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Abstract 1 Introduction

We present a new construction that differs
from the traditional way of constructing
systematic EC/AUED codes. Most au­
thors take a systematic t-error-correcting
code and then they append a tail in such
a way that the new code can detect more
than t errors when they are unidirec­
tional. In our construction, we modify
the t-error-correcting code in such a way
that the weight distribution of the origi­
nal code is reduced. We then have to add
a smaller tail. Frequently, we have less re­
dundancy than the best available system­
atic t-EC/AUED codes.
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The problem of finding systematic error
correcting/all unidirectional error detect­
ing codes (EC/AUED) has received wide
attention in recent literature [1]-[9].
The way most authors construct a t­
EC/AUED eode is as follows: first the in­
formation bits are encoded into a system­
atic t~EC (error-correcting) code. A tail is
then added as further redundancy in such
a way that the resulting code can detect all
unidirectional errors. This tail is a func­
tion of the weight of the codeword in the t­
EC code. The shorter the tail, the smaller
the redundancy, so authors concentrate in
obtaining a tail as short as possible. To
the moment of this writing, the record is
held by [1]. The construction in [1] heav­
ily depends on the best asymmetric error­
correcting codes available. The opt.imality
of the construction is still an open prob­
lem.
In this paper, we propose a slightly dif­
ferent approach. For t-EC codes, we use
codes that contain the all-I vector (for in­
stance, BCH codes and the Golay code
have this !>roperty). When choosing a
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codeword, we take either a codeword or its
complement, according to which ofthe two
has smaller weight. We have to pay a bit
for this operation, but the weight distribu­
tion is reduced by half. We then append
a tail in the way described in [1]. Overall,
we will often gain in redundancy.
The construction will be described in de­
tail in the next section. We then consider
the problems of encoding and decoding.
Although the new codes are not strictly
systematic, they are very close to being
so. We will see that encoding and decod­
ing are nearly as simple as in the system­
atic case.
We also provide tables and examples.

2 Construction

As stated in the introduction, the con­
struction in [1] depends on a tail that is ap­
pended to each codeword in a t- EC code.
This tail is a function of the weight of the
codeword. In fact, it comes from a so
called descending tail matrix of strength
s. For the sake of completeness, we give
the definition.
Given two vectors ~ and 1l., denote by
N (~, 1l.) the number of 1--+0 transitions
from ~ to 1l.. (for example, if ~ = 10101
and 1l. = 00011, then N(~,1l.) = 2).

Definition 2.1 A descending tail matrix
of strength s is an mXT {O, l}-matrix with
rows 14, 0 ~ i ~ m - 1, such that for all
o ~ i ~ j ~ m - 1,

We denote this matrix by T(m, Tj s). Ta­
ble 1 gives a list of parameters for the de­
scending tail matrices obtained in [1].
The next theorem [1] is the key for con­
structing t-EC/ADEn codes.

Theorem 2.1 Let e' be a t-EC code of
length n' and let T be a descending tail
matrix T(n' + 1, Tj t + 1) with rows 14, 0 ~

i ~ n'. Then

e = {(f,1w(f)) : fEe'}

is a t-EC/ADEn code of length n = n' +
T (W(f) denotes the Hamming weight of
vector f).

The next construction is our main result.

Construction 2.1 Let k be the number
of information bits. Assume that we want
to construct a t-EC/ADED code. Then:

1. Choose an [n',k + I,d] EC code (d ~

2t + 1) e' containing the all-1 vector
with n' as small as possible.

2. Choose a T(Ln'/2J + 1,T,t + 1) de­
scending tail matrix T with rows 14,
o ~ i ~ Ln'/2J + 1 and T as small as
possible.

3. Let e be the code

The code e obtained in the previous con­
struction is t-EC/ADED since the subset
of codewords of weight ~ Ln/2J is still a
t-EC. According to Theorem 2.1, the tail
makes it t-EC/ADEn.
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Example 2.1 Assume k = 3 and t = 1. Notice that we have 3 information bits and
According to Construction 2.1, we con- 6 redundant bits. If we use the construc­
sider the [7,4,3] Hamming code whose gen- tion in [1], we need 7 redundant bits.
erator matrix is

co 0 0 0 1

D·G = 0 1 0 0 1 0
o 0 1 0 1 1
o 0 0 1 1 1

We easily see that the codewords of weight
~ 3 are:

~ 0000000
~l 1000011
~2 0100101
~ 0010110
~4 1001100
f.o> 0101010
£6 = 0011001
~7 1110000

3 Encoding and Decoding

In the previous Section we described a t­

EC/AU ED code but we did not explain
how to encode the data. This is very easily
done, as we will see.
Assume we want to encode k bits into a
t-EC/AUED code C. Choose an [n',k +
1, 2t + 1] code C' containing the all-l vec­
tor (with n' as small as possible) and a
T(ln' /2J + 1, r, t + 1) descending tail ma­
trix T (with r as small as possible). The
symbol EB denotes "exclusive-OR" and 1
denotes the all-1 vector. Then proceed as
follows:

1. Encode (1!,0) = (Ul,U2, ... ,Uk,0)
into a vector r. in C'.

2. Ifw(f) > Ln'/2J then r.~ r.EB1.

3. Let 1l. = (r., twW) be the output of the
encoder, where 14, 0 ~ i ~ Ln'/2J, are
the rows of T.

Observe that code C' is not required to be
systematic. However, if that is the case,
the t- EC/ AUED code C will be practically
systematic, in the sense that the first k bits
in codeword 1l. will either be the informa­
tion bits or their complements.

(~ ~)o 1 .

o 0

T=

1l.0 = 0000000 11

ll.l 1000011 00

1l.2 0100101 00

1l.3 0010110 00

1l.4 1001100 00

1!.s 0101010 00

!!.6 0011001 00

1l.7 1110000 00

The code is then given by the following set
of codewords:

According to [1], we can use the T(4, 2; 2)
matrix Algorithm 3.1 (Encoding Algorithm)

Let 1! = (Ul, U2, ... , Uk) be the vector of
information bits. Then:
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Example 3.1 Consider code C in Exam­
ple 2.1. Assume that we want to en­
code 1! = 010. The first step is to en­
code (1!,0) = 0100 into the [7,4] Ham­
ming code. This gives f = 0100101. Since
W(f) = 3, 1W (f) = 00. The encoded vector
is then 11. = (f, h) = 010010100.
Similarly, assume that we want to encode
1! = 110. The encoding of (1!,0) = 1100
into C' gives f = 1100110. Since W(f) =
4 > 3 = Ln'/2J, then f = 1111111 ED
1100110 = 0011001. As before, the en­
coded vector is 1l = (f,1,,) = 001100100.

Example 3.2 Again consider the code of
Examples 2.1 and 3.1.

1. Assume we receive iL = 100101110.
According to the Decoding Algo­
rithm, we first consider Q. = 1001011.
The parity check matrix of C' is

H=(~~ ~ ~ ~~~).
1 101 001

The decoding is also very simple. Essen­
tially, it works as in [1]' with the extra step
of taking complements when necessary.

Algorithm 3.2 (Decoding Algorithm)
Let C be the EC/ AUED code obtained
from Construction 2.1. Let iL be the re­
ceived word and Q. the first n' bits of fl.
Then: -

1. Decode Q. with respect to C'. If
more than t errors, declare an uncor­
rectable error. Else let f be the cor­
rected word.

2. Let 1l = (f,1w(f)' If dH(iL, 1l) > t (dH
denotes Hamming distance), then de­
clare an uncorrectable error.

3. Else, let Ul, U2, .•• ,Ulc+l be the k + 1
information bits from codeword c E
C'. Then, the output of the decoder
is given by the vector of length k

So, we obtain the syndrome §.. =
Q.HT = 111 which corresponds to
the fourth column of H, hence, Q.
is decoded as f = 1000011. Now,
1l = (f,1w(f» = 100001100, hence
dH (iL,ll) = 2 > 1 = t. Thus, the de­
coder declares an uncorrectable error.

2. Assume we receive iL = 011011000.
As before, Q. = 0110110, and §.. =
Q.HT = 101, which corresponds to
the second column of H. Hence, Q.
is decoded as f = 0010110. So, 1l =
(f,1w (f» = 001011000 and dH(Q., d =
1. Since U4 = 0, the output of the
decoder is 1! = 001.

3. Assume we receive iL = 001110100.
Now Q. = 0011101, and §.. = Q.HT =
100, which corresponds to the fifth
column of H. Hence, Q. is decoded as

f = 0011001. So, 1l = (f,1w(f» =
001100100 and dH(Q., f) = 1. Since
U4 = 1, the output of the decoder is
1! =001 ED 111 = 110.

r
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4 Tables and Comparisons we use the following lemma:

We have seen in Example 2.1 that we
gained one bit with our construction with
respect to [1]. In this section, we show
that this is not an isolated case.
As stated in Section 2, Table 1 contains
the parameters of some descending tail
matrices T(m, Tj t + 1) obtained from [IJ.
In Tables 2-5 we give the redundancy
of t-EC/AUED codes for different val­
ues of k that were obtained using Con­
struction 2.1, as well as the redundancy
from [IJ. In most of the cases, we tie the
results from [IJ, but also quite often we im­
prove upon them, as shown in the tables.
The tables have seven columns. The first
column contains the number of informa­
tion bits k. The second column gives the
length n' of the EC-code. Column 3 con­
tains Ln'/2J. Column 4 gives the number
of extra bits T that we have to add to the
EC-code in order to obtain a t-EC/AUED
code (Construction 2.1). Column 5 gives
the total redundancy n - k = n' - k + T

used in the Construction. Column 6 gives
the redundancy obtained using the codes
in [1]. Finally, column 7 indicates the EC­
code used (containing the all-I vector).
The subscript "s" indicates a shortened
code.
Notice that we use only BCH codes and
the Golay code, which are easy to decode,
while in [IJ the best codes of [10] have been
chosen. Sometimes no efficient decoder is
known for the best possible code.
In order to shorten a code containing the
all-I vector in such a way that the short­
ened code also contains the all-I vector,

Lemma 4.1 Let C be an [n,k,dJ EC code
with parity-check matrix H. Assume that
the all-I vector is in C. Let.£ be a codeword
in C such that its nonzero components are
i l ,i2 , ... ,iw , 1 ~ i l < i2 < ... < iw ~ n.
Let H be the matrix obtained by deleting
columns it, i2 , ••• ,i,. from H. Let Cbe the
[n - w, k - w, dJ code whose parity check
matrix is H. Then the all-I vector is in C.

Proof: The all-I vector is in Cif and only
if the sum (modulo 2) of all the columns
in H gives the zero column.
Since the all-I vector 1 is in C, then 1 E9.£
is also in C. This vector has zero compo­
nents il , i2 , ••• , iw • Summing the columns
corresponding to the nonzero components,
we obtain the zero column. But these
columns correspond to the columns in H.
o

Example 4.1 Consider the [7,4] Ham­
ming code of Example 2.1. Take codeword
.£ = 1110000. In order to obtain matrix H
according to Lemma 4.1, we have to delete
the first three columns of matrix H of Ex­
ample 3.2. This gives

H=(~ ~ ~ ~).
100 1

The shortened Hamming code has length
4 and dimension 1. The all-I vector is in
the shortened code.

We use this procedure to shorten several
of the codes presented in Tables 2-5.
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5 Conclusions

A new method for constructing t­
EC/AUED codes has been presented. The
information bits a,re encoded first into a t­
EC code containing the all-1 vector. The
key idea in the construction is reducing the
weight distribution of the t-EC code used.
Our codes have frequently less redundancy
tha,n the best EC/ AUED codes previously
known. The encoding and decoding pro­
cedures a,re as simple as those of known
codes.
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t r m t r m t r m t r m

1 2 4 2 3 6 3 4 8 ,1 ,'j 10
1 3 6 2 4 8 3 5 10 4 6 12
I '1 8 2 5 10 3 6 12 4 7 14
1 5 12 2 6 12 3 7 11 4 8 16
I 6 16 2 7 16 3 8 16 ,1 9 18
1 7 24 2 8 20 3 9 20 4 10 20
I 8 48 2 9 24 3 10 H 4 11 2-1
1 9 72 2 10 32 3 11 28 '1 12 28
I 10 14'1 2 11 48 3 12 32 ,1 13 32
1 J 1 H8 2 12 72 3 13 ,10 " 14 36
1 12 ,132 2 13 120 3 1-1 48 4 15 '10

2 11 2]6 3 ],'j 72 ,1 16 48
2 15 392 3 ]6 120 " ] 7 56

3 17 180 1 ]8 72
3 18 261 ,1 19 1O,j

3 19 ,188 '1 20 ]56
4 2] 216
4 22 368

Table ]: Parameters of Some Descending Tail Matrices T(rn, r; t + 1)

k n' Ln'/2J r n-k n - k from [1J EC-Code
3 7 3 2 6 7 Hamming
10 ]5 7 ,I 9 10 Hamming
22 28 H 6 12 ]3 Hamming s

25 31 15 6 ]2 ]3 Hamming
87 95 47 8 16 17 Hamming.
246 255 127 10 ]9 20 Hamming
277 287 113 10 20 21 Hamming s

'fable 2: Parameters of some l-EC/AUED codes
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k n' Ln'/2J T n-k n - k from [1] EC-Code
6 15 7 4 13 15 BClI
15 26 13 7 18 20 Bells
20 31 15 7 18 20 BCIl
45 58 29 10 23 24 BClIs
50 63 31 10 23 24 BCll
107 122 61 12 27 28 BCns
112 127 63 12 27 28 BCn
222 239 119 13 30 31 BCns

Table 3: Para.meters of some 2-EC/AUED codes

k n' Ln'/2J T n-k n - k from [1] EC-Code
4 15 7 4 15 18 BClI
11 23 11 6 18 21 Golay
15 31 15 8 24 26 BCll
37 56 28 12 31 32 BCn.
H 63 31 12 31 32 BCn
105 127 63 15 37 38 BCn
214 239 119 16 41 42 BClIs
483 511 255 18 46 47 BCn

Ta,ble 4: Pa,rameters of some 3-EC/AUED codes

k n' Ln'/2J T n-k n - k from [1] EC-Code
38 63 31 13 38 42 BCH
98 127 63 18 47 48 BCll
222 255 127 20 53 5'i BCn

Table 5: Pa,ra,meters of some ,i-EC/AUED codes
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