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Abstract—Multiple-input multiple-output (MIMO) systems
will play a crucial role in future wireless communication, but
improving their signal detection performance to increase trans-
mission efficiency remains a challenge. To address this issue, we
propose extending the discrete signal detection problem in MIMO
systems to a continuous one and applying the Hamiltonian Monte
Carlo method, an efficient Markov chain Monte Carlo algorithm.
In our previous studies, we have used a mixture of normal distri-
butions for the prior distribution. In this study, we propose using
a mixture of t-distributions, which further improves detection
performance. Based on our theoretical analysis and computer
simulations, the proposed method can achieve near-optimal signal
detection with polynomial computational complexity. This high-
performance and practical MIMO signal detection could con-
tribute to the development of the 6th-generation mobile network.

Index Terms—MIMO, signal detection, MCMC, Hamiltonian
Monte Carlo, prior distribution, t-distribution
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I. INTRODUCTION

Wireless communication has become a crucial compo-
nent of modern society’s infrastructure, as evidenced by the
widespread use and growth of 5G mobile network. To fur-
ther improve convenience, research and development of 6G
is underway to effectively use radio resources. Among the
various technologies that play an essential role in the effective
use of radio resources, multiple-input multiple-output (MIMO)
technology is expected to make a significant contribution. The
MIMO technology enhances wireless transmission efficiency
using multiple antennas at both transmitting and receiving
stations. Although MIMO with a relatively small number of
antennas is already in general use, research on massive MIMO
with numerous antennas just started receiving attention [1].

In MIMO systems, accurately detecting received signals
is critical for improving transmission efficiency. Maximum
likelihood decoding, which can achieve ideal performance, is
computationally impractical for detecting received signals due
to its examination of all possible combinations of transmitted
signals [2]. Meanwhile, linear detection techniques, e.g., the
minimum mean-square error method, are computationally less
expensive but underperform [2]. The challenge lies in im-
proving the signal detection performance while maintaining
realistic computational complexity requirements. One solution

is to approach signal detection from a stochastic perspective.
This allows for the theoretical consideration of uncertainty in
the problem and the application of state-of-the-art probabilistic
and statistical techniques.

The problem of MIMO signal detection has been ap-
proached from a stochastic perspective using several tech-
niques, such as Bayesian methods [3], [4]. However, to the
best of our knowledge, continuous prior distribution has been
regarded as inappropriate for MIMO signal detection, except
for our previous proposals [5], [6]. The mixed Gibbs sampling
(MGS) method [7] approximates the posterior distribution us-
ing a large number of samples, where a discrete distribution is
set as the prior distribution and the algorithm is based on Gibbs
sampling [8], a type of Markov chain Monte Carlo (MCMC).
The expectation propagation (EP) method [9] also sets a
discrete distribution as the prior distribution and uses the EP
algorithm [10] to estimate the parameters of the approximate
posterior distribution. Moreover, the prior distribution in [11]
is set as a mixture of truncated normal distributions. This
method uses a variational Bayesian algorithm to determine the
parameters of the approximate distribution for the posterior
distribution. Previous studies on MIMO signal detection that
assume stochasticity have set a discrete or discontinuous
distribution as the prior distribution based on the assumption
of discrete transmission symbols.

We extend the discrete signal detection problem in MIMO
systems to a continuous one and apply the Hamiltonian Monte
Carlo (HMC) method [12], an efficient MCMC algorithm for
continuous problems. In our previous studies [5], [6], we set
a mixture of normal distributions as the prior distribution. In
this study, we propose a novel method using a mixture of t-
distributions, which further improves signal detection perfor-
mance. Through our theoretical analysis and computer simula-
tions, the proposed method is shown to achieve near-optimal
signal detection with polynomial computational complexity.
Our novel MIMO signal detection method will contribute to
both the practical and theoretical aspects of future wireless
communications.

The remainder of this article is structured as follows:
Section II presents a stochastic formulation of the problem.
Section III briefly describes the MGS and EP methods as
existing baseline methods. Section IV explains the details979-8-3503-1090-0/23/$31.00 ©2023 IEEE
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of the proposed method. Section V discusses our theoretical
analysis and computer simulation results. Finally, we present
a summary in Section VI.

The following notations are used in this study. C denotes the
field of complex numbers. Re(x) and Im(x) denote the real
and imaginary parts of x, respectively. x̂ denotes the estimate
of x. ⌊x⌋ denotes the largest integer less than or equal to x. 0
and I denote the zero vector and unit matrix, respectively. XT

denotes the transpose of X. The symbol ∼ indicates that the
random variable on its left-hand side follows the probability
distribution on its right-hand side. The symbol ∝ represents a
proportional relationship.

II. PROBLEM FORMULATION

A. System model

Suppose a full-stream transmission in a MIMO system
with N transmission antennas and M receiving antennas. The
following relationship holds:

y = Hu+w, w ∼ CN (0, σ2
wI), (1)

where the receiving antenna’s symbol vector is y =
[y1, . . . , yM ]T ∈ CM , the channel matrix is H ∈ CM×N , the
transmission antenna’s symbol vector is u = [u1, . . . , uN ]T ∈
CN , the noise vector is w = [w1, . . . , wM ]T ∈ CM , the noise
variance is σ2

w, and CN represents a circularly symmetric
complex normal distribution. For manipulation ease, we split
complex numbers into their real and imaginary components as
follows: y →

[
Re(y)
Im(y)

]
, H →

[
Re(H) −Im(H)
Im(H) Re(H)

]
, u →

[
Re(u)
Im(u)

]
,

and w →
[
Re(w)
Im(w)

]
. As a supplementary note, the symbols

for vectors and matrices remain unchanged hereafter when N
and M are reconsidered as 2N and 2M , respectively. In this
study, the channel matrix H, noise variance σw, and received
signal y are assumed to be known. The transmitted symbols
are also assumed to be uniformly random across antennas due
to the use of scramblers. Signal detection entails estimating
the transmitted symbol vector u, given the received signal y.

By introducing a stochastic interpretation, “posterior distri-
bution ∝ likelihood × prior distribution” holds according to
Bayes’ theorem:

p(u | y) ∝ p(y | u)p(u). (2)

The goal of stochastic signal detection is to obtain a point
estimate of the posterior distribution p(u | y).

B. Likelihood

Equation (1) shows p(y | u) = N (y;Hu, σ2
wI), where N

represents a real-value normal distribution density.

C. Prior distribution

Equation (2) implies that the prior distribution corresponds
to regularization terms for correcting the likelihood. In signal
detection, the prior distribution is typically a discrete multi-
nomial distribution that reflects the possibility for discrete
signal points. This improves the accuracy of the posterior

valley of death

Fig. 1. Two examples of priors for BPSK.

distribution’s estimation by considering the priority at the
transmission signal point, as in (3) (see also Fig. 1 (a)):

p(u) =

2N∏
n=1

1

q
{δ(un − a1) + · · ·+ δ(un − aq)}, (3)

where q denotes the square root of the modulation order,
a1, . . . , aq denotes the real-valued coordinate of the transmis-
sion signal points, and δ(x) denotes the unit probability mass
at x. For example, the MGS and EP methods assume such a
prior distribution.

Assuming a continuous distribution for the prior distribu-
tion transforms the above problem into a continuous value
problem. For example, the following equation demonstrates
the application of a mixture of normal distributions (refer to
Fig. 1 (b)):

p(u) =

2N∏
n=1

1

q
{N (un; a1, σ) + · · ·+N (un; aq, σ)}, (4)

where σ2 denotes a variance of a component’s normal distri-
bution and tuning matter. In our previous studies [5], [6], we
used a mixture of normal distributions as the prior distribution
and set the optimal value of σ to minimize the bit error
rate (BER) through a preliminary search. The optimal value
of σ corresponds to the equilibrium point where the search
efficiency is the best. If σ is too large, the search efficiency
is low as areas other than the transmission signal points are
unnecessarily explored. Meanwhile, if σ is too small, there
is little overlap in the component’s distribution, making it
difficult to explore other possible transmission signal points
(the “valley of death” in Fig. 1 (b)).

D. Posterior distribution

When the prior distribution is assumed to be a mixture
of any distribution, it is impossible to obtain the posterior
distribution analytically in closed form [13]. Regardless of
whether the component distribution is discrete or continuous,
a numerical approximation algorithm must be used to derive
the posterior distribution. The point estimate û of the posterior
distribution can produce multiple candidates, depending on
the approximation algorithm used. In addition, the û may



differ from the original transmission signal point. For instance,
when using a continuous distribution as the prior distribution,
the search may include areas other than discrete transmission
signal points, leading to deviations. To address this issue, we
compute the likelihood p(y | ũ) after quantizing û to the
nearest transmission signal point ũ and consider ũ with the
highest likelihood as the final point estimate.

III. PREVIOUS WORK

A. MGS method [7]

The MGS method approximates the posterior distribution
by generating a large number of samples. It employs Gibbs
sampling to search more intensively in regions with higher
posterior probability densities. The MGS method improves
the search efficiency by mixing the initialization of the search
values with a probability of 1/(2N), which solves the problem
of getting stuck in local optima. This approach can be seen
as a virtual parallelization of the Markov chains. The multiple
restarts technique, also proposed in [7], involves running mul-
tiple MGS methods with different initial values for the Markov
chain and selecting the result with the highest likelihood. It
was shown that using a sufficient number of restarts can result
in near-optimal performance.

The computational complexity of the MGS method is
O(MN) per step of the Markov chain, as the computation
of the likelihood is the main factor that contributes to its
complexity. With LMGS as the total steps in the Markov chain,
the final computational complexity is O(LMGSMN).

B. EP method [9]

The EP method approximates the posterior distribution
using an uncorrelated multivariate normal distribution q(u). In
this method, the EP algorithm is used to find the parameters
that minimize the Kullback–Leibler divergence −

∫
p(u |

y) ln{q(u)/p(u | y)}du. Specifically, the mean and variance
parameters are iteratively refined, and the final mean parameter
is used to estimate the transmitted symbols. According to [9],
the total number of iterations, LEP, can be set to at most
LEP = 10 to reach the maximum detection performance.

The computational complexity of the EP method is O(N3)
per iteration, as the inverse matrix operation of H is the
main factor that contributes to its complexity. With a total
of LEP = 10 iterations assumed, the final computational
complexity becomes O(10N3).

IV. STOCHASTIC SIGNAL DETECTION WITH A MIXTURE OF
t-DISTRIBUTIONS PRIOR

A. Setting the prior distribution

In this study, we propose the use of a mixture of t-
distributions as the prior distribution in signal detection as
in (5):

p(u) =

2N∏
n=1

1

q
{T (un; a1, σ, ν) + · · ·+ T (un; aq, σ, ν)}, (5)

where T denotes a real-valued t-distribution density [13].
The scale parameter σ and the degrees of freedom ν are

Fig. 2. The normal and t-distributions with the same scale parameter σ.

Fig. 3. Laplace (double exponential) distribution.

adjustable or tunable parameters. Regarding these, we employ
the optimal values obtained through preliminary searches.
The t-distribution has a narrower peak and thicker tail than
the normal distribution with the same scale parameter σ
(Fig. 2). Therefore, compared with the normal distribution,
the t-distribution can more thoroughly search around the trans-
mission signal points. It also actively explores other potential
transmission signal points by overcoming the “valley of death”
between them. As a result, it is expected to have exploration
properties superior to our previously proposed mixture of
normal distributions [5], [6].

Furthermore, the t-distribution is suitable for discrete sig-
nal detection from the perspective of sparse estimation. The
prior distribution in Bayesian estimation corresponds to the
constraint (i.e., regularization term) in sparse estimation. For
example, the sparse regression method known as Lasso, pro-
posed in [14], applies the ℓ1 norm to the regularization term
in estimating regression coefficients that are mostly zero but
rarely take finite values. This regularization term with the ℓ1
norm corresponds to setting the Laplace (double exponential)
distribution centered at zero as a prior distribution (Fig. 3).
The kernel part of the standard Laplace distribution can be
expressed as follows:

exp{−|x|} = exp{−max(−x, x)}
∼ exp{−smooth max(−x, x)} = exp{−LogSumExp(−x, x)}

= exp
{
− log

(
e−x + ex

)}
=

(
e−x + ex

)−1 ∝ {cosh(x)}−1

∼ (1 + x2

2! )
−1. (6)

As the kernel part of the standard t-distribution is (1 +
x2

ν )−(ν+1)/2, the t-distribution can approximate the Laplace
distribution well with ν ∼ 2. Therefore, setting the t-
distribution centered at the signal point as a prior distribution
can be interpreted as allowing sparse estimation based on the
ℓ1 norm around the signal point.



Algorithm 1 HMC method sampling
1: Initialize u at random
2: for l = 1, . . . , LHMC do
3: Draw r from N (0, I)

4: Numerically solve Hamilton’s equations (8) to obtain u′ and r′

5: Update u← u′ with probability min[1, exp{H(u, r)−H(u′, r′)}]
6: Regard the updated u as a sample from the posterior distribution

p(u | y)
7: end for

B. Approximation algorithm for the posterior distribution

In signal detection, setting a continuous distribution as the
prior distribution yields a continuous posterior distribution, as
the likelihood is a continuous normal distribution. Thus, effec-
tive approximation algorithms for continuous problems can be
used in estimating the posterior distribution. In our previous
study [6], we compared the results of using Newton’s method,
automatic differentiation variational inference method [15],
and the HMC method as the approximation algorithm, under
the condition of a mixture of normal distributions as the prior
distribution. The results showed that the HMC method mostly
achieved superior signal detection performance with the same
computational complexity. This is because the HMC algorithm
randomly initializes the searching value at each step of the
Markov chain, which helps avoid local optima. Thus, we
employ the HMC method as the approximation algorithm for
the posterior distribution in this study.

The HMC method, being a type of MCMC, uses the Markov
chain mechanism like the MGS method. It explores areas
with higher posterior probability densities to generate samples
that approximate the posterior distribution. Compared with
other MCMC methods, the HMC method is efficient in terms
of sampling due to its innovative use of the Hamiltonian
mechanics framework. The HMC method intentionally adds
a quantity, r = du/dτ (where τ is a virtual time), that cor-
responds to the momentum of u in addition to the variable u
being estimated. A summary of the HMC method is provided
below. In this method, the system’s potential energy, U , and
kinetic energy, K, are defined as U(u) = − ln(p(u | y)) and
K(r) = 1/2||r||2, respectively. The Hamiltonian is introduced
as follows:

H(u, r) = U(u) +K(r), (7)

which represents the total energy of the system. Then, Hamil-
ton’s equations are expressed using these two partial differen-
tial equations:

du

dτ
=

∂H(u, r)

∂r
= r,

dr

dτ
= −∂H(u, r)

∂u
= −∂U(u)

∂u
.

(8)

Algorithm 1 shows the sampling with the HMC method. The
Hamiltonian is constant based on (7). Thus, a large change in
the momentum r significantly influences the sample value u.
In addition, as per Algorithm 1, most proposals u′ are accepted
with a probability of one, excluding cases of numerical errors.

TABLE I
COMMON ASSUMPTIONS IN NUMERICAL ANALYSIS

Item Setting
Trials 5000

Number of antennas N = M = 96
Modulation order QPSK, 16QAM, and 64QAM

Average transmission power 1
Fading Quasi-static Rayleigh

Channel correlation Kronecker model
(correlation coefficient ρ = 0 or 0.5)

Channel coding Uncoded

TABLE II
PARAMETERS OF COMPONENT’S NORMAL DISTRIBUTION AND

t-DISTRIBUTION

Mixture of normal distributions Mixture of t-distributions
σ σ ν

QPSK 0.2483 0.5 × 0.2483 1.8
16QAM 0.1242 0.5 × 0.1242 1.8
64QAM 0.0664 0.8 × 0.0664 2.5

These lead to a typically higher sampling efficiency for the
HMC method than for other MCMC methods.

According to Algorithm 1, when solving (8) numerically
during one step of the Markov chain, the log-posterior prob-
ability density derivative is internally evaluated L times. The
value of L can vary depending on the problem and conditions,
but it is typically assumed to be 10 in this study [16]. The
main factor contributing to the computational complexity is
the calculation of the term (HTH)u. This term is included
in the derivative of the log-likelihood contained in the log-
posterior probability density, and because H is assumed to be
known, (HTH) only needs to be calculated once. Hence, the
computational complexity of the HMC method is O(LN2) =
O(10N2) per step of the Markov chain. With LHMC being
the total steps in the Markov chain, the final computational
complexity becomes O(10LHMCN

2).

V. NUMERICAL RESULTS AND DISCUSSION

We demonstrate that the proposed method can attain near-
optimal signal detection in MIMO systems with polynomial
computational complexity. To verify this, we perform a the-
oretical analysis of the computational complexity as well as
computer simulations on signal detection.

A. Settings in numerical analysis

Common assumptions: We assume typical and exhaustive con-
ditions, such as the number of antennas considering massive
MIMO and the modulation order from low to high (as outlined
in Table I). The BER plots are omitted if the computer
simulation results are error-free.
Parameters of proposed method: The parameters of the compo-
nent’s normal and t-distributions are set to the values that dis-
played favorable performance in the preliminary rough search
(Table II). Each Markov chain in the simulation is assumed to
have 2N steps, in line with the virtual parallelization approach
of the MGS method. The parallel number of Markov chains is
set to ⌊1000/(2N)⌋, which is the minimum number required to



Fig. 4. Average BER vs. average received SNR for ρ = 0 and 0.5.

attain sufficient performance [5]. As a result, the total number
of steps in the Markov chain, LHMC, is equivalent to 1000.
Parameters of existing methods: The total number of steps in
the Markov chain of the MGS method is set to LMGS = 1000,
equal to LHMC. However, the proposed method has a com-
putational complexity that is 10 times greater than the MGS
method due to its implicit internal loop L = 10. To ensure a
fair comparison, 10 multiple restarts of the MGS method are
performed.

The total number of EP method iterations is set to LEP = 10,
which is a sufficient number to obtain adequate performance.

In the context of MIMO signal detection, the performance
of a single-input single-output (SISO) transmission under
additive white Gaussian noise (AWGN) serves as an ideal
benchmark, as it eliminates inter-antenna interference and
fading effects. The BER performance of the SISO AWGN
is shown to highlight the theoretical lower bound of MIMO
signal detection.

B. Computational complexity

The computational complexities of the proposed method,
the MGS method, and the EP method for signal detection
are O(10 × 1000N2), 10 × O(1000N2), and O(10N3),
respectively, where N = M . These complexities are all of
polynomial orders. Particularly, the proposed method and the
MGS method have the same complexity under the given
conditions, whereas the EP method is the least computationally
expensive due to N = 96 (< 1000).

C. BER performance: a mixture of t-distributions prior vs. a
mixture of normal distributions prior

Overall trend (Fig. 4 (a) through (c)): The higher the modulation
order, the further the performance deviates from the SISO
AWGN. This is because as the modulation order increases,
the number of possible transmission signal points becomes
larger, and the distance between these signal points becomes
narrower, making the estimation more challenging.

Comparison with a mixture of normal distributions prior (Fig. 4
(a) through (c)): When ρ = 0, it is difficult to discern the differ-
ence in performance between the two methods as they overlap
in certain areas. A clearer difference in performance can be
observed when ρ = 0.5, which brings more challenging signal
detection scenarios. For all modulation orders, the mixture of
t-distributions prior is found to be superior when ρ = 0.5. For
instance, when the BER is 10−3, the mixture of t-distributions
prior outperforms the mixture of normal distributions prior
by 0.8, 0.5, and 0.3 dB for QPSK, 16QAM, and 64QAM,
respectively. In summary, the mixture of t-distributions prior
provides better signal detection performance than the mixture
of normal distributions prior due to its component’s narrower
peak and thicker tail. The former allows for a more focused
search around the transmission signal points, whereas the latter
enables a more aggressive search across the “valley of death”
between the transmission signal points.

The improvement obtained from using a mixture of t-
distributions as the prior distribution decreases as the modu-
lation order increases. This advantage is particularly small for
64QAM modulation. As the modulation order increases and
the solution space expands, even with an aggressive search
using a t-distribution component, the effectiveness of the
method becomes limited with a finite number of searches.

D. BER performance: proposed method with a mixture of t-
distributions prior vs. existing methods

Overall trend (Fig. 5 (a) through (c)): As aforementioned, the
higher the modulation order, the further the performance is
away from the SISO AWGN.
Comparison with existing methods for QPSK (Fig. 5 (a)): The
performance of all methods is comparable to the SISO AWGN,
with only minute differences. This is due to the signal detec-
tion ease, given the limited number of potential transmission
signal points and the significant distance between them. In low
signal-to-noise ratio (SNR) conditions, the proposed method
performs slightly worse than the MGS and EP methods. Under
noisy conditions and limited searches, exploring areas outside
the transmission signal points appears less effective. In such



Fig. 5. Average BER vs. average received SNR for ρ = 0.

cases, the original impulse-like prior distribution used in the
MGS and EP methods appears to be sufficient. It is noted that
a low SNR region in practical communication environments
usually requires the combination of other improvement tech-
niques, such as retransmission protocol and error-correcting
code. Consequently, this slight inferiority of the proposed
method is expected to have only a limited impact on the
overall system performance. Meanwhile, at moderate-to-high
SNRs, the proposed method outperforms the EP method and
is comparable to the MGS method. For instance, the SNR gain
of the proposed method at a BER of 10−3 is close to 0 and
0.4 dB compared with the MGS and EP methods, respectively.
Comparison with existing methods for 16QAM (Fig. 5 (b)):
Compared with the QPSK case, the 16QAM has an increased
number of possible transmission signal points and a narrower
distance between these points, making signal detection more
challenging. Such a difficult condition makes the character-
istics of each method more clear. The difference from the
QPSK case is that the proposed method outperforms the MGS
method in terms of detection performance at moderate-to-
high SNRs, resulting in the best detection performance for
the proposed method at moderate-to-high SNRs. In addition,
compared with the QPSK case, the performance difference
between the proposed method and existing methods is larger
at moderate-to-high SNRs. For instance, the SNR gain of the
proposed method at a BER of 10−3 is close to 0.4 and 1.6 dB
compared with the MGS and EP methods, respectively.
Comparison with existing methods for 64QAM (Fig. 5 (c)):
Compared with the QPSK and 16QAM cases, signal detection
for 64QAM is the most challenging, and the distinctiveness
of the proposed method is the most pronounced. This is due
to the greatest number of potential transmission signal points
and the smallest distance between these points. The difference
between this case and the QPSK and 16QAM cases is that the
proposed method outperforms the MGS method in terms of
detection performance at low SNR. Although the proposed
method demonstrates its best performance at moderate-to-
high SNRs, similar to the 16QAM case, the difference in
performance with existing methods is greater than that seen in

the 16QAM case. For instance, at a 10−3 BER, the proposed
method shows an indeterminable large gain in SNR compared
with the MGS method and a 4.2-dB gain compared with the
EP method.

Additional verification is performed here because the BER
performance of MGS is extremely degraded compared to
QPSK and 16QAM. Fig. 6 shows excerpts from Figs. 5 (c)
and 6 (c) in [5]. The “Conv.” and the “iterations” in the
legend indicate the MGS and the total number of iterations
of the Markov chain, respectively. Fig. 6 shows that BER
performance of MGS improves with fewer transmitting and
receiving antennas and a higher number of iterations of the
Markov chain. Compared to [5], the assumptions of this study
make signal detection more difficult due to more transmitting
and receiving antennas and fewer iterations of the Markov
chain. Therefore, the result of MGS is considered reasonable.

E. BER performance: proposed method with a mixture of t-
distributions prior vs. SISO AWGN (Fig. 5 (a) through (c))

The proposed method achieves near-optimal performance.
Specifically, the SNR degradation of the proposed method
at a 10−3 BER is within 0.3, 1.3, and 2.9 dB for QPSK,
16QAM, and 64QAM, respectively. This exceptional perfor-
mance is achieved through a combination of the appropriate
prior distribution setting and an effective search algorithm. In
particular, the proposed prior distribution is sufficiently similar
to the discrete point mass at the transmission signal point and
also enables active exploration of other potential signal points.
Therefore, we consider the proposed method is sufficiently
reliable, as demonstrated by its outstanding performance and
appropriate methodology.

VI. CONCLUSIONS

Based on a mixture of t-distributions prior and the HMC
method, we proposed a signal detection method that is ex-
pected to deliver near-optimal performance with polynomial
computational complexity. In terms of detection performance,
the proposed method showed a substantial improvement over



Fig. 5 (c) in [5] (N = M = 16) Fig. 6 (c) in [5] (N = M = 32)

Fig. 6. Average BER vs. average received SNR for 64QAM and ρ = 0. Reprinted from [5] with permission (© 2021 IEEE).

typical existing methods for higher-order modulation. Higher-
order modulation could be crucial for future wireless commu-
nications. The amount of data transferred in wireless commu-
nications is projected to grow exponentially with expectations
for multi-sensory interactions beyond traditional voice and
video communication. In this sense, the proposed method is
deemed beneficial.

The limitations of this study are as follows. The proposed
method’s computational complexity, although of polynomial
order, is greater than that of the EP method. In addition,
the BER performance may be slightly lower than those of
the MGS and EP methods at low SNR. Fine-tuning the t-
distribution parameter for improved performance at low SNR
may be possible, but further investigation is required. Although
channel coding was not applied in this study, signal detection
methods are often used in combination with error-correcting
codes in practice. Therefore, we will carefully investigate its
impact in the future, considering various parameters such as
encoding scheme, code rate, decoding algorithm, and inter-
leaving.

From a mathematical perspective, our study suggests that
extending the discrete problem to a continuous one can lead
to better solutions. This approach has the potential to rev-
olutionize combinational optimization, including well-known
problems like the traveling salesman and nurse scheduling
problems.
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