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Abstract

A single-nucleotide polymorphism (SNP) is a single base change in the DNA sequence and is the 

most common polymorphism. Since some SNPs have a major influence on disease susceptibility, 

detecting SNPs plays an important role in biomedical research. To take fully advantage of the 

next-generation sequencing (NGS) technology and detect SNP more effectively, we propose a 

Bayesian approach that computes a posterior probability of hidden nucleotide variations at each 

covered genomic position. The position with higher posterior probability of hidden nucleotide 

variation has a higher chance to be a SNP. We apply the proposed method to detect SNPs in two 

cell lines: the prostate cancer cell line PC3 and the embryonic stem cell line H1. A comparison 

between our results with dbSNP database shows a high ratio of overlap (>95%). The positions that 

are called only under our model but not in dbSNP may serve as candidates for new SNPs.
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I. Introduction

A single-nucleotide polymorphism is a DNA sequence variation when one single nucleotide 

(A, T, C or G) in the genome is altered, such as an A, is replaced by one of the other three 

nucleotides C, G, or T. Whether a SNP has functional impact on the individual largely 

depends on the genomic location (coding region, intron, etc) and whether it leads to amino 

acid change after translation. Those functional SNPs have great potential to be biomarkers 

and therapeutic targets and therefore are especially interesting. So far, great endeavors have 

been made to SNP discovery and recently developed Next-generation Sequencing (NGS) 

technique has largely facilitated this process.

NGS is an emerging high-throughput technology that produces genome-wide data enabling 

unprecedented access to comprehensive genetic information. Detection of genome-wide 

variation is one of the most important applications of NGS. For example, Genome-Wide 

Association Studies (GWAS) examines the relationships between millions of SNPs and 

traits. The 1000 Genome Project utilizes NGS technology and aims to produce an extensive 

public catalog of human genetic variation [1].

Two different types of approaches have been taken to detect SNPs. The first type relies upon 

amplification of DNA using the polymerase chain reaction (PCR) to reduce the complexity 

of the genome and works on re-sequencing data from diploid samples. These algorithms 

examine chromatogram trace files and detect variants by extracting or comparing signals in 

the peaks of traces. The widely used software using these algorithms include PolyPhred [2], 

SNPdetector [3], and novoSNP [4]. The second type is based on detecting sequence 

differences among cloned DNA samples. Two representative software are MAQ [5] and 

Atlas-SNP2 [6]. MAQ proposes a Bayesian approach to call variants by considering 

correlation of sampling and error rates at one particular position. Atlas-SNP2 takes into 

account sequence context in training datasets to sift through large amounts of high-

throughput re-sequencing data and pick out genetic variants from ubiquitous sequencing 

errors. However, most of above software were not designed to handle NGS data. An 

effective and efficient algorithm for SNP discovery in NGS data will provide valuable 

information for downstream analysis.

In this study, we propose a Bayesian approach to estimate the probability of mismatch due 

to SNPs by computing posterior probability of hidden nucleotide variations at each covered 

genomic position from NGS data. Note that, during read alignment the base-level sequence 

mismatches can result from either sequencing errors [7] or hidden nucleotide variations such 

as SNPs and our approach will especially take these into consideration. The main idea is to 

model the base-level sequencing error rates using observed mismatch profiles. We apply our 

method to data sets on PC3 and H1 cell lines.

The paper proceeds as follows. We introduce the proposed probability model along with 

MCMC techniques in Section II. Section III shows the effectiveness of our model by 

applying to prostate cancer cell line PC3 data and comparing with MAQ. In Section IV, we 

apply our model to stem cell line H1 data. We conclude with a discussion in Section V.
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II. Methodology

A. Probability model

We will apply the proposed model independently to each covered genomic position. This 

strategy allows us to analyze different positions in parallel, achieving fast computational 

speed. For a given nucleotide position t on the reference genome, suppose there are Kt 

unique reads overlapping with it. Denote the set  the labels of all the unique 

reads that overlap with the position t. Note that here “overlap” means partial match. For 

example, if t = 101 and the length of short read is 35, any overlapping unique read will have 

a starting position in [67,101]. For a unique read Ukt ∈ Ut, let {ekt = 1} and {ekt = 0} 

respectively denote mismatch or perfect match between the unique read Ukt and position t on 

the reference genome. So the mismatch profile at nucleotide position t is et = {ekt, k = 1,…, 

Kt}.

To estimate the mismatch probability qkt between the base at position t on the reference 

genome and the corresponding base of a unique read Ukt ,we write qkt as a function of αkt, 

the sequencing error rate, and βkt, the probability of hidden nucleotide variations. Following 

the law of addition, denote A the event {there is a sequencing error} and B the event that 

{there is a hidden nucleotide variation}, then q = Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A)Pr(B). 

Specifically, using our notation, let

(1)

In our subsequent data analysis, we fix the values of αkt and estimate βkt. Recall that for the 

kth unique read that overlaps with genomic position t, αkt is the sequencing error rate. 

During mapping, a mapping quality character was assigned to each base of the reads. Let Zc 

denote the count of bases to which a quality character c was assigned, and Zcm denote the 

count of aforementioned bases that have mismatches. If the corresponding base of a unique 

read Ukt was assigned quality character c, then the corresponding quality score is defined as 

αkt = Zcm/Zc. Using the quality scores from millions of unique reads in the data, we can 

reliably estimate αkt based on the observed sequencing error rates, rather than imposing a 

prior distribution on the αkt. We write the likelihood contribution from the unique reads at 

position t, which is given by

(2)

In (2), the only unknown variable is βkt. Given a genomic position t, there are three possible 

hidden nucleotide variations between the reference genome and aligned unique reads. For 

example, if the base at position t on the reference genome is A, there are three possible base 

substitutions: A-T, A-C and A-G. We assume that the probability of the three possible 

hidden nucleotide variations types to be βt = {βit, i = 1, 2, 3} for notation simplicity, where 

β1t, β2t, β3t > 0 and β1t + β2t + β3t < 1. If read k exhibits a mismatch at position t, i.e. {ekt = 

1}, then βkt ∈ βt.
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Denoting Dir(a, b, c, d) a Dirichlet distribution with density 

 we assume conditionally conjugate priors for βt = 

(β1t, β2t, β3t) for a given genomic position t:

In the subsequent analysis, we assume a = b = c = 0.001 and d = 1, since the SNP rate in 

human genome is about 0.1%.

B. Markov chain Monte Carlo simulations

We augment the parameter space [8] and employ a Gibbs sampler to simulate the unknown 

parameters βt. Let gt be the base at position t, and gkt the base at the corresponding position 

of kth unique read that overlapped with position t. Here, gt is known from the reference 

genome. For gkt's, they take values in {A, C, G, T}. If read k exhibits a mismatch at position 

t, i.e. {ekt = 1}, then

where C1, C2, C3 are the nucleotide types different from that at the position t on the 

reference genome.

Let Sit = {k : gkt = Ci} and Nit = ‖Sit‖ for i = 1, 2, 3, where ‖ · ‖ denotes the number of 

elements in one set.

The basic idea is to introduce a latent Bernoulli variable with a conditional distribution 

defined by

for k ∈ {S1t, S2t, S3t}. With the augmented Bernoulli distribution, we can easily show that 

 follows a Dirichlet distribution

(3)

In our analysis, the number of iterations S was set to 1,000 with the first 200 iterations as 

burn-in. The Markov chain converged fast and mixed well.

III. Prostate cancer cell line PC3 data analysis

We apply our method to a prostate cancer cell line PC3 dataset, aiming to detect SNPs. 

Prostate cancer is the most common cause of death from cancer in men over age 75.
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We use Bowtie [9] to map the sequencing data and calculate the coverage with BEDTools 

[10]. 61.8% of the genome is covered with average sequencing depth of 1.55. And 62.6% of 

the exon regions are covered with the average sequencing depth of 1.62.

Recall that βt denotes the probability of hidden nucleotide variations at genomic position t 

on the reference genome, so the position with higher posterior probability of βt will have a 

higher chance to be a SNP We will call a position a potential SNP if there exists β > β0, 

where β ∈ βt and β0 is a cutoff value. To determine the optimal cutoff, we compare the 

identified SNP candidates with dbSNP [11] using ANNOVAR [1]. When β0 = 0.5, 685,277 

candidate SNPs are identified and 634,477 (92.6%) of them are found in dbSNP When β0 = 

0.75, 198,645 candidate SNPs are identified and 188,989 (95.1%) of them are found in 

dbSNP.

For comparison, we apply MAQ to the same data. MAQ targets 387,931 candidate SNPs, in 

which 233,283 (60%) are in dbSNP The proportion of identified SNPs falling into dbSNP 

can be used as a measure of method reliability. Using above criteria, our method 

outperforms MAQ since our method not only identifies more SNPs, but also has higher 

quality.

For each potential SNP, we compute the proportions of one particular nucleotide variation 

and compare them with posterior probability of this hidden nucleotide variation. For 

example, if the nucleotide at genomic position t is A, and there are 100 short reads mapped 

to this position with 10 T's, 15 C's and 75 A's. We can get at this position, the proportion of 

A-T substitution is 0.1; the proportion of A-C substitution is 0.15. Fig. 1 shows the scatter 

plot with smoothed densities color representation of posterior probability of hidden 

nucleotide variations versus the proportions of nucleotide changes for the potential 

28,057,824 SNPs. Most of the points are on the 45-degree line, which shows the posterior 

probability of hidden nucleotide variation has very high correlation with proportion rate. In 

addition, there exist many points, whose observed proportion is 1 and the corresponding 

posterior probability ranges from 0.5 to 1. This is due to Bayesian shrinkage since we 

borrow strength from the sequencing errors.

IV. Stem cell line H1 data analysis

We apply our model to stem cell line H1 data that is almost 20 times larger than PC3 data 

and has relatively high and uniform sequencing depth. H1 cell line is one of the most 

extensively studied and characterized stem cell lines. Except for the bisulfite-seq and 

smRNA-seq, all the sequencing data of H1 cell line available at NCBI before November 

2011 are used in our analysis. The complete list of data we used is in Supplementary. The 

H1 sequencing reads cover 91.3% of the genome with the average sequencing depth of 19.2, 

while 94.1% of the exon regions are covered with the average sequencing depth of 26.6.

For stem cell line H1 data, with the increase of β0, the percentage of the identified candidate 

SNPs overlapping with dbSNP also increases as shown in Fig. 2. When β0 = 0.75, 1,212,325 

candidate SNPs are identified and 1,159,483 (95.6%) of them are found in dbSNP The 

functions of these SNPs are summarized in Supplementary. Among the 8,514 ex-onic SNPs, 
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3918 are nonsynonymous, 4,419 are synonymous, 18 are stopgain, 5 are stoploss and 154 

are with unknown function.

From these results, we believe that the candidate SNPs with β ≥ 0.75 are trustworthy, 

because the percentages of the candidate SNPs in dbSNP are higher than 0.95 for both PC3 

and H1 data. To determine whether the cutoff is appropriate, we adopt the method 

introduced by Newton et al. [12] and Müller et al. [13] to control false discovery rate (FDR). 

For a given cutoff β0, we define FDR 

where I(·) is the indicator function. Fig. 3 plots the estimated FDR versus selected positions 

whose β are larger than 0.75. We can see that the FDR is estimated to be less than 0.1.

Because of the large data size of PC3 data (14 GB) and H1 data (200 GB) after mapping, 

computation is challenging here. We employ an efficient way to implement the algorithm in 

C++. The program outputs posterior probability for each position with mismatch(es). The 

PC3 data analysis is carried out on iMac, which equips with 2.8 GHz Intel Core i7 CPU and 

16GB memory. The calculation is done within 3 hours. openMP option is enabled to 

facilitate the parallel computing by chromosome. The H1 data analysis is carried out on 

MDACC high performance computing (HPC) cluster, which equips with AMD Opteron(tm) 

Processor 6128 HE, and 32 GB RAM per node. The calculation is performed for each 

chromosome in parallel and all the calculations finishes within 20 hours. The code is 

available upon requested.

V. Conclusion

We propose a Bayesian method to detect SNPs in this paper and apply our method to two 

data sets: prostate cancer cell line PC3 and stem cell line H1. While the sequencing depth of 

PC3 is low and uneven and H1 has relatively high and uniform sequencing depth, our 

method works well for both. Our result will provide a useful reference to common cell lines. 

The data was originally obtained for epigenetic studies of histone modifications using ChIP-

Seq technique. We show that the data originally intended for ChIP-Seq studies can be mined 

for SNP information. Since there are thousands of ChIP-Seq experiments conducted each 

year, we expect our method to have a wide range of applications.

The proposed Bayesian SNP calling method utilizes quality score of the sequence reads and 

mismatch profiles between the unique reads and the reference genome in determining the 

variants. The method is fast, capable of processing whole genome data at 20-fold average 

coverage in reasonable amount of time. We show that our method is substantially better than 

MAQ in that it finds more SNPs with higher quality.

Supplementary Material
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The proposed Gibbs sampler is as follows:

• Step 1: Let, , where ε is an arbitrary small probability close to zero for i = 

1, 2, 3.

• Step 2: In the s-th iteration, sample  from

• Step 3: Sample βt = (β1t, β2t, β3t) from (3).

• Step 4: Iterate steps 1 to 3 S times, for a large integer S.

For the special case in which Nit = 0, set  and  for i = 1, 2, 3.
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Fig. 1. 
(Colored Figure) The smoothed density plot with color representation of posterior 

probability of hidden nucleotide versus proportion of nucleotide change at potential SNP 

positions.
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Fig. 2. 
The proportion of the identified candidate SNPs overlapping with dbSNP versus the cutoff 

of β.
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Fig. 3. 
Bayesian FDR plot versus selected positions when β0 = 0.75.
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