users to their willingness to contribute. The scheme ensures
the quality of sensed information in terms of the amount of
collected data per task.

The closest work to our study exploits social relationships to
establish a trusted route between service requester and provider
parties [17]. More specifically, the service requester is interested
in acquiring information on a given phenomenon. If the service
provider belongs to the same community of the requester, it
receives the sensing task. Otherwise, the task is offered to
users belonging to overlapping communities until it reaches
the service provider. Social ties between the users within each
community guarantee the trust of the passage of task offers
among communities.

Given the state of the art, in this paper, we investigate the
impact of user sociability on task recruitment. Sociable users
are more active and use their devices online intensively [18].
As a result, they are excellent candidates for data acquisition.
Moreover, the majority of existing works only consider the
cost that the platform/organizer to compensate/reward users for
their contribution, but do not capture the cost for recruitment
itself.

III. USER RECRUITMENT POLICY

Recruitment policies define the criteria for user eligibility
to contribute to crowdsensing campaigns. The proposed policy
exploits user sociability and the distance between the users and
the sensing task as selection criteria. Table I lists description
of symbols used to define the user recruitment policy.

The platform/organizer of the crowdsensing campaign C is
interested in acquiring data from given points of interest in the



Table I
SYMBOLS LIST AND DESCRIPTION

SYMBOL DESCRIPTION

C Crowdsensing campaign
w Task w
W Set of tasks | w ∈ W
u User u
U Set of users | u ∈ U

t Duration of a single task t
T Duration of the sensing campaign
l Location of users and tasks

du,w Distance (m) between user u and task w
Dmax Maximum distance between eligible users

p Popularity factor associated to each location
s Sociability factor associated to each user
a Task acceptance factor
N Minimum number of users to mark a task as accomplished
C Set of coordinates <latitude, longitude, altitude> of city layout

city, also called the sensing terrain. The organizer defines a set
of sensing tasks W = {w1, w2, . . . , wW } and each task wi is
described by its location li and time duration ti, i.e. wi(li, ti).
The location l is defined in terms of latitude and longitude
and the time duration t is given in timeslots. As a result, the
duration T of the campaign C is as follows:

T =
∑
i∈W

ti. (1)

Let U = {u1, u2, . . . , uU} be the set of users potentially
employed to accomplish the tasks. Each user ui is described
in terms of their current location and sociability factor, i.e.
ui(li, si). It is worthwhile mentioning that both user location
and sociability factor are time dependent and si can assume
real values in [0, 1]. Practically, user sociability can be defined
in terms of the amount of data users consume or the time
they spend using mobile social network applications, or their
combination [19]. Sociability is an essential parameter to
consider for user recruitment. Users with high sociability are
more active and use their devices online intensively, which
makes them excellent candidates during the selection process.
Moreover, they tend to visit more places and get connected
to more users, which further increases their mobile social
activity [18].

To assess sociability, it is necessary to determine the data
usage or the total time that a user spends on a particular social
network application in a single session. Once acquired, the
instantaneous values are averaged by the number of sessions
in a time window, e.g., an hour or a day. The actual user
sociability is then determined through the Exponential Weighted
Moving Average filter (EWMA) over the values obtained in
each time window. This allows tuning and eventually limits
the contribution of older values. It is worth mentioning that
the sociability metric determined with this method is a relative
metric based on a normalized value of user’s sociability by the
maximum sociability value in the network.

During each timeslot, the recruitment policy selects users
with highest recruitment factor r from the set U . For each user

i, the recruitment factor is defined as follows:

ri = α · 1

dui,wj

+ (1− α) · si; (2)

where dui,wj
is the distance between the location of user i

and sensing task wj , j ∈ W . The Haversine formula can be
employed to compute dui,wj [20]. Users located farther than
Dmax from the location of a sensing tasks are not considered
eligible for being selected for the corresponding sensing task.
Indeed, the closer the users are to the sensing task location,
the higher the accuracy in capturing the phenomenon is. The
parameter α is a balancing coefficient which can take a real
value in [0, 1]. Having set α = 1, the recruitment is agnostic
of the sociability factor and we define this mode as distance-
based recruitment mode (DBRM). Otherwise, it operates in
sociability-driven recruitment mode (SDRM).

To recruit users, the campaign organizer sustains a cost.
For each request sent to the users, the cost c associated to
the task w is equal to 1 unit of cost. For example, the costs
could be financial or expressed in terms of the bandwidth
used to broadcast recruitment messages. The objective of
the organizer is to minimize the total cost sustained while
maximizing the number of task accomplished. The tradeoff
between the recruitment cost and the number of accomplished
tasks defines the efficiency of the recruitment policy.

Users can decide whether to accept or refuse the task.
Acceptance is based on user sociability. Users with high
sociability factor s are more likely to accept the task. The
acceptance factor a is modelled as a logarithmically increasing
function:

a = log(1 + s). (3)
The logarithmic description of the relation between a and
s allows us to perform a fine-grain comparison of the task
acceptance probability of users with low versus high sociability
ratings. For high sociability users, the acceptance factor a will
assume a value very close to 1. For low sociability users, a
small difference between two sociability factors s1 and s2
will correspond to a considerable difference in the respective
acceptance factors a1 and a2.

Upon acceptance, users contribute as long as they remain
within a distance closer than Dmax. In such a case, they are not
contacted to contribute to the same task any longer. Moreover,
a user refusing participation in a current timeslot will always
be contacted in subsequent timeslots if the user is eligible for
selection.

System-level accuracy increases if the organizer does not
recruit persistently the same group of users to accomplish a
task [21]. For this reason, each task w acquires the status
accomplished if, during t, a given number N of individual
users are involved and contribute by reporting data. During ti,
whenever it is not possible to recruit a sufficient number of
users, the task i is marked as failed.

Like in social networks, some locations in cities are hubs,
i.e., they attract a large number of individuals, whereas others
do not [22]. To capture this phenomenon, each location l is
assigned a popularity factor p, and p can take real values in
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Figure 2. User recruitment in social-driven and distance-based modes

the range [0, 1]. Practically, tasks associated to locations with
high popularity factor should require a high number of users
to successfully complete the task. In addition to the location
popularity, also the time dimension plays a crucial role in
defining N . Longer tasks require higher number of users than
short ones to guarantee good levels of accuracy. As a result,
the number of users Ni necessary to accomplish the task i out
of U is calculated as shown in Eq. (4).

Ni = pi · (ti/T ) · U. (4)
Fig. 2 shows an example of user recruitment with the two

modes, SDRM and DBRM. Three users, namely u1, u2 and
u3, are within the maximum distance radius Dmax. Given all
users are highly sociable, all of them are expected to accept
the task. However, due to being very close to Dmax, u3 has
a corresponding recruitment factor r3 close to 0. Hence, the
user is not contacted under DBRM. Instead, under SDRM, the
sociability factor mitigates the bad score given by the distance,
and u3 is contacted for recruitment. As a result, the organizer
sustains a cost equal to 3 and 2 units with SDRM and DBRM,
respectively.

IV. PERFORMANCE EVALUATION

This section illustrates performance evaluation of the pro-
posed user recruitment policy for data acquisition in mobile
crowdsensing systems.

To evaluate and assess efficiency of the proposed recruitment
policies, we have built a custom simulator where users move
in a real city setting in the City of Luxembourg. It covers
an area of 1.11 km2 and is the home of many national and
international institutional buildings. The information about the
streets of the city is obtained from a crowdsourced application
which provides free access to street-level maps1 in form of a
set of coordinates C containing <latitude, longitude, altitude>,
see Fig. 3(a).

The participants move along the streets of the city and
their original location is randomly assigned from the set of
coordinates C. The number of participants ranges from 1 000 to
10 000, which corresponds to nearly one tenth of the population
of Luxembourg (107 340 inhabitants as of late 2014). For
simplicity, the start time of the walk is uniformly distributed
between 8:00 AM and 1:30 PM. Each participant has only one
mobile device and walks for a period of time that is uniformly

1DigiPoint: http://www.zonums.com/gmaps/digipoint.php

Table II
SIMULATION SETTINGS

PARAMETER VALUE

Number of users [1 000 - 10 000]
Overall evaluation period 8:00 AM - 2:00 PM
Time of travel per user Uniformly distributed in [10, 30] min
Average user velocity Uniformly distributed in [1, 1.5] m/s

Timeslot duration 1 minute
Task duration {20, 25, 30, 35, 40, 45, 50} timeslots
Number of tasks 25
Dmax 30 m
Popularity factor p {0.2, 0.4, 0.6}

distributed in [10, 30] minutes with an average speed uniformly
distributed in [1, 1.5] m/s. The participants push data to the
collector while walking. Once the period of walking ends, they
stop moving and contributing. As a consequence, users can
contribute for only a small portion of the day, which allows
us to study the system performance under a relatively worst
case scenario.

As an assumption, the maximum distance Dmax within which
users are considered eligible for selection is set to 30 meters.
A set of 25 tasks is deployed in different locations of the city,
see Fig. 3(b) for the details. Each task lasts 30 timeslots and
each timeslot corresponds to 1 minute. For simplicity, in this
first set of experiments the popularity factor of each location
is fixed and set equal to 0.2. Table II lists the details on the
simulation settings.

Having fixed the number of users during the evaluation period
to 10 000, Fig. 4 shows the number of contacted and recruited
users per task. The number of contacted users corresponds to the
cost the system sustains for recruitment. The SDRM achieves
a higher number of recruited users, but with a higher cost. In
terms of number of recruited users, SDRM improves DBRM
by a factor of two with an increase of the cost of around 35%.
This is because users that are located at distant location are
contacted if their sociability factor is high. Conversely, under
the DBRM such users are never eligible for selection. Indeed,
being far from the sensing task location, their recruitment factor
is low. As a result, the number of effectively recruited users is
low if compared with the number of users recruited in SDRM.
Fig. 5 shows the average number of contacted and recruited
users per task. SDRM outperforms DBRM under the current
evaluation setting. Indeed, the number of accomplished tasks
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Figure 5. Average number of users contacted and recruited per task

is respectively 7 and 0 for the two modes.
To better understand the number of completed tasks under

each mode, Fig. 6 details the number of unique users assigned
to each task. The gray line plots N , the minimum number
of users necessary to denote a task as accomplished. N is
computed by (4) and is equal for all the tasks as the location
popularity and the task duration have been fixed. Consequently,
partial relaxation of any of the constraints on task completion
would increase the number of accomplished tasks. As it is
possible to see, SDRM accomplishes 7 tasks out of 25 and 3
more are close to completion. On the other hand, DBRM does
not accomplish any task although one is close to completion.
Only the campaign organizer can compare the tradeoff between
cost increase and return, and pursue proper measures, e.g., to
reduce the cost of user recruitment.

The previous experiments were conducted having fixed the
location popularity of the tasks. Fig. 7 shows the number
of accomplished tasks with increasing popularity factor in
the system. For analysis, all the tasks are set with the same
popularity factor p where p ∈ {0.2, 0.4, 0.6}. As expected, for
low values of p, the SDRM always outperforms the DBRM,
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Figure 7. Accomplished tasks with increasing location popularity

and the number of accomplished tasks decreases with the
increase of p. Indeed, p is one of the parameters defining N ,
the minimum number of users necessary to denote a task as
accomplished and the relation between p and N is proportional,
see (4).

The following analysis aims to assess the impact of the total
number of users in the system. For the experiment, the task
duration is set to 40 timeslots and the popularity factor is set to



1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
0

20

40

60

80

100

36

28

36

24 24

32

20

36

20

28

16

8
4 4

0
4

0
4

0
4

Number of Users

Pe
rc

en
ta

ge
of

A
cc

om
pl

is
he

d
Ta

sk
s

SDRM DBRM
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0.2 for all the tasks. Fig. 8 shows that both modes are insensitive
to the number of users. From a global perspective, indeed, high
system performance is guaranteed if a high number of users find
themselves close to the location of the sensing tasks when they
are deployed. The sole exception is the DBRM, as when the
number of users is medium-low, the number of accomplished
tasks decreases with the increase of the population. A low
total number of users in the system reduces N , which is the
threshold defining tasks as accomplished, see (4).

V. CONCLUSION

Recruitment policies define the criteria for user eligibility
to contribute data to mobile crowdsensing systems. Proper
recruitment is important as it allows to minimize the cost
sustained by the system and maximizes the return, such as the
number and the accuracy of accomplished tasks.

In this paper we have proposed a novel user recruitment
policy for data acquisition in mobile crowdsensing systems.
The policy can be employed in two modes. The distance-based
recruitment mode (DBRM) recruits users on the sole basis of
their distance with the sensing target. The sociability-driven
recruitment mode (SDRM) employs both user distance and
sociability as selection criteria. We investigated the performance
of the two modes in a real urban scenario with a large-scale
number of users. The results showed the effectiveness of includ-
ing sociability to determine user eligibility. SDRM improves
DBRM by a factor of two in terms of the average number
of recruited users. Furthermore SDRM always outperforms
DBRM in terms of number of accomplished tasks. Even under
an extreme case where DBRM fails to complete any task,
SDRM can still accomplish 10% of the tasks.

We are currently extending the proposed policy through
finer modeling of sociability and including energy spent for
contribution as additional criterion.
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