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Abstract—We present a novel methodology that addresses the
problem of faults in synapses of a spiking neural network using
astrocyte regulation, inspired by recovery processes in the brain.
Since Field Programmable Gate Arrays (FPGAs) are widely used
for neural network applications, we aim to achieve fault tolerance
in an astrocyte-neuron unit implemented on an FPGA. A fault
is considered as a reduction in transmission probability of a
synapse, leading to reduced spiking activity. Our novel repair
mechanism exploits Dynamic Partial Reconfiguration (DPR) of
the FPGA Clock Management Tiles (CMTs) to increase the clock
frequency of neurons with reduced synaptic input, which restores
the firing rate to pre-fault levels. We demonstrate the repair
methodology on a spiking neural network implemented on an
FPGA. The system maintains effective functional behavior with
a loss of up to 99% of the original synaptic inputs to a neuron.
Our repair mechanism has minimal hardware overhead with the
tuning circuit (repair unit) which consumes only 0.8215% of the
complete design and therefore supports scalable implementations.
Additionally, the overall architecture has a minimal impact on
power consumption (1.371W ). The work opens up a novel way to
utilize the capabilities of modern hardware to mimic homeostatic
self-repair behavior achieving fault recovery.

Index Terms—Fault Tolerance, Self-Repair, Spiking Neural
Network, Astrocyte, Homeostasis, Field Programmable Gate Ar-
ray, Dynamic Partial Reconfiguration, Bio-inspired Engineering.

I. INTRODUCTION

FPGAs are frequently used to implement artificial neural

networks as they combine computing capability, logic re-

sources and memory capacity in a single device [1]. Also,

FPGA allows neural networks to be evolved on hardware

and new topologies/networks executed faster [2]. In this re-

search, we focus on SRAM-based FPGAs since it is the

most commonly used reconfigurable platform. SRAM-based

FPGAs are prone to hardware failures such as Single Event

Upsets (SEUs) [3]. This creates an issue for dependability for

safety critical applications.

The present work is based on the inspiration derived from

robust biological systems, which can detect and correct a

range of errors. For instance, the human brain is continu-

ously adapting a changing environment. The mechanisms that

monitor excitation and maintain the functional properties of

neurons are by definition homeostatic [4]. In this work, we

demonstrate homeostasis using the dynamic reconfiguration

properties of clock management cores in an FPGA. Dynamic

Partial Reconfiguration (DPR) is an FPGA-specific techno-

logical advancement which aims at modifying the existing

circuit mapped on the FPGA without needing to turn off

the circuit functioning in other parts of the FPGA. Various

works have demonstrated the possibility of fault tolerance in

FPGAs via DPR [5]. As a variant to the classical DPR, we

use Dynamic clock alteration, an alternate DPR technique to

establish the task of fault tolerance. This work is the first report

of an application of DPR-based clocking schemes for neural

networks targeting fault tolerance. Various researchers have

demonstrated fault tolerance in hardware implementations of

neural networks [6]–[8]. Compared to these works, the work

proposed in this paper demonstrates higher fault tolerance and

the methodology is feasible in the presence of at least one

healthy synapse. Some recent works also suggests the use of

learning mechanisms to recover faults in synapses [9], [10].

Astrocytes have been shown to coexist with neurons where

these cells communicate with synapses and neurons, thereby

regulating synaptic activity [11]. We employ FPGAs to im-

plement the astrocyte-neuron based self-repairing unit, which

considers faults as a condition that results in a silent or near

silent neuron caused by low transmission probability (PR)

of a synapse. Faults in synapses that lead to reduced trans-

mission probability may be due to an external cause such as

sensor failures or internal faults such as SEUs in synaptic

connections. Repair is defined as the ability of the system

to restore firing rates. The proposed mechanism maintains

constant neural activity by increasing the clock rate for the

faulty neurons.

The rest of the paper is organized as follows. Section II

describes the background required for better understanding of

the paper. Section III presents the proposed idea of neuronal

self-tuning for homeostatic regulation of firing rates. Section V

presents experimental results establishing the effectiveness of

the proposed scheme. Finally, the paper concludes in Section

VI.



Fig. 1: Basic unit for self repair mediated by an astrocyte

Two neurons N1 and N2, each receive 10 synaptic inputs (S−1
to S − 10 and S − 11 to S − 20). A represents the astrocyte

connected to N1 and N2. The signals DSE−1 and DSE−2
are local to synapses connected to N1 and N2 respectively,

whereas eSP is a global signal associated with all synapses

connected to A.

II. BACKGROUND

A. Reduced Model of Bio-inspired Self Repair Unit

The detailed hardware model of the astrocyte-neuron self-

repairing unit is presented in [12]. In this work, we use

a simplification of this model which has greater than 90%
hardware efficiency compared to [12], and at the same time

achieves the same level of fault repair [7]. This model sim-

plifies the complex chemical processes inside an astrocyte

by retaining the key features of direct negative feedback and

indirect positive feedback in the self-repairing unit shown in

Fig. 1. The architecture consists of two neurons (N1 and N2)

and a common astrocyte (A). Each neuron is associated with

a set of synapses. In our experiments we use 10 synapses

for each neuron. The neurons are provided by input Poisson

spike trains. In addition to the spike inputs, the synapses

receive direct signaling (DSE) from the associated neuron and

indirect signaling (eSP ) from the associated astrocyte. There

is no spike transmission between N1 and N2. The synapses

associated with the two neurons are influenced by the common

signal eSP . The synapse processes the signals DSE and eSP ,

and makes a decision on the current to be injected into the

neuron. More details of this model is presented in [7].

B. Dynamic Partial Reconfiguration of Clock Generation Unit

DPR in clock management tiles of the FPGA provides a

way for generating custom clocks on the fly depending on the

requirements of applications. The usual techniques to generate

such custom clocks is to use some clock generation circuitry

such as the Phase Locked Loop (PLL) module or the Digital

Fig. 2: Illustration of proposed self-tuning methodology (A)

The maximum injected current falls at a time slot ∆t under one

of the current band Ii − Ij . The current falling in each bands

are mapped to corresponding operating frequencies of the

neural clock. As the maximum injected current falls in higher

order bands, corresponding mapped operating frequency of

the neuron decreases. (B) The neural self-tuning is performed

following three phases, namely, (1) monitoring the maximum

current injected to the neuron and making a decision based

on observed maximum current, (2) modeling of DCM tuning

parameters, and (3) performing DPR.

Clock Manager (DCM) module. The relation between the

input and output clock signals is given by

FCLKFX = FCLKIN ×
M

D
(1)

Where FCLKIN is the input clock signal to the DCM,

FCLKFX the corresponding synthesized clock signal, M

is a multiplication factor and D is a division factor. The

DPR capability of the FPGA allows modification of the M

and D values during runtime to synthesize different clock

frequencies. By controlling these parameters, various clock

frequencies can be synthesized on-the-fly. For more details,

see [13].

III. ASTROCYTE NEURON NETWORK INCORPORATING

DPR BASED SELF-TUNING

In addition to the reduced model discussed in section II-A,

the proposed architecture consists of two more components:

(a) A dynamically reconfigurable clock management unit, one

for each neuron in the system, (b) A global clock management

unit for generating the clock frequencies of components in the

architecture other than the neurons.

The working of the proposed system can be summarized as

follows: All synapses associated with a neuron are excitatory

in nature and they inject a constant amount of current (Iinj) to

the neuron. Based on the probabilistic nature of the synapse,

the total current injected to the neuron varies with time.

Considering a small duration for observation, the maximum

current injected to the neuron remains fairly constant in the

absence of synaptic faults. In the case of synaptic failures,

the maximum current injected to the neuron diminishes based

on the percentage of synaptic failures. All neurons in the



TABLE I: Current bands to clock frequency mapping for

neural self tuning: values derived empirically

Percentage of Imax DCM Neuron Clock

synaptic Fault range Parameters frequency(MHz)

M D

[0− 70)% (10.Iinj − 4.Iinj) 2 2 100
[70− 80)% (4.Iinj − 2.Iinj) 3 2 133
[80− 100)% (2.Iinj − 0) 3 1 200

system monitor the maximum current injected for a duration

∆t. Based on this observation, the neurons decides whether or

not to initiate a dynamic partial reconfiguration. This allows

the neuron to maintain a constant firing rate if the total injected

current reduces due to synaptic failures.

The self-repairing hardware paradigm presented in Fig. 2,

shows three phases of the hardware cycle required to per-

form neuronal self-tuning. The first phase is the learning

and decision-making phase. The neuron learns the maximum

current injected into it. Based on the maximum current injected

in each duration, neuron decides whether or not to perform a

DPR. To illustrate the self-tuning concept we first consider the

case where x out of 100 synapses associated with neuron N1

are faulty (PR=0.0). The maximum current that can flow to

neuron N1 (in the absence of an astrocyte) at any time during

the existence of a fault is (100−x)Iinj . The neuron monitors

the total injected current to obtain a baseline measurement.

Based on the maximum injected current, the neuron makes

a decision whether or not to undergo an operating frequency

change. If the maximum injected current in slot ∆ti varies

from that in slot ∆ti−1, a frequency change is desired. In

the second phase, the neuron formalizes the DCM tuning

parameters. The details and range of tuning parameters are

discussed in section II-B. The final phase is to perform DPR.

The neuron writes the DPR parameters to the reconfiguration

ports. This initiates a DPR at its associated clock management

unit.

We illustrate the proposed idea by dividing the input current

into three bands. The presence of an astrocyte is sufficient

to establish a repair if the fault in one of the neurons in a

two neuron system is up to 70%. Beyond this fault level, the

firing rate drastically reduces. Our approach tries to establish

a homeostatic regulation of firing rate beyond 70% faulty

synapses. Based on the experimental observation, we have

determined the required operating frequencies of the neuron

in the presence of faults higher than 70%. This is depicted in

Table I.

IV. APPLICATION

Our application of neural self-tuning is in robot navigation.

For instance, SNN based fault tolerance finds application in

robots working in noisy environments, in which, the inputs to

sensors are weak. This leads to low input signals– a condition

similar to low transmissions in synapses. Also, hardware faults

in synapses can also be recovered by this technique. The

presence of astrocyte in SNNs achieving fault tolerance in

the presence of synaptic failure has been demonstrated in [6].

In this work, the robot car cannot complete the straight line

Fig. 3: Network in Fig. 1 with fault levels (70− 100)% in

neuron N1. (A) absence of dynamic partial reconfiguration

of clock management cores (Astrocyte is present) (B) with

the dynamic partial reconfiguration of clock management

cores (Astrocyte and DPR).

moving task under the fault rate of 80% or higher. The work

proposed in this paper demonstrates higher fault tolerance

and the methodology is feasible in the presence of at least

one healthy synapse. Hence DPR based neural tuning is a

promising solution for robotics applications demanding fault

tolerance. More details of this work is presented in [14] with

detailed applications.

V. EXPERIMENTAL RESULTS

The hardware architectures support for homeostatic regula-

tion of neuronal firing rate was designed using Verilog HDL.

The designs were synthesized and implemented using Xilinx

ISE 14.7 CAD software.

A. Simulation Results to Demonstrate the Proposed Diagnos-

tic and Repair Process

The proposed architecture was simulated using the Xilinx

Isim simulator. Fig. 3 shows the homeostatic regulation of

firing rate. In our experiments, we introduced faults (by

lowering transmission probability of synapse) of 70% at time

500µs, 80% at time 1000µs, 90% at time 1500µs and 100%
at time 2000µs. As demonstrated in Fig. 3(A), the network

faces a loss in firing rate in case of faults higher than 70%
when using a Astrocyte only repair mechanism. We were able

to achieve a complete recovery of firing rates as long as a

single synapse is non-faulty. This is depicted in Fig. 3(B). We

can observe a dip in firing rate at the start of each repair. This

demonstrates the time required for establishing DPR.



TABLE II: Hardware utilization of the two neuron self-

repairing unit

Resource Slice Slice Reg LUT DSP DCM PLL

Neuron network 3139 1537 10403 20 0 0
Tuning circuitry 26 36 37 0 2 1

Total 3165 1573 10440 20 2 1

TABLE III: Pearson Correlation Coefficient

No fault vs 70%fault No fault vs 80%fault No fault vs 90%fault

0.999995 0.999995 0.999997

B. Hardware Results on Xilinx Virtex-V FPGA

The proposed methodology is implemented on the Xilinx

Virtex-V FPGA board. Recovery of firing rates in the proposed

methodology, implemented on the FPGA is monitored using

the Xilinx ChipScope Pro analyzer. Power estimation of the

circuits was carried out using Xilinx XPower Analyzer and

delay estimation using Xilinx Timing Analyzer. Estimated

total on-chip power dissipation of the overall architecture is

1.371W . Table II reports the hardware resource footprint of the

proposed model. As evident from these reports, the proposed

neural tunability for homeostatic regulation of neural firing

rate can be implemented with reduced hardware overhead and

power consumption.

C. Statistical Comparison

In our experiments, we incorporated multiple faults in the

synapses of the SANN system. We have used two ways to

compare the spiking activity of the system. One method is by

using Pearson correlation coefficient (Pearson’s r) [15]. Using

Pearson’s r we compare the timings of spike generation of the

system subjected to various grades of fault. Table III reports

the correlation between the spike times generated. From this

measure, it is evident that spike times generated by the system

have strong linear dependency (reported values are close to

1) with each other. Secondly, we analyse the histograms of

spike frequencies subjected to faults of various grades (his-

tograms not shown). The average spiking activity of the neuron

connected to faulty synapses for all test cases were centred

around mean 37 spikes, showing that the spikes generated are

analogous. We also observe a reduction in standard deviation

between the spike intervals as clock frequency increases. This

shows that the neuron fires more regular as its input frequency

increases. This is straight forward and finds explanation from

jittery behaviour of Xilinx DCM module [16] and also LIF

neuron model.

VI. CONCLUSION

In this paper, a novel methodology for homeostatic regula-

tion of neuronal firing rate is presented. In order to achieve

a complete recovery in the presence of a range of faults, we

utilize the DPR capability of clock management modules in

the FPGA. Beyond the capabilities of previous homeostatic

regulation of neural firing rate, a full recovery is achievable

in our design. The proposed design is appropriate for FPGA-

based applications running in environments that induce faults

in systems, where reliability is critical. This work opens new

directions in bio-inspired research.
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