A COMPARISON OF EMBEDDED RECONFIGURABLE VIDEO-PROCESSING
ARCHITECTURES

C. Claus, W. Stechele

Institute for Integrated Systems
Technische Universitit Miinchen
Theresienstrasse 90, Miinchen, Germany
Christopher.Claus @tum.de,
Walter.Stechele @tum.de

ABSTRACT

Using Field Programmable Gate Arrays (FPGAs) as accel-
erators for image or video processing operations and algo-

rithms has gained increasing attention over the last few years.

One reason for that is FPGAs are able to exploit both tem-
poral and spatial parallelism. In this paper two platforms
for FPGA-based real-time image and video processing are
presented and compared against each other. With both of
these platforms it is possible to update the physical resources
during run-time by exploiting the dynamic partial reconfi-
guration capabilities of Xilinx Virtex FPGAs. The analysis
of both platforms with respect to their benefits and draw-
backs has led to the concept of an optimal FPGA-based dy-
namically and partially reconfigurable platform for real-time
video and image processing.

1. INTRODUCTION AND RELATED WORK

To exploit the benefits of FPGAs in the image processing
domain is an ongoing field of research. The authors in [1]
analyzed the requirements of video processing systems with
respect to the available embedded memory resources (RAM
Blocks) on an FPGA. The usage of large RAMs might result
in unused memory in the allocated Block RAM resources
which can be avoided using an time-multiplexed architec-
ture. In [2] the author describes the implementation of so-
phisticated imaging modules on low-cost devices such as
Spartan3. The benefits are mentioned when using FPGAs
in the context of image enhancement technology for dis-
play applications. The FlexFilm architecture [3] is used for
computationally intensive digital film processing. It is pos-
sible to process images with a resolution of 2048x2048 pix-
els in real-time. This architecture is an extensible FPGA
based system. Each processing element consists of four
Xilinx Virtex-II Pro FPGAs each equipped with 4 gigabit
on-board DDR SDRAM. Several processing elements can

978-1-4244-1961-6/08/$25.00 ©2008 IEEE.

587

M. Kovatsch, J. Angermeier, J. Teich

Department of Computer Science 12
University of Erlangen-Nuremberg
Am Weichselgarten 3, Erlangen, Germany
Matthias.Kovatsch @informatik.uni-erlangen.de,
Josef.Angermeier @informatik.uni-erlangen.de,
Juergen.Teich @informatik.uni-erlangen.de

be interconnected via PCI-Express. There are many pub-
lications which describe how dynamic partial reconfigur-
ation can be exploited in fine-grained FPGA-based image-
and video-processing systems. Most of them present rather
concepts than an actual implementation of the proposed ap-
proach.

Sometimes it is meaningful and necessary to divide the
algorithms for image or video processing into a hardware
and software part. This is especially beneficial if the algo-
rithms are not standardized and quick changes have to be
made quite often. In that case only the performance intense
parts, that are not meant to be changed, are implemented in
hardware using a fine-grained processor array. An example
for such computationally intense parts is the extraction of
feature points (corners or lightspots) or image segmenting.
The remainder of the algorithms can be implemented in soft-
ware on general purpose CPUs to allow quick updates with-
out re-synthesizing the whole system as required by pure
hardware implementations. Thus a combination of proces-
sors for post-processing and a fine-grained processor array
for pre-processing is favourable. In this paper two platforms
and architectures for real-time video processing on reconfi-
gurable hardware are presented. In order to compare these
two platforms, an algorithm from the AutoVision project [4]
to detect cars in dark environments, which is described in de-
tail in [5], was partitioned into a hardware and software part
and implemented on the Erlangen Slot Machine (ESM) [6]
and on an XUP board from Xilinx.

The paper is organized in the following manner: In sec-
tions 2 and 3 the HW acceleration on the ESM and the dataflow
through the system are described. In sections 4 and 5 the
HW acceleration and the dataflow on the XUP board are
explained respectively. The benefits of both platforms are
combined and an optimal platform is proposed in section 6.
Finally, section 7 concludes this paper with an outlook on
future research activities.

2. HARDWARE ACCELERATION ON ESM

The main idea of the ESM [7] is to accelerate the application
development as well as the research in the area of partially
reconfigurable hardware (see Figure 1).

MotherBoard

| Peripherals |

Fig. 1. ESM architecture overview.

The hardware implementation on the Main FPGA con-

sists of a deinterlacer, filter specific logic, a module for hardware-

software-communication with the PowerPC, and output logic.
The convolution part inside the filter specific logic can be

compared to the hardware accelerator of the AutoVision project.

As a result, the used resources on the Virtex-II 6000, given
in table 1, exceed those of the implementation on the XUP
board.

Number of Slices: 8051 outof 33792 23%
Number of Slice Flip Flops: 2979 outof 67584 4%

Number of 4 input LUTs: 14142 outof 67584 20%
Number of BRAMs: 55 outof 144 38%

Minimum period: 7.116ns (Maximum Frequency: 60.520MHz)

Table 1. Device Utilization on an xc2v6000 and timing
summary of the hardware module

Additionally, SRAM memory directly attached to the
top of the Main FPGA is engaged for deinterlacing the cam-
era pixels and as buffer for the video engine modules. In
case of the taillight detection module a complete, but down-
sampled frame is stored, due to the fact that the number
of BRAMs available on the Virtex-II 6000 limits the im-
age size. However, this drawback can be eliminated by the
use of convolution FIFOs which has already been tested in
other video filters on the ESM. Here, the number of buffered
lines can be freely configured. With the same utilization
of BRAMs and 8bit color depth for instance, 37 lines with
2048 pixels each could be stored. Moreover, it should be
mentioned that the ESM is capable to run other hardware
modules in parallel since the video processing only occu-
pies a bit more than half of the chip area. They can be par-
tially reconfigured without interrupting the video filter. The

588

same applies the other way around. Here, only the engine
specific logic has to be replaced. The partial reconfiguration
is handled by the Reconfiguration Manager FPGA which
can directly load bitfiles from an attached flash memory (see
Figure 1).

3. DATAFLOW ON THE ESM

The arriving interlaced frames from the video input pro-
cessor are buffered in the SRAM memory and deinterlaced
on the Main FPGA, before they are forwarded to the video
filter. Since the deinterlacer passes RGB data to support
any kind of filter, a conversion to grayscale is done and a
copy of the image is down- sampled to 320x240 pixels to
be stored in the BRAMs. The displayed video itself remains
at 640x480 pixels. To do the matrix convolution, 16 par-
allel, dual-ported BRAMs are used which allow to access
32 pixels simultaneously. One pixel per clock cycle is pro-
cessed and buffered in the external SRAM afterwards. In
the next step the feature points from the convoluted image
in the SRAM are extracted and sent to the PowerPC over the
hardware-software-communication.

After all points were received and evaluated the result is
sent back to the Main FPGA as a parameterized list of ob-
jects which must be incorporated into the video stream. This
is done by the visualization routine, which draws the results
of the feature point extraction into the image. Here, the pro-
cessing of the video engine ends and an output logic relays
the video stream and control signals to the framebuffer back
through the Crossbar. As framebuffer a Spartan-IIE400 is
used, which operates two SDRAM S, that are used to buffer
the image for the RAMDAC. After a complete processed
frame is received it can finally be displayed.

Image color theoretical proc. measured proc.
Resolution depth time (50Mhz) time (50Mhz)
320x240 8 1.536 ms 1.55 ms
384x288 8 2.211 ms 2.23 ms

Table 2. Theoretical and measured performance on the ESM

The performance measurements in table 2 are related to
the matrix convolution of the filter module. As more proces-
sing is done in hardware and no bus is involved, the system
can be run at a lower frequency and still meet real-time con-
ditions. The theoretical processing time is calculated from
the number of pixels times the cycle time (20 ns in this case).

The big FPGA on the ESM offers enough room to exe-
cute other hardware tasks on it. The reconfigurable resource
may be used more efficiently because of the more flexible
placement. Due to the crossbar connector, the video engines
can be placed at different positions and dynamically route
the IO peripherals to the the corresponding hardware mod-
ule locations.

4. HARDWARE ACCELERATION ON XUP

Instead of storing complete images in the precious on-chip
memory (BRAMs), in the AutoVision architecture a local
memory is used to store up to sixteen complete image lines
for operations on pixels and their neighborhood. This de-
creases the number of utilized BRAMs significantly as can
be seen in table 4.

Number of Slices: 2884 outof 13696 21%
Number of Slice Flip Flops: 2803 outof 27392 10%
Number of 4 input LUTs: 4932 outof 27392 18%
Number of BRAMs: 36 outof 136 26%

Minimum period: 8.752ns (Maximum Frequency: 114.266MHz)

Table 3. Device Utilization on a XC2VP30 and timing sum-
mary of the HWaccelerator without PLB interface

This values are related to a HW accelerator for taillight
detection that is able to process 8 bit pixels. It is config-
urable to support also 16, 32 or 64 bit pixel, which is neces-
sary if along with the pixel data some additional data has to
be transferred. In its local memory 16 complete image lines
(each up to 1024 pixels) can be stored which is sufficient for
a 15x15 pixel neighborhood. In addition the HW accelera-
tor is attached to the PLB via a Master interface with DMA
capabilities. The DMA transfers greatly offload the CPUs.
This architecture with one or more central busses and the
on-chip CPU enables the possibility to access the pixel data
from both HW accelerator and CPU. This is especially bene-
ficial, if the software part of the algorithm has to access pixel
data again, e.g. when a license plate between two taillights
has to be found. In addition it is possible to draw detected
features or objects directly into the result image from the
software. One drawback is that no separate framebuffer is
available. The video input sends 25 frames per second to
the main memory. If an output rate of 60 Hz is considered,
this means that every frame has to be transferred 2.4 times
over the PLB to be displayed on a monitor. This drastically
increases the busload, which could be avoided using an off-
chip framebuffer. In that case the image has to be transferred
over the PLB only once.

5. DATAFLOW ON THE XUP BOARD

First, the grayscale images taken by a camera are converted
from analog to digital and transferred into the DDR SDRAM
using burst transfers. Image sizes with a resolution up to
1024x1024 pixels are supported. In Figure 2 a block dia-
gram of the system is shown.

After a complete image was transferred to the DDR SDRAM

a hardware accelerator engine can access the corresponding
pixels, process them and write them back.

589

DCR

OPB2PLB| |PLB20PB
Bridge Bridge

memory
contrl.

OPB

Fig. 2. Blockdiagram of the AutoVision architecture on an
XC2VP30 FPGA

The accelerator engine can be seen as a wrapper around
a user logic. The engine is responsible for read and write
transfers of pixel data from and to the DDR SDRAM. The
user logic determines if the hardware accelerator is responsi-
ble for e.g. taillight detection. Compared to the remainder of
the engine, the user logic can be seen as separate module, be-
cause it includes the actual pixel processing operation. Due
to inherent parallelism it possible to process a single pixel
together with its neighborhood in one clock cycle. Some of
the performance measurements are shown in table 4.

Image color theoretical proc. measured proc.
Resolution depth time (100Mhz) time (100Mhz)
320x240 8 0.768 ms 0.801 ms
640x480 8 3.072 ms 3.145 ms

Table 4. Theoretical and measured performance on the XUP
board

The theoretical processing time is calculated from the
number of pixels times the cycle time (10 ns in this case).
As can be seen in table 4 the measured time to process one
image is just slightly higher than the theoretical processing
time. This is due to the fact that the input local memory has
to be filled before processing the first pixel and the some
additional time is required to write the processed pixel back
into the DDR SDRAM.

The DDR SDRAM is also the desired place to store the
configuration information namely the bitstream data. Using
the concept described above it is also possible to modify the
bitstream data via software if desired. One PPC is responsi-
ble for the configuration management. But instead of man-
aging the transfer data from the memory to the configuration
port, the PPC just sends the start address of the bitstream in
the memory along with the number of 128 byte bursts to be
performed to the ICAP controller, an IP core responsible for
the reconfiguration. The ICAP controller is a bus master on
the PLB. After it has obtained the necessary data from the
PPC it fetches the bitstream data using direct memory ac-
cess.

6. AN OPTIMAL PLATFORM FOR
RECONFIGURABLE EMBEDDED VIDEO
PROCESSING

The examination of both platforms along with their benefits
and drawbacks has led to the idea of an optimal platform for
reconfigurable embedded video processing which combines
the advantages while avoiding the disadvantages. First, of
all dedicated hardware managing the video input data and
the deinterlacing process should be spent. If the video input
data arrives in analog format the hardware should digitize
all incoming video signals and provide the data to the main
board. In addition if two half frames (fields) arrive the ded-
icated hardware should be capable to deinterlace the video
data in a way that "tearing” effects (motion artefacts) are re-
duced to a minimum. Another solution would be to use full
frames in already digitized data as provided e.g. by a stan-
dard webcam. In that case the dedicated hardware should
include a JPEG decompressor so that the pixel data can be
stored in the on-board memory in raw format. The results
for embedded video processing have shown that it is ben-
eficial to use fast RAM (on-chip block RAM) for convolu-
tion. Instead of loading the same pixel various times from
the main memory, storing a few pixel lines inside a local
memory attached to the hardware accelerator provides a re-
source efficient alternative, which is almost as fast as storing
the complete image inside the precious on-chip block RAM.
Therefore the optimal platform should comprehend enough
block RAM distributed over the whole FPGA to place the
hardware accelerators at any desired location. To enable the
access to the image data from both, hardware and software,
a on-chip CPU is beneficial. A central bus or crossbar which
connects the main memory, the CPU and the accelerator is
one possible solution.

One necessary and important design consideration is to
use a random access framebuffer to display image data on
a monitor using standard frequencies. This is necessary in
order to cope with the problem that the image data has to be
transferred multiple times over a central bus or crossbar if
the output frequency (60 Hz, 75 Hz etc.) is higher than the
input frequency (25 Hz, 30 Hz etc.). As soon as an image
has been processed it can be written to the framebuffer and
the data can be sent to the output at any desired frequency.
By using dedicated hardware for the video input and such a
frame buffer, the designer does not have to take care about
how the image data is coming onto the board and how the
processed data is displayed. Hence, the designer could con-
centrate on the development of the accelerators.

Independent if an on-chip CPU or a separate FPGA for
reconfiguration management is used, one has to make sure
that the reconfiguration is as fast as possible so that during
this process no image frame is dropped. This requires that
either the Internal Configuration Access Port or the Select
MAP interface has to be fed with the maximum number of

590

bytes of configuration data each clock cycle. Thus, the la-
tency to access the memory, where the configuration data is
stored, should be minimized.

7. CONCLUSION AND FURTHER WORK

In this paper two different platforms for video-processing
using dynamic partial reconfiguration were presented. The
results show that both platform are useful but dependant on
the application to be performed. On the ESM the reconfi-
guration of modules is more easy. By contrast, on the XUP
board a mixed HW/SW infrastructure with higher clock fre-
quencies is easier to implement on the XUP board, due to
on-chip CPU hardcores. As both platforms have their advan-
tages and disadvantages the authors have proposed an opti-
mal platform for embedded reconfigurable video processing
that combines the advantages of both platforms to easy the
development of hardware accelerators.

In future it is planned to further improve the sharing
of hardware and software sources of the implementations
on both platforms. Increased modularization into platform
dependent and independent parts, respectively, will help to
easily port new video engine modules between the different
platforms.

8. REFERENCES

[1] N. Lawal and M. ONils, “Embedded FPGA memory require-
ments for real-time video processing applications,” NORCHIP
Conference, 2005. 23rd, pp. 206209, Nov. 2005.

M. Tusch, “High-Performance Image Processing on FPGAs,”
Xcell Journal, vol. 57, no. 2, pp. 42-44, Apr. 2006.

A. do Carmo Lucas, S. Heithecker, P. Ruffer, R. Ernst,
H. Ruckert, G. Wischermann, K. Gebel, R. Fach, W. Huther,
S. Eichner, and G. Scheller, “A reconfigurable HW/SW plat-
form for computation intensive high-resolution real-time dig-
ital film applications,” in Proceedings of DATE’06, Munich,
Germany, Mar. 2006, pp. 1-6.

C. Claus, W. Stechele, and A. Herkersdorf, “Autovision -
A Run-time Reconfigurable MPSoC Architecture for Future
Driver Assistance Systems,” Information Technology, vol. 49,
no. 3, pp. 181-186, June 2007.

N. Alt, C. Claus, and W. Stechele, “Hardware/software ar-
chitecture of an algorithm for vision-based real-time vehicle
detection in dark environments,” in Proceedings of DATE 08,
Munich, Germany, Mar. 2008, pp. 176-181.

J. Angermeier, U. Batzer, M. Majer, J. Teich, C. Claus, and
W. Stechele, “Reconfigurable HW/SW Architecture of a Real-
Time Driver Assistance System,” in Proceedings of ARC’0S,
London, U.K., Mar. 2008.

J. Angermeier, D. Gohringer, M. Majer, J. Teich, S. P. Fekete,
and J. V. der Veen, “The Erlangen Slot Machine - A Platform
for Interdisciplinary Research in Dynamically Reconfigurable
Computing,” Information Technology, vol. 49, pp. 143-149,
June 2007.

(2]

(3]

(4]

(3]

(6]

(71

