
ar
X

iv
:2

40
4.

14
15

9v
2

 [
cs

.D
S]

 9
 O

ct
 2

02
4

Semirandom Planted Clique

and the Restricted Isometry Property

Jarosław Błasiok

jaroslaw.blasiok@inf.ethz.ch

ETH Zürich

Rares-Darius Buhai

rares.buhai@inf.ethz.ch

ETH Zürich

Pravesh K. Kothari

kothari@cs.princeton.edu

IAS & Princeton University

David Steurer

dsteurer@inf.ethz.ch

ETH Zürich

October 10, 2024

Abstract

We give a simple, greedy$(=$+0.5) = $(=2.872)-time algorithm to list-decode planted cliques

in a semirandom model introduced in [CSV17] (following [FK01]) that succeeds whenever the

size of the planted clique is : ≥ $(
√
= log2 =). In the model, the edges touching the vertices

in the planted :-clique are drawn independently with probability ? = 1/2 while the edges not

touching the planted clique are chosen by an adversary in response to the random choices. Our

result shows that the computational threshold in the semirandom setting is within a $(log2 =)
factor of the information-theoretic one [Ste17] thus resolving an open question of Steinhardt.

This threshold also essentially matches the conjectured computational threshold for the well-

studied special case of fully random planted clique.

All previous algorithms [CSV17, MMT20, BKS23] in this model are based on rather sophisti-

cated rounding algorithms for entropy-constrained semidefinite programming relaxations and

their sum-of-squares strengthenings and the best known guarantee is a =$(1/�)-time algorithm

to list-decode planted cliques of size : ≥ $̃(=1/2+�). In particular, the guarantee trivializes to

quasi-polynomial time if the planted clique is of size $(
√
= polylog =). Our algorithm achieves

an almost optimal guarantee with a surprisingly simple greedy algorithm.

The prior state-of-the-art algorithmic result above is based on a reduction to certifying

bounds on the size of unbalanced bicliques in random graphs — closely related to certifying

the restricted isometry property (RIP) of certain random matrices and known to be hard in the

low-degree polynomial model. Our key idea is a new approach that relies on the truth of —

but not efficient certificates for — RIP of a new class of matrices built from the input graphs.

http://arxiv.org/abs/2404.14159v2

1 Introduction

Finding planted cliques [Jer92, Kuc95] in Erdős-Rényi random graphs �(=, 1/2) is a well-studied

average-case variant of the notoriously hard clique problem. The added clique is uniquely identi-

fiable with high probability (and recoverable via a brute-force quasi-polynomial time algorithm)

whenever it has size : ≫ 2 log =. However, the best known efficient algorithms require : ≫
√
=.

The algorithms themselves are rather simple. The simple greedy degree heuristic of reporting the

: largest-degree vertices works if : ≫
√
= log = and the

√
log = factor can be shaved off by a natural

spectral algorithm [AKS98]. Lower bounds in restricted models [BHK+16, FGR+17] provide evi-

dence that efficient algorithms cannot beat the
√
= threshold and this information-computation gap

is the fountainhead of several hardness results in average-case optimization [BBH18, BB20].

The simple algorithms above for finding planted cliques are rather brittle — modifying only

$(:2) edges that do not even touch the planted clique is enough to completely break their guar-

antees. To disallow such brittle heuristics that tend to “overfit” to the specific idealized random

model, Feige and Kilian [FK01] introduced semirandom models [Fei19] for the planted clique prob-

lem (following the seminal work of Blum and Spencer [BS95]). The input graph in their model is

chosen by a combination of benign random and adaptive adversarial choices that preclude brittle

heuristics while still hopefully steering clear of the worst-case hard instances. Such a semirandom

model is the main focus of this work:

Definition 1.1 (Semirandom planted clique, SRPC(=, :, ?) [CSV17]). To an empty graph �([=], �):

1. Plant a clique: Plant a clique on an arbitrary subset of vertices (∗ ⊆ [=] with |(∗ | = :.

2. Include cut edges at random: Add each edge in cut((∗) independently with probability ?.

3. Choose rest of the edges adversarially: Adaptively choose any induced graph on [=] \ (∗.

In the fully random planted clique setting, the edges in the third step are also chosen at random.

Note further that the adversarial choice is adaptive, i.e., made in response to the random choice

in the second step. Approximating the maximum clique in such a graph is clearly as hard as the

worst-case variant [Hås99, Zuc07], since in the third step we can simply plant a worst-case hard

instance on [=] \ (∗. The “right” goal, instead, is to find a :-clique in the input graph. In fact, all

known algorithms focus on the formally stronger goal of finding a small (∼ =/: in the strongest

possible results) list of :-cliques guaranteed to contain (∗. This list-decoding goal relaxes the usual

unique recovery goal that is clearly impossible in the semirandom model.

A new course of progress on the problem was begun in [CSV17] who gave a polynomial-time

algorithm based on rounding an appropriate semidefinite programming relaxation that works

whenever : ≥ $(=2/3 log1/3 =). McKenzie, Mehta and Trevisan [MMT20] improved this threshold

by logarithmic factors to : ≥ $(=2/3). Recently [BKS23] made further progress by finding an

=$(1/�)-time algorithm that succeeds whenever the planted clique has size : ≥ =1/2+� for any

� > 0. The results in the latter two works also tolerate a monotone adversary that can delete

an arbitrary subset of edges in cut((∗). On the flip side, Steinhardt [Ste17] proved that if : =

>(
√
=) it is information-theoretically impossible to recover a list of size $(=/:) that is guaranteed to

1

contain the planted clique with high probability.1 2 That is, the information-theoretic threshold

for the natural estimation task is shifted from ⌈2 log2 =⌉ to ∼
√
= in the semirandom model. If this

threshold were also achievable by a polynomial-time algorithm, Steinhardt noted, then the widely

conjectured information-computation gap in the fully random planted clique problem disappears

for the natural robust version of the problem studied in this (and his) work. With this motivation,

Steinhardt [Ste17] (and for a closely related variant, Feige [Fei19]) explicitly poses the natural

question of whether semirandom planted clique admits an efficient algorithm at : ∼ $̃(
√
=).

When : =
√
= polylog =, the state-of-the-art algorithm above devolves into a near-brute-

force running time of =$(log =/log log =). Further, even for : ≥ =1/2+�, all the known results

above [CSV17, MMT20, BKS23] are based on rather sophisticated rounding algorithms for semidef-

inite programming relaxations (and their sum-of-squares strengthenings) with entropy maximiza-

tion constraints. This raises the natural question of whether simple heuristics could succeed at

: = $̃(
√
=) or at least match the best known results.

This work. In this work, we give a surprisingly simple greedy algorithm that finds a list of size

(1 + >(1))=/: containing the planted clique with high probability, whenever : ≥ $(
√
= log2 =),

essentially resolving Steinhardt’s question. Our algorithm admits an optimized implementation

via black-box usage of fast matrix multiplication and runs in time $(=$+0.5) = $(=2.872).

Theorem 1.2 (Main result). There is an $(=$+0.5)-time algorithm, where $ ≤ 2.372 is the matrix

multiplication exponent, that takes as input a graph � ∼ SRPC(=, :, 1/2) and, if : ≥ $(
√
= log2 =),

outputs a list of :-cliques of size (1 + >(1))=/: such that, with probability at least 0.99 over the draw of �

and the random choices of the algorithm, (∗ is contained in the list.

Observe that our result comes within a $(log2 =) factor of the information-theoretic lower

bound [Ste17].3 Theorem 4.1 presents an appropriate generalization to SRPC(=, :, ?) for arbitrary

? that improves upon the bound on : in previous results when ? ≤ 1 − =−0.01.

A new connection to RIP. Our algorithm relies on a new connection to the restricted isometry

property4 of a certain =$(1)-size matrix built from the graph that relies only on the randomness

of the edges in the cut defined by the planted clique. We show how to relate the success of a

simple greedy algorithm to the RIP property of this matrix that, crucially, does not need any efficient

certificates for the RIP itself. This is crucial because we need the RIP property in the near optimal

(and conjecturally, hard to efficiently certify) parameter regimes.

1Observe that a disjoint union of :-cliques with all the remaining edges chosen independently with probability 1/2

is a valid input instance in the model, with =/: indistinguishable :-cliques. Thus, the minimum list size possible is

≥ =/:.
2The lower bound instance formally adds a clique that is slightly larger than : — hence, the input : is a lower bound

on the size of the planted clique. All algorithmic results including ours easily generalize to only need a lower bound on

size of the planted clique.

3Steinhardt suggests that the lower bound on the threshold can possibly be improved to : ≥ $(
√
= log =) — the

threshold at which the natural quasi-polynomial time brute-force algorithm works. This would make the threshold of

our algorithm off by a log1.5 = factor.
4An < × = matrix � is said to satisfy (A, �)-RIP if for every A-sparse vector E, ‖�E‖2 ∈ (1 ± �) ‖E‖2.

2

To put this discussion in proper context, recall that the fully-random planted clique problem is

closely related to efficiently certifying sparse quadratic forms (i.e., certifying upper bounds on E⊤�E
for the adjacency matrix � of the input graph and sparse E) or sparse PCA but these reductions also

produce instances in the conjectured hard regimes [BR13b, HKP+17, KZ14a]. Indeed, such results

are usually interpreted as hardness results for certifying the RIP and bounds on sparse quadratic

forms (assuming the planted clique conjecture). To use such reductions algorithmically, we need

efficient certificates of RIP in conjectured hard parameter regimes [BDMS13, KZ14b, DKWB21]5.

As an important special case, we note that the problem of certifying bounds on the biclique

numbers of random graphs that forms the crux of the approach for semirandom planted clique

in [BKS23] also reduces to certifying RIP in the conjectured hard regime.

Our reduction, in contrast, shows how to solve the semirandom planted clique problem as

long as some matrices (rather different from the ones arising in the above reductions) built from

the input graph satisfy RIP. Crucially, we do not need efficient certificates of RIP — this important

difference allows our approach to obtain a significantly better guarantee in this work.

Monotone deletions. As we noted above, while the original work of Charikar, Steinhardt and

Valiant [CSV17], the open question of Steinhardt [Ste17], and the lower bound [Ste17] are all

phrased about the model studied in this paper, the results in [MMT20, BKS23] tolerate, in addition,

an adversary that can delete an arbitrary subset of edges in cut((∗) [FK01]. Our approach needs

certificates of RIP (in the conjectured hard regime) to tolerate such a monotone adversary. A similar

bottleneck prevents algorithms based on certifying biclique numbers to reach the : =
√
= polylog =

threshold. This is made formal via low-degree polynomial lower bounds in [BKS23].

Our result raises an intriguing possibility of a shift in the computational threshold for a natural

estimation problem due to a monotone adversary. This is in contrast to the intriguing work of

Moitra, Perry and Wein [MPW16] who showed that the information-theoretic threshold for community

detection in the stochastic block model does shift under a monotone adversary.

2 Overview of our algorithm

In this section we give a brief overview of our approach for semirandom planted clique. As in the

prior work [BKS23] (see Lemma B.3 in the Appendix), when : ≥ $(
√
= log =) we can prune any

polynomial-size list containing (∗ down to size (1 + >(1))=/: without removing (∗. This can be

achieved by removing from the list all cliques that have intersection larger than Ω(log =) with any

other clique in the list. Therefore we will focus on how to recover a list of :-cliques containing (∗

of polynomial size.

Recalling the approach of [BKS23]. Before describing our approach, let us recall the key idea

in the prior state-of-the-art [BKS23] that gave a polynomial-time algorithm that works whenever

5For example, while an < × = matrix with independent ±1/
√
< entries is known to be (A, 0.1)-RIP for A ∼

Ω(</log(=/<)), efficiently certifying such a fact is conjectured to be hard [BDMS13, KZ14b, DKWB21].

3

: ≥ =1/2+� for an arbitrary constant � > 0. Their main idea is a reduction (within the sum-of-

squares framework) to efficiently “certifying” bounds on the biclique numbers of bipartite random

graphs. In particular, in order for their algorithm to succeed at : = $̃(
√
=), they need a constant-

degree sum-of-squares certificate (roughly, polynomial-time verifiable via an SDP relaxation) that

a : × = bipartite random graph (each edge included independently with probability 1/2) has no

$(log� =) × : bipartite clique in it for � = $(1) (with high probability). Crucially, they need

certificates even for the model without monotone deletions. This certification task is naturally related

(and, in fact, reduces) to certifying the restricted isometry property of matrices built from the

bipartite random graph in the conjectured-to-be-hard regime [BDMS13, KZ14b]. Unfortunately,

they also show that certifying such biclique numbers likely suffers from information-computation

gaps by establishing lower bounds in the low-degree polynomial model, and thus appear to run

into an inherent barrier in obtaining algorithms that work when : =
√
= log$(1)(=).

Our main idea is a new approach that circumvents the need for certificates on the biclique

number of bipartite random graphs altogether and succeeds with just the truth of (but without

efficient certificates for) the restricted isometry property. Our approach leads to an algorithm that

does not need semidefinite programming and is based on a simple, efficient, greedy procedure,

the correctness of which relies on the RIP of a natural matrix built from the input graph. In the

following, we explain how to build up to this procedure by starting with a naive greedy procedure.

2.1 The naive greedy algorithm

We let � denote the ±1-adjacency matrix of the graph �, i.e., �(8 , 9) = 1 iff {8 , 9} is an edge in �.

We also let �8 be the 8-th row of �, �in
8

∈ {±1}: be the projection of �8 to coordinates in (∗, and

�out
8

∈ {±1}=−: the projection of �8 to coordinates in [=] \ (∗.
Let us make the simple observation that �8 and � 9 are non-trivially correlated if 8 and 9 both

are in (∗. Indeed, we have 〈�8 , � 9〉 = 〈�in
8
, �in

9
〉 + 〈�out

8
, �out

9
〉. Since 8 , 9 ∈ (∗, the first term is

clearly :. Further, since every edge in cut((∗) is chosen independently to be in � with probability

1/2, �out
8

and �out
9

are uniformly random and independent elements of {±1}=−: and thus, with

1 − 1/=$(1) probability over the draw of edges in cut((∗), |〈�out
8
, �out

9
〉 | ≤ $(

√
= log =). Thus,

〈�8 , � 9〉 ≥ : ± $(
√
= log =) ≥ :/2 if : ≥ $(

√
= log =).

This observation naturally suggests the following simple algorithm:

Naive greedy procedure: For a uniformly random 8 ∈ [=], add (8 = { 9 : 〈�8 , � 9〉 ≥ :/2} to the list.

We choose an 8 ∈ (∗ with probability :/= and, thus, repeating the above procedure $(=/:)
times ensures that with probability at least 0.99 we pick some 8 ∈ (∗. From the above correlation

computation, (∗ ⊆ (8 for any 8 ∈ (∗. Could such an (8 contain a 9 ∉ (∗?
For an 8 ∈ (∗ and 9 ∉ (∗, we can write 〈�8 , � 9〉 = 〈�in

8
, �in

9
〉 + 〈�out

8
, �out

9
〉. The first term is at

most $(
√
: log =) with high probability. However, we have little control on the second term since

�out
9

is chosen by an adversary (in response to the random choice of edges in cut((∗)). In fact, it

turns out that the adversary can arrange (multiple!) 9 ∉ (∗ such that 〈�8 , � 9〉 ≫ : simultaneously for

4

≥ $(=2/:2) different 8 ∈ (∗ — see Lemma C.1. Notice that =2/:2 ≫ : if : = $̃(
√
=), in which case

the adversary can ensure that every 8 ∈ (∗ fails to produce (8 = (∗ in the above greedy algorithm.

Analyzing naive greedy algorithm for : ≥ $̃(=3/4). While the naive greedy procedure fails for

: = $̃(
√
=), we now argue that it does succeed for : ≥ $̃(=3/4). This will form the starting point of

our new approach.

The following simple lemma uses standard bounds on random matrices to control the number

of spurious 9 ∉ (∗ that can be in (8 for 8 ∈ (∗.

Lemma 2.1. Let E1 , E2, . . . , E: ∈ {±1}= be uniformly random and independent vectors for : ≥ $(
√
= log =).

Then with probability at least 1 − 1/= over the draw of vectors E8 , for every D ∈ {±1}= there are at most

$(=2/:2) vectors E8 such that 〈D, E8〉 ≥ :/3.

Proof of Lemma 2.1. Consider the = × : matrix � with columns E1 , E2, . . . , E: . Then, by standard

results in random matrix theory, ‖�‖2 ≤ $(
√
=+

√
:) with probability 1−1/=. Let ℬ ⊆ [:] be such

that, for every 8 ∈ ℬ, 〈D, E8〉 ≥ :/3. Then, by the Cauchy-Schwartz inequality, we have

〈D, �1ℬ〉 ≤ ‖D‖2‖�1ℬ ‖2 ≤
√
=
√
|ℬ|‖�‖2 ≤ $(=

√
ℬ) .

On the other hand, by the choice of set ℬ, we have

〈D, �1ℬ〉 =
∑
8∈ℬ

〈D, E8〉 ≥ |ℬ|:/3 .

Combining those two inequalities and rearranging, we get |ℬ| ≤ $(=2/:2). �

Using this lemma, it is easy to show that if : ≫ =3/4 then for a uniformly random 8 ∈ (∗ we

have |(8 \ (∗ | ≤ >(:): We apply Lemma 2.1 with vectors �out
8

for 8 ∈ (∗ — each a uniformly random

and independent element of {±1}=−: . Then, taking D = �out
9

for any 9 ∈ [=], we know that there

are at most $(=2/:2) different 8 ∈ (∗ such that 〈�out
8
, �out

9
〉 ≥ :/3. Thus, there are in total $(=3/:2)

pairs (8 , 9) such that 8 ∈ (∗ and 9 ∉ (∗ with 〈�8 , � 9〉 ≥ :/2 ≥ :/3 + $(
√
: log =). In particular, by

averaging, a uniformly random 8 ∈ (∗ satisfies 〈�8 , � 9〉 ≥ :/2 for at most �=3/:3 different 9 ∉ (∗

(for some fixed constant � > 0) with probability at least 0.99. If : ≫ $(=3/:3) (e.g., if : ≥ $(=3/4)),
then |(8 \ (∗ | ≤ >(:). Finally, from any such set (8 ⊇ (∗ that has at most >(|(∗ |) erroneous elements,

one can obtain (∗ by a simple pruning procedure — for instance by keeping only vertices that have

at least : − 1 neighbors in (8 (see, e.g., Claim 5.9 on page 35 of [BKS23]).

2.2 Tensoring twice: greedy matches the guarantees of [BKS23]

The simple greedy procedure above 1) relies on standard spectral norm bounds on random matrices

with independent entries and 2) gets stuck at : ≥ $̃(=3/4). We now show how to obtain an algorithm

that works for any : ≥ =1/2+� in time =$(1/�), matching the guarantees of [BKS23] via a simple

greedy algorithm analogous to the one in previous subsection.

5

For
 ⊂ [=] of size |
 | = 2, let �
 ∈ {±1}= be the vector so that �
(8) = �
1,8 · �
2,8 . That is,

�
(8) is the product of the ±1-indicators of the two edges (
1, 8) and (
2 , 8). Note that �
 is the

Hadamard (and not the tensor) product of �
1 and �
2 .

Similarly to the previous section, it is easy to observe that for every
,
′ ⊂ (∗, 〈�
 , �
′〉 ≥ :/2

if : ≥ $(
√
= log =). This motivates the following generalization of the greedy procedure above:

“Tensored” greedy procedure: For a uniformly random
 ∈
([=]

2

)
, add (
 = {8 : 〈�8 , �
〉 ≥ :/2} to

the list.

Let us analyze this algorithm. The same argument as before shows that (
 ⊇ (∗ if
 ⊂ (∗.
Further, a uniformly random
 is in (∗ with probability (:/=)2, so repeating the above procedure

$(=/:)2 times includes a uniformly random sample of
 ⊂ (∗.
We will now provide a generalization of Lemma 2.1 with no change in parameters that allows

reasoning about |(
 \ (∗ |. The proof, however, will rely on the RIP instead of the straightforward

spectral norm argument above.

Lemma 2.2. Let E1 , E2, . . . , E: ∈ {±1}= be uniformly random and independent vectors for : ≥ $(
√
= log =)

and let E
 ∈ {±1}= for
 ⊂ [:] of size |
 | = 2 be defined by E
(8) = E
1(8)E
2(8) for every 8. Then with

probability at least 1 − 1/= over the draw of vectors E8 , for every D ∈ {±1}= there are at most $(=2/:2)
vectors E
 such that 〈D, E
〉 ≥ :/3.

Tensored greedy succeeds for : ≥ $̃(=0.6). Before proving Lemma 2.2, let us repeat the calcula-

tions we did above to see if we improve the range of : where our algorithm succeeds. By applying

the lemma above to the vectors �out

 for
 ∈ (∗, we obtain that the number of pairs (
, 9) such

that 〈�out

 , �out

9
〉 ≥ :/3 and 9 ∉ (∗ is at most $(=3/:2). Thus, by averaging, at least 1/2 of the

∼ :2 different sets
 must satisfy 〈�out

 , �out

9
〉 ≥ :/3 for at most $(=3/:4) different 9. In particular,

|(
 \ (∗ | ≤ $(=3/:4) for 1/2 fraction of
 ⊂ (∗. This bound is ≪ : if =3/:4 ≪ : or : ≫ =3/5 = =0.6.

Observe that this already improves on the =3/4 bound above. In fact, this simple greedy

algorithm already improves on the (more involved) algorithms in prior works [CSV17, MMT20]

that work when : ≫ =2/3(≫ =3/5)!

Matching the guarantee of [BKS23]. We now show a simple modification of the greedy pro-

cedure above that works to give an =$(1/�)-size list when : ∼ =1/2+�, allowing us to match the

running-time vs : trade-off of the recent work [BKS23].

Procedure: Fix C ∈ ℕ. For independent and uniformly random
1,
2, . . . ,
C ∈
([=]
[2]
)
, add

(
1,
2 ,...,
C = { 9 : 〈� 9 , �
 8〉 ≥ :/2 for every 1 ≤ 8 ≤ C} to the list.

Note that tensored greedy procedure from before corresponds to C = 1 in the above algorithm.

Observe that, with probability (:/=)2C ,
1,
2, . . . ,
C ⊂ (∗, so repeating the procedure $(=/:)2C
times includes a random subset of (∗. As before, for such tuples (
1,
2 ,...,
C ⊇ (∗. We will show that

for a 0.99-fraction of tuples
1,
2, . . . ,
C ⊂ (∗, we have (
1,
2 ,...,
C = (∗ if : ≥ $(=1/2+1/2C). Taking

C = 1/� yields the trade-off obtained in [BKS23].

6

Let us see why: from Lemma 2.2, for every 9 ∉ (∗, the number of sets
 ⊂ (∗ such that

〈�
 , � 9〉 ≥ :/2 is at most$(=2/:2). Thus, if we pick C uniformly random subsets
8 ⊂ (∗, the chance

that for a given 9 we have 〈�
 8 , � 9〉 ≥ :/2 for every 1 ≤ 8 ≤ C is at most ((=2/:2)/:2)C = (=2/:4)C .
If : ≥ 100=1/2+1/2C , then, this chance is clearly ≪ 1/= and thus, by a union bound over the choice

9 ∉ (∗, with probability at least 0.99 over the choice of the
8 we have (
1,
2 ,...,
C = (
∗.

Proving Lemma 2.2 using RIP. Let us introduce the star of the show to prove Lemma 2.2: the

restricted isometry property.

Definition 2.3 (Restricted isometry property). An<× 3matrix� is said to be (A, �)-RIP if for every

E ∈ ℝ3 such that ‖E‖0 ≤ A we have

(1 − �)‖E‖2 ≤ ‖�E‖2 ≤ (1 + �)‖E‖2 .

In fact, for the purpose of the analysis of the algorithm, we care only about the upper bound in

the restricted isometry property. More concretely:

Definition 2.4 (Sparse operator norm). An < × 3 matrix � is said to be A-sparse operator norm

bounded by � if for every E ∈ ℝ3 such that ‖E‖2 ≤ 1, ‖E‖0 ≤ A, we have ‖�E‖2 ≤ �.

We note that sparse operator norm behaves differently compared to the sparse quadratic form

in our setting (i.e., maximizing E⊤�E over sparse vectors for square �). The latter occurs naturally

in the context of sparse PCA and has connections to the planted clique problem [BR13a].

Clearly, a bound on the sparse operator norm is implied by the RIP — if a matrix � is (A, �)-RIP,

then its A-sparse operator norm is bounded by 1 + �. Now, it is well-know that an < × 3 (< ≪ 3)

matrix of independent, uniform ±1 entries satisfies (A, �)-RIP for � = $(1) and A = Ω(</log(3/<)).
We will actually establish and use the RIP of a random matrix with significantly correlated columns.

Fact 2.5 (See Lemma 3.4). Let � ∈ ℝ(=−:)×(:2) be a matrix with columns �out

 for
 ⊂ (∗ of size |
 | = 2.

Then with high probability �/
√
= − : satisfies (A, $(1))-RIP for some A ≥ Ω(=/log$(1)(=)).

Observe that � is a function of at most := random bits even as it has =:2 entries. Despite this

highly dependent setting, it turns out that � still satisfies RIP. This follows from a powerful result

of [RV08] that allows us to conclude that a matrix with independent rows chosen from an isotropic,

ℓ∞-bounded distribution satisfies strong RIP properties. The following theorem is usually stated

in terms of bounded orthonormal systems. In Appendix A, we discuss how this standard formulation

is equivalent to the following version that is directly interpretable and useful for us.

Theorem 2.6 (Corollary of [RV08, FR13]). Let � ∈ ℝ<×# be a random matrix with rows sampled i.i.d.

according to the distribution of some random variable X ∈ ℝ# that satisfies �XX⊤ = �# and ‖X‖∞ ≤

almost surely. Then, for any< ≥ $(A 2 log3(A) log(#)/�2), we have with probability at least 1−#− log3(A)

that the matrix �/
√
< satisfies (A, �)-RIP.

To finish this section, let us see how the sparse operator norm bound helps settle Lemma 2.2.

7

Proof of Lemma 2.2. Let � be the matrix from Fact 2.5, with A-sparse operator norm of �/
√
= − :

bounded by $(1) for A ≥ Ω(=/log$(1)(=)). Suppose (toward a contradiction) that there is a vector

D ∈ {±1}=−: such that 〈�
 , D〉 ≥ :/3 for all
 ∈ ℬ, where ℬ is a set of size A (if the set is larger

than A in size, just choose any A-size subset). Then, using Cauchy-Schwarz and the sparse operator

norm bound on �,

〈D/‖D‖2 , �1ℬ/
√
|ℬ|〉 ≤

�1ℬ/
√
|ℬ|

2
≤ $(

√
= − :) ,

while by the choice of ℬ we have

〈D/‖D‖2, �1ℬ/
√
|ℬ|〉 ≥

√
|ℬ|:

3
√
= − :

.

Rearranging yields that |ℬ| ≤ $(=2/:2). �

Tensoring thrice: our algorithm. At this point, it is intuitive to try the greedy procedure with

tensoring thrice. Indeed, this is precisely our algorithm, with the crux of the analysis being the

RIP of a matrix analogous to the one above. Our proof is short and simple and is presented in full

in the following section.

3 Semirandom planted clique with ? = 1/2

We will prove the following result in this section.

Theorem 3.1. There exists an $(=$+0.5)-time algorithm, where $ ≤ 2.372 is the matrix multiplication

exponent, that takes input a graph � generated according to SRPC(=, :, 1/2) for any : ≥ $(
√
= log2 =)

and with probability at least 0.99 outputs a list of size (1 + >(1))=/: of :-cliques containing the planted

clique in �.

We will first analyze the following simple algorithm:

Algorithm 1:

1. For $((=/:)3) rounds, sample
 ⊂ [=] with |
 | = 3 and construct (
 := { 9 : 〈�
 , � 9〉 ≥
:/2}.

2. Construct a refined set (′
 ⊆ (
 by removing all vertices from (
 that are connected to

less than : − 1 of the vertices in (
, and then add (′
 to the list if it forms a :-clique.

3. Apply pruning (see Appendix B) to reduce the list size to (1 + >(1))=/:.

This algorithm naively runs in time $(=3.5). Later we will discuss how to implement compu-

tationally expensive steps in this algorithm by black-box calls to a matrix multiplication oracle,

improving the running time to $(=$+0.5).
We will prove two claims: First, that for all
 ⊂ (∗ with |
 | = 3 we have (
 ⊇ (∗, and second,

that for any fixed 9 ∉ (∗, there are at most $(=2/:2) sets
 ⊂ (∗ with |
 | = 3 such that 9 ∈ (
. The

first claim:

8

Lemma 3.2. Let : ≥ $(
√
= log =). With high probability, for all
 ⊂ (∗ with |
 | = 3 and all 9 ∈ (∗ with

9 ∉
, we have that 〈�
 , � 9〉 ≥ :/2.

Proof. We have that 〈�in

 , �

in
9
〉 = :. On the other hand,�out

 and�out
9

have independent Rademacher

entries, so by Hoeffding’s inequality

ℙ

(
|〈�out

 , �out
9 〉 | ≥ C

)
≤ 2 exp

(
−Ω(C2/=)

)
.

Taking C = $(
√
= log =) large enough, we have that |〈�out

 , �out
9

〉 | ≤ C with probability at least

1 − 1/=10. We choose : such that C ≤ :/2, so 〈�
 , � 9〉 ≥ : − C ≥ :/2. Finally, an application of the

union bound shows that this holds simultaneously for all choices of
 and 9 with probability at

least 1 − >(1). �

Next, we want to prove that each 9 ∉ (∗ satisfies 〈�
 , � 9〉 ≥ :/2 for at most$(=2/:2) sets
 ⊂ (∗

with |
 | = 3. It is easy to bound |〈�in

 , �

in
9
〉 | ≤ $(

√
: log =) using the fact that �in

9
has independent

Rademacher entries. To talk about 〈�out

 , �out

9
〉, we define the matrix � ∈ {±1}(=−:)×Θ(:3) with

columns �out

 for all
 ⊂ (∗ with |
 | = 3. A simple observation shows that a bound on the A-sparse

operator norm of the matrix �/
√
= − : ensures the desired bound.

Lemma 3.3. Let � ∈ ℝ@×< be a matrix satisfying

sup
‖E‖2≤1,‖E‖0≤A

‖�E‖ ≤ � , (1)

with A ≥ �2/�2 + 1. Then any vector F ∈ ℝ@ with ‖F‖2 ≤ 1 has inner product greater than or equal to �

with at most �2/�2 columns of �.

Proof. Let ℬ ⊂ [<] be any set of size |ℬ| ≤ A, such that for all C ∈ ℬ we have 〈�·,C , F〉 ≥ �. Then on

one hand we have by Cauchy-Schwarz and (1) that

〈�1ℬ , F〉 ≤ ‖�1ℬ ‖ · ‖F‖ ≤ �
√
|ℬ| ,

and on the other hand we have by the definition of ℬ that

〈�1ℬ , F〉 =
∑
C∈ℬ

〈�·,C , F〉 ≥ �|ℬ| .

This leads, after rearranging, to |ℬ| ≤ �2/�2. �

If � ∈ ℝ@×< was indeed a matrix with independent Rademacher entries, it is well-known that

�/√@ would satisfy RIP of order A = Ω(@/log(</@)). For the matrix � generated by taking the

products of 3-tuples of random signs that we care about, the columns are heavily dependent. It

turns out, however, that we can still establish that �/√@ satisfies the restricted isometry property

(with only a slight degradation in the sparsity parameter A).

9

Lemma 3.4. Let D be any distribution over ℝ such that x ∼ D satisfies �x = 0,�x2 = 1, and |x| ≤ �

almost surely.

Consider a matrix � ∈ ℝ@×Θ(:C) with independent rows, where the columns are indexed by subsets

 ⊂ [:] of size C for constant C, and the rows are generated by first drawing X8 ∼ D: and setting

�8,
 =
∏

9∈
 -8, 9 . Then with high probability �/√@ satisfies (A, $(1))-RIP with A = Ω(@/(�2C log4(=))).

Proof. We want to apply Theorem 2.6 to conclude that �/√@ satisfies RIP. To this end, all we need

to show is that entries within any row of � are uncorrelated and have variance one.

For any pair of distinct tuples
, �, we have

�[�8,
�8,�] = �


©­«
∏
9∈

X8, 9
ª®¬
©­«
∏
9∈�

X8, 9
ª®¬


=

∏
9∈
Δ�

�[X8, 9]

= 0 ,

where
Δ� is the symmetric difference between sets
 and � (since for 9 ∈
 ∩ � the term X2
8, 9

appears in the monomial and �[X2
8, 9
] = 1). Similarly �[�2

8,

] =

∏
9∈
 �[X2

8, 9
] = 1. Finally, since

|X8, 9 | ≤ � for all 9, we have |�8,
 | =
∏

9∈
 |X8, 9 | ≤ �C . Therefore the conditions of Theorem 2.6 are

satisfied for the matrix �, and the conclusion coincides with the lemma statement. �

We prove now the second claim.

Lemma 3.5. Let : ≥ $(
√
= log2 =). With high probability, for any 9 ∉ (∗, there exist at most $(=2/:2)

sets
 ⊂ (∗ with |
 | = 3 such that 〈�
 , � 9〉 ≥ :/2.

Proof. Let � ∈ {±1}(=−:)×Θ(:3) be the matrix with columns �out

 for all
 ⊂ (∗ with |
 | = 3.

By Lemma 3.4, the matrix �/
√
= − : satisfies (A, $(1))-RIP for A = Ω((= − :)/log4(=)). Then we

apply Lemma 3.3 for �/
√
= − : and � = :/(3(= − :)). Then no unit vector has correlation at least

� = :/(3(= − :)) with more than $(1/�2) ≤ $(=2/:2) columns of �/
√
= − :. Then also no vector in

{±1}=−: (of norm
√
= − :) has correlation at least :/3 with more than $(=2/:2) columns of �. We

need to ensure that the conditions of Lemma 3.3 are satisfied, namely that A & =2/:2. This holds

when : ≥ $(
√
= log2 =).

We can now finish the argument: If a vector �out
9

has correlation at most :/3 with �out

 , then

also 〈�
 , � 9〉 ≤ :/3 + $(
√
: log =) < :/2. Hence each vector � 9 with 9 ∉ (∗ has correlation greater

than or equal to :/2 with at most $(=2/:2) vectors �
. �

We are now ready to prove the correctness of Algorithm 1.

Lemma 3.6. Given a graph � generated according to SRPC(=, :, 1/2) for any : ≥ $(
√
= log2 =), Algo-

rithm 1 outputs with probability at least 0.99 a list of size (1 + >(1))=/: of :-cliques containing the planted

clique in �.

10

Proof. Consider a random
 ⊂ (∗ with |
 | = 3. Lemma 3.2 implies that with high probability

(
 ⊇ (∗. Furthermore, Lemma 3.5 says that, for each 9 ∉ (∗, with high probability � 9 has large

inner product with at most $(=2/:2) vectors �
 with
 ⊂ (∗ and |
 | = 3. Then � 9 has large inner

product with �
 for random
 ⊂ (∗ with probability at most $((=2/:2)/:3) = $(1/:), using that

there are Ω(:3) choices for
. Hence the expected number of � 9 (for 9 ∉ (∗) that have large inner

product with �
 is at most $(=/:). Therefore, by Markov’s inequality, with probability at least

0.99 over the choice
 ⊂ (∗ we have that |(
 \ (∗ | ≤ $(=/:) = >(:).
Once this is the case, note that removing vertices of degree smaller than : − 1 in the induced

graph given by (
 clearly does not affect vertices in (∗. On the other hand, for any 9 ∉ (∗, denoting

by #(9) the neighborhood of the vertex 9 in �, we have

|#(9) ∩ (
 | ≤ |#(9) ∩ (∗ | + |#(9) ∩ ((
 \ (∗)|
≤ :/2 + $(

√
: log =) + >(:)

< : − 1 .

Then the pruning algorithm described in Appendix B keeps (∗ in the final list, while reducing the

size of the list to (1 + >(1))=/:. �

We discuss now how, using fast matrix multiplication, Algorithm 1 can be implemented in time

$(=$+0.5).
Lemma 3.7. Algorithm 1 can be equivalently implemented in time $()=$) where) = max((=/:)3/=, 1)
by invoking $()) calls to the = × = matrix-multiplication oracle. In particular, when : ≥

√
=, this yields

$(
√
=) calls to the matrix multiplication oracle, and a total running time $(=$+0.5).

Proof. We can compute all inner products 〈�
 , � 9〉 simultaneously for all $((=/:)3) sampled
: If

we arrange the vectors �
 as the rows of a $((=/:)3) × = matrix, and we multiply this matrix by

the matrix � ∈ {±1}=×= — the ±1-adjacency matrix of the graph — then the (
, 9)-th entry of the

product is exactly 〈�
 , � 9〉. This matrix multiplication can be computed in time ($((=/:)3)/=) · =$,

by partitioning the set of all sampled triples
 into < = $((=/:)3)/= parts of size =, and applying

the = × = matrix multiplication oracle for each part of the partition. This allows us to compute the

sets (
.

We can similarly use matrix multiplication to compute an $((=/:)3) × = matrix " where "
, 9

represents the number of vertices in (
 that vertex 9 is connected to — this is by multiplying a

{0, 1}-valued matrix with rows being indicator vectors of sets (
, by the {0, 1}-adjacency matrix

of the graph �. Again, this can be done by using $((=/:)3/=) calls to the matrix multiplication

oracle. This allows us to also obtain the sets (′
.

Applying the exact same trick again, we can check which of the elements of (′
 are cliques —

we now construct a matrix "′

, 9

denoting the number of neighbors vertex 9 has in (′
 and keep only

the sets (′
 such that for each 9 ∈ (′
 we have "′

, 9

= |(′
 | − 1.

Therefore constructing the initial list involves) = $((=/:)3)/= ≤ $(
√
=) calls to the matrix

multiplication oracle, and the size of the list is at most $((=/:)3).
Finally, by Lemma B.4 the pruning algorithm can be implemented by $((=/:)3/=) calls to the

matrix multiplication oracle, leading to the overall time complexity bounded by $(=$+0.5). �

11

The main theorem now follows immediately as a corollary of those two lemmas.

Proof of Theorem 3.1. The correctness of Algorithm 1 is given by Lemma 3.6 and the time complexity

$(=$+0.5) is given by Lemma 3.7. �

4 Semirandom planted clique with general ?

In this section we generalize our algorithm for SRPC(=, :, ?) to arbitrary 1 > ? > 0. Our bound on

: is better than in previous results [MMT20, BKS23] when ? ≤ 1 − =−0.01. We note that the special

case of ? = 1/2 already contains all the necessary ideas.

Theorem 4.1. There exists an$(=$+0.5)-time algorithm, where$ ≤ 2.372 is the matrix multiplication expo-

nent, that takes input a graph � generated according to SRPC(=, :, ?) for any

: ≥ $(
√
= log2 = ·max(1, (?/(1−?))4)) and with probability at least 0.99 outputs a list of size (1+>(1))=/:

of :-cliques containing the planted clique in �.

The first step is to consider a matrix �̄ which is given by a construction analogous to ?-biased

characters: we want to shift and rescale the entries of the adjacency matrix so that in the random

part the entries have mean zero and variance one. Specifically, let

�̄(8 , 9) =


√

1−?
? if (8 , 9) ∈ �(�) ,

−
√

?
1−? otherwise .

An easy calculation confirms that indeed, if Pr((8 , 9) ∈ �(�)) = ?, then �[�̄(8 , 9)] = 0 and

�[�̄(8 , 9)2] = 1. To simplify notation in the following argument we introduce ?+ =

√
1−?
? , ?− =

√
?

1−? ,

and � = max(?+ , ?−) — so that all entries of �̄ are bounded in absolute value by � (this property

will turn out to be crucial later).

We also let �̄8 be the 8-th row of �̄, �̄in
8

∈ ℝ: be the projection of �8 to coordinates in (∗, and

�̄out
8

∈ ℝ=−: the projection of �̄8 to coordinates in [=] \ (∗. Finally, for a subset of rows
 ⊂ [=], we

write �̄
 to denote the element-wise product of rows �̄ 9 for 9 ∈
.

We prove the same sequence of results as in the ? = 1/2 case: First, that for all
 ⊂ (∗ with

|
 | = 3 we have (
 ⊇ (∗, and second, that for any fixed 9 ∉ (∗, there are at most $(=2/:2) sets

 ⊂ (∗ with |
 | = 3 such that 9 ∈ (
. The first claim:

Lemma 4.2. Let : ≥ $(
√
= log = + �4 log =)/?4

+. With high probability, for all
 ⊂ (∗ with |
 | = 3 and

all 9 ∈ (∗ with 9 ∉
, we have that 〈�̄
 , �̄ 9〉 ≥ :?4
+/2.

Proof. We have that 〈�̄in

 , �̄

in
9
〉 = :?4

+. On the other hand, the element-wise product of �̄out

 and

�̄out
9

has independent mean-zero and variance-one entries with maximum absolute value �4, so

by Bernstein’s inequality

ℙ

(
|〈�̄out

 , �̄out
9 〉 | ≥ C

)
≤ 2 exp

(
−Ω(C2/(= + C�4))

)
.

12

Taking C = $(
√
= log = + �4 log =) large enough, we have that |〈�̄out

 , �̄out
9

〉 | ≤ C with probability

at least 1 − 1/=10. We choose : such that C ≤ :?4
+/2, so we have 〈�̄
 , �̄ 9〉 ≥ :?4

+/2. Finally, an

application of the union bound shows that this holds simultaneously for all choices of
 and 9 with

probability at least 1 − >(1). �

Next, we want to prove that each 9 ∉ (∗ satisfies 〈�
 , � 9〉 ≥ :?4
+/2 for few sets
 ⊂ (∗ with

|
 | = 3. A similar application of Bernstein and union bound can be used to control the maximum

of the quantity 〈�̄in

 , �̄

in
9
〉 over all
 ⊂ (∗ with |
 | = 3 and 9 ∉ (∗.

Lemma 4.3. With high probability, for all
 ⊂ (∗ with |
 | = 3 and all 9 ∉ (∗ we have that

|〈�̄in

 , �̄

in
9 〉 | ≤ $(

√
: log = + �4 log =) .

Proof. The element-wise product of �̄in

 and �in

9
has independent mean-zero and variance-one

entries with maximum absolute value �4. The bound follows by Bernstein’s inequality and a

union bound as in Lemma 4.2. �

In order to ensure that, as in the ? = 1/2 case, for each element 9 ∉ (∗ we can bound the number

of sets
 ⊂ (∗ that lead to large 〈�̄out

 , �̄out

9
〉, we want to appeal again to Lemma 3.3. To this end,

we define the matrix � ∈ ℝ(=−:)×Θ(:3) with columns �out

 for all
 ⊂ (∗ with |
 | = 3.

As it turns out, this matrix � also satisfies the conditions of Lemma 3.4, with a bound � on the

size of the entries that generate the matrix. Then, we can conclude:

Lemma 4.4. Let : ≥ $(?−4
+ �4

√
= log2 =). With high probability, for any 9 ∉ (∗, there exist at most

$(?−8
+ �2=2/:2) sets
 ⊂ (∗ with |
 | = 3 such that |〈�
, � 9〉 | ≥ :?4

+/2.

Proof. Let� ∈ ℝ(=−:)×Θ(:3) be the matrix with columns�out

 for all
 ⊂ (∗ with |
 | = 3. By Lemma 3.4,

the matrix �/
√
= − : satisfies (A, $(1))-RIP for A = Ω((= − :)/(�6 log4(=))). Then we apply

Lemma 3.3 for �/
√
= − : and � = :?4

+/(3�(= − :)). Then no unit vector has correlation at least

� = :?4
+/(3�(= − :)) with more than $(1/�2) ≤ $(?−8

+ �2=2/:2) columns of �/
√
= − :. Because the

norm of each �out
9

is bounded by �
√
= − :, we get that no vector �out

9
has correlation at least :?4

+/3

with more than $(?−8
+ �2=2/:2) columns of �. We need to ensure that the conditions of Lemma 3.3

are satisfied, namely that A & ?−8
+ �2=2/:2. This holds when : ≥ $(?−4

+ �4
√
= log2 =).

We can now finish the argument: If a vector �out
9

has correlation at most :?4
+/3 with �out

 , then

also 〈�
 , � 9〉 ≤ :?4
+/3 + $(

√
: log = + �4 log =) < :?4

+/2. Hence each vector � 9 with 9 ∉ (∗ has

correlation greater than or equal to :?4
+/2 with at most $(?−8

+ �2=2/:2) vectors �
. �

We are now ready to finish the proof of the theorem.

Proof of Theorem 4.1. We use an identical algorithm as in the ? = 1/2 case. For $((=/:)3) turns, we

take a random triple of vertices
 ⊂ [=]with |
 | = 3 and construct a set (
 := { 9 : 〈�̄
 , �̄ 9〉 ≥ :?4
+/2}.

Then we construct a refined set (′
 ⊆ (
 by removing all vertices from (
 that are connected to less

than : − 1 of the vertices in (
, and then add (′
 to the list if it forms a :-clique. Finally, we apply

pruning (see Appendix B) to reduce the list size to (1 + >(1))=/:.

13

To conclude that this algorithm works, we want to argue that conditioned on
 ⊂ (∗, the

procedure succeeds in recovering (∗ with probability at least 1/2.

Indeed, by Lemma 4.2, once
 ⊂ (∗ we have with high probability (∗ ⊆ (
. Moreover, for

any 9 ∉ (∗, by Lemma 4.4, �̄ 9 has large inner product with at most) = $(?−8
+ �2=2/:2) vectors

�̄
 over
 ⊂ (∗ with |
 | = 3. There are Ω(:3) such sets
, so the probability that �̄ 9 has large

inner product with a �̄
 chosen at random is at most $()/:3). Then, the expected number of

�̄ 9 that have large inner product with a vector �̄
 for a random
 ⊂ (∗ with |
 | = 3 is $(=)/:3).
Hence, by Markov’s inequality, with probability 0.99 over the choice of random
 ⊂ (∗ we have

that |(
 \ (∗ | ≤ $(=)/:3) ≤ $(?−8
+ �2=3/:5) ≤ >(:(1 − ?)).

Once this is the case, note that removing vertices of degree smaller than : − 1 in the induced

graph given by (
 clearly does not affect vertices in (∗. On the other hand, for any 9 ∉ (∗, denoting

by #(9) the neighborhood of the vertex 9 in �, we have

|#(9) ∩ (
 | ≤ |#(9) ∩ (∗ | + |#(9) ∩ ((
 \ (∗)|

≤ :? + $
(√
:?(1 − ?) log =

)
+ >(:(1 − ?))

< : − 1 .

Then the pruning algorithm in Appendix B keeps (∗ in the final list.

The time complexity is the same as in the ? = 1/2 case, using matrix multiplication. �

5 Discussion

We include some commentary and open questions that naturally arise given our new approach.

1) Handling a monotone adversary. In this work, we gave a simple algorithm that solves the

semirandom planted clique recovery problem at nearly the right threshold of : = $̃(
√
=). Unlike

the prior works [BKS23, MMT20] (we note that the algorithm in [CSV17, Ste17] does not tolerate

monotone deletions), our algorithm does not handle a monotone adversary that can delete an

arbitrary subset of edges in the cut defined by the planted clique.

In prior works, approaches that handle a monotone adversary [FK00, MPW16] have been

naturally based on semidefinite programming. In fact, the analyses of such semidefinite programs

can be naturally interpreted as yielding an efficient certificate of some natural property that controls

the uniqueness of the relevant solution concept (e.g., clique, community, coloring). In our context,

such a certificate of uniqueness naturally corresponds to the biclique numbers for random bipartite

graphs studied in [BKS23]. Indeed, they provide some evidence of non-existence of efficient

certificates for this property by means of lower bounds in the low-degree polynomial model. Our

key conceptual contribution is finding an algorithmic approach that circumvents the need for such

certificates.

We are thus left with an intriguing question: is there an algorithm for semirandom planted

clique that succeeds at : = $̃(
√
=) and tolerates a monotone adversary? Can such an algorithm yield

an efficient (e.g., low-degree sum-of-squares) certificate for biclique bounds on random bipartite

graphs and circumvent the low-degree polynomial lower bounds?

14

On the flip side, could there be a computational–statistical complexity gap for semirandom

planted clique that arises entirely due to a monotone adversary? This would run counter to

the central thesis of [Ste17] that suggests that robustness (i.e., success in the semirandom model)

might obliterate the computational–statistical complexity gap for the fully random planted clique

problem. We do not know of any problem for which a monotone adversary “creates” such a gap.

We note that for community detection in stochastic block models, the work of Moitra, Perry and

Wein [MPW16] showed that monotone deletions shift the information-theoretic threshold.

2) Can our algorithm be captured by semidefinite programming? In light of the discussion

above, it is also natural to ask: can our algorithm be “captured” (i.e., suggest an analysis with the

same guarantees) by a natural semidefinite programming relaxation for the semirandom planted

clique problem? We do not know how to do this so far. As discussed above, analyses of semidefinite

programming relaxations usually yield certificates for an underlying property (biclique number

bounds for random bipartite graphs in our setting) that implies uniqueness of the relevant solution

concept. We are aware of two exceptions to this “rule” where algorithms based on SDPs succeed

despite the potential impossibility of the associated certification problem: 1) the SDP relaxations

for low-rank matrix sensing [RFP10] without a certificate of RIP, 2) robust mean and covariance

estimation for Gaussian distributions [KMZ22] without a certificate of “resilience”. Is there a

similar approach that manages to recover our guarantees for semirandom planted clique without

the need for improved certificates for biclique numbers in random bipartite graphs?

3) Achieving : = $(
√
= log =)? Our algorithm currently needs : ≥ $(

√
= log2 =), which is

log1.5(=) off of the likely “right” bound (i.e., matching the guarantee of the best-known brute-force

algorithm). This log1.5(=)-factor loss arises from the loss in the sparsity parameter in Lemma 3.4.

We believe that for our matrix � this loss can likely be removed and consequently our algorithm

could succeed at : ≥ $(
√
= log =). We note that the general result (Theorem 2.6) we rely on cannot

be improved to provide such a guarantee: there exists an isotropic distribution over bounded

vectors from which it is necessary to sample at least Ω(
√
= log2 =) rows in order to obtain RIP at

sparsity
√
= [BLL+23]. However, our application only needs the weaker sparse operator norm bounds

to which the lower bounds in [BLL+23] do not apply. While this gap has not been consequential in

known results, it does leave open the possibility of a stronger, general variant of Theorem 2.6 for

sparse operator norm bounds.

Acknowledgements

JB, RB, and DS received funding from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (grant agreement No 815464). PK was

supported by NSF CAREER Award #2047933, NSF #2211971, an Alfred P. Sloan Fellowship, and a

Google Research Scholar Award.

15

References

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in

a random graph. In Proceedings of the Eighth International Conference “Random Structures

and Algorithms” (Poznan, 1997), volume 13, pages 457–466, 1998.

[BB20] Matthew Brennan and Guy Bresler. Reducibility and statistical-computational gaps

from secret leakage. In Conference on Learning Theory, pages 648–847. PMLR, 2020.

[BBH18] Matthew Brennan, Guy Bresler, and Wasim Huleihel. Reducibility and computational

lower bounds for problems with planted sparse structure. In Conference On Learning

Theory, pages 48–166. PMLR, 2018.

[BDMS13] Afonso S. Bandeira, Edgar Dobriban, Dustin G. Mixon, and William F. Sawin. Certify-

ing the restricted isometry property is hard. IEEE Trans. Information Theory, 59(6):3448–

3450, 2013.

[BHK+16] Boaz Barak, Samuel B. Hopkins, Jonathan Kelner, Pravesh K. Kothari, Ankur Moitra,

and Aaron Potechin. A Nearly Tight Sum-of-Squares Lower Bound for the Planted

Clique Problem. In Proceedings of the 57th Annual IEEE Symposium on Foundations of

Computer Science, 2016.

[BKS23] Rares-Darius Buhai, Pravesh K. Kothari, and David Steurer. Algorithms approaching

the threshold for semi-random planted clique. In STOC’23—Proceedings of the 55th

Annual ACM Symposium on Theory of Computing, pages 1918–1926. ACM, New York,

[2023] ©2023.

[BLL+23] Jaroslaw Blasiok, Kyle Luh, Patrick Lopatto, Jake Marcinek, and Shravas Rao. An

improved lower bound for sparse reconstruction from subsampled walsh matrices.

Discrete Analysis, 5 2023.

[BR13a] Quentin Berthet and Philippe Rigollet. Complexity theoretic lower bounds for sparse

principal component detection. In COLT, volume 30 of JMLR Workshop and Conference

Proceedings, pages 1046–1066. JMLR.org, 2013.

[BR13b] Quentin Berthet and Philippe Rigollet. Computational lower bounds for sparse pca.

arXiv preprint arXiv:1304.0828, 2013.

[BS95] A. Blum and J. Spencer. Coloring random and semi-random k-colorable graphs. Journal

of Algorithms, 19(2):204 – 234, 1995.

[CSV17] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data.

In STOC, pages 47–60. ACM, 2017.

[DKWB21] Yunzi Ding, Dmitriy Kunisky, Alexander S. Wein, and Afonso S. Bandeira. The average-

case time complexity of certifying the restricted isometry property. IEEE Trans. Inform.

Theory, 67(11):7355–7361, 2021.

16

[Fei19] Uriel Feige. Introduction to semirandom models. In Tim Roughgarden, editor, Beyond

Worst-case Analysis of Algorithms, chapter 10, pages 266–290. Oxford, 2019.

[FGR+17] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S. Vempala, and Ying Xiao.

Statistical algorithms and a lower bound for detecting planted cliques. J. ACM, 64(2):Art.

8, 37, 2017.

[FK00] Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden clique in

a semirandom graph. Random Struct. Algorithms, 16(2):195–208, 2000.

[FK01] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. Journal of

Computer and System Sciences, 63(4):639 – 671, 2001.

[FR13] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing.

Birkhäuser Basel, 2013.

[Hås99] Johan Håstad. Clique is hard to approximate within =1−�. Acta Math., 182(1):105–142,

1999.

[HKP+17] Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra, Tselil

Schramm, and David Steurer. The power of sum-of-squares for detecting hidden

structures. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science

(FOCS), pages 720–731. IEEE, 2017.

[Jer92] Mark Jerrum. Large cliques elude the metropolis process. Random Struct. Algorithms,

3(4):347–360, 1992.

[KMZ22] Pravesh K Kothari, Peter Manohar, and Brian Hu Zhang. Polynomial-time sum-of-

squares can robustly estimate mean and covariance of gaussians optimally. In Interna-

tional Conference on Algorithmic Learning Theory, pages 638–667. PMLR, 2022.

[Kuc95] Ludek Kucera. Expected complexity of graph partitioning problems. Discrete Applied

Mathematics, 57(2-3):193–212, 1995.

[KZ14a] Pascal Koiran and Anastasios Zouzias. Hidden cliques and the certification of the

restricted isometry property. IEEE Trans. Information Theory, 60(8):4999–5006, 2014.

[KZ14b] Pascal Koiran and Anastasios Zouzias. Hidden cliques and the certification of the

restricted isometry property. IEEE Trans. Inform. Theory, 60(8):4999–5006, 2014.

[Luk69] Yudell L. Luke. Chapter II. The Gamma Function and Related Functions. In The Special

Functions and Their Approximations, volume 53 of Mathematics in Science and Engineering,

pages 8–37. Elsevier, 1969.

[MMT20] Theo McKenzie, Hermish Mehta, and Luca Trevisan. A new algorithm for the robust

semi-random independent set problem. In Shuchi Chawla, editor, Proceedings of the

2020 ACM-SIAM Symposium on Discrete Algorithms, pages 738–746, 2020.

17

[MPW16] Ankur Moitra, William Perry, and Alexander S. Wein. How robust are reconstruction

thresholds for community detection? In STOC, pages 828–841. ACM, 2016.

[Rau10] Holger Rauhut. Compressive sensing and structured random matrices. In Theoretical

foundations and numerical methods for sparse recovery, volume 9 of Radon Ser. Comput.

Appl. Math., pages 1–92. Walter de Gruyter, Berlin, 2010.

[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank

solutions of linear matrix equations via nuclear norm minimization. SIAM Review,

52(3):471–501, 2010.

[RV08] Mark Rudelson and Roman Vershynin. On sparse reconstruction from Fourier and

Gaussian measurements. Comm. Pure Appl. Math., 61(8):1025–1045, 2008.

[Ste17] Jacob Steinhardt. Does robustness imply tractability? a lower bound for planted clique

in the semi-random model. arXiv preprint arXiv:1704.05120, 2017.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique

and chromatic number. Theory Comput., 3:103–128, 2007.

A Restricted isometry property

One of the main tools used in the analysis of our algorithm is a strong general theorem guaranteeing

RIP for any matrix with independent rows drawn from any isotropic-distribution vectors with

bounded entries.

Theorem 2.6, although known, is usually stated in terms of so-called bounded orthonormal systems,

a formulation that makes its direct applicability in situations like Lemma 3.4 less transparent.

For completeness, we introduce the notion of bounded orthonormal system, the formulation

of Theorem 2.6 as it is stated in [Rau10], and we discuss why this is equivalent to the statement we

are using in this paper.

Definition A.1. A bounded orthonormal system is given by a region D ⊂ ℝ: , together with a

probability measure � on D and # functions)1,)2, . . .)3 : D → ℂ satisfying the following

properties:

• For all 8 ≠ 9 in [#], �C∼�)8(C)) 9(C) = 0,

• For all 8 ∈ [#], �C∼�)8(C) = 0,�C∼� |)8(C)|2 = 1,

• For all 8 ∈ [#], |)8(C)| ≤ almost surely.

Then Theorem 12.31 in [FR13] (originally proved in [RV08]) states:

Theorem A.2 (Theorem 12.31 in [FR13]). If)1, . . . ,)# together with a distribution � is a bounded

orthonormal system, then a matrix � ∈ ℂ<×# obtained by sampling C1 , C2 . . . C< independently at random

according to � and setting �8, 9 =) 9(C8)/
√
< satisfies (A, �)-RIP with probability 1 − #− log3(A) whenever

< & 2A log3 A log(#)/�2 .

18

To see how this theorem implies Theorem 2.6, let us consider an arbitrary distribution � over

ℝ= satisfying �X∼�XX⊤ = �. We can take)1, . . .)# : ℝ= → ℝ such that) 9 is a projection on the

9-th coordinate. Then)1, . . .)# together with the distribution � forms a bounded orthonormal

system according to Definition A.1, and the matrix �8, 9 =) 9(C8) is exactly obtained by drawing <

independent random rows according to the law of X.

The other direction of the equivalence (in the case of real-valued bounded orthonormal system)

is just as immediate: if)1, . . . ,)# together with � form a bounded orthonormal system, then a

random vector X obtained by drawing C ∼ � and setting X = ()1(C), . . .)#(C)) is a bounded vector

in isotropic position.

B Pruning a list of :-cliques

We start by recalling the following two lemmas from [BKS23]:

Lemma B.1 (Lemma 5.7 in [BKS23]). Let � ∼ SRPC(=, :, ?). Let (∗ be the planted clique in �. Then,

with probability at least 1 − :
=2 , any other clique (of size at least : satisfies |(∩ (∗ | ≤ 3

log =

log 1/? .

Lemma B.2 (Lemma 5.8 in [BKS23]). Let (1, ..., (< ⊆ [=] with |(8 | = : and |(8 ∩ (9 | ≤ Δ. Then, if

: ≥
√

2=Δ, we have < ≤ =
:

(
1 + 2=Δ

:2

)
.

Now we prove the pruning result:

Lemma B.3 (Pruning, implicit in [BKS23]). Let � be a graph on = vertices generated according to

SRPC(=, :, ?) where : ≥ �
√
= log = · max(1, ?/(1 − ?)) for some large enough absolute constant �. Let

! be a list of size < of :-cliques of �.

Then taking !′ to be the list of all cliques from ! which have intersection at most 3 log =/log ?−1 with

all other cliques in !, we have with high probability

• If (∗ ∈ !, then also (∗ ∈ !′, and

• |!′| ≤ (1 + $(1/�2))=/:.

Proof. First, we have from Lemma B.1 that with high probability the planted clique has intersection

at most 3
log =

log 1/? with any other clique in �, so we are guaranteed that we do not remove it from the

list.

Second, all the :-cliques in the final list have intersection at most 3
log =

log 1/? , so by Lemma B.2 the

size of the list is at most =
:

(
1 +

6=
log =

log 1/?
:2

)
. It remains to show that

6=
log =

log 1/?
:2 = $(1/�2) for our choice

of :. We use that log 1/? ≥ (1 − ?)/4 for ? ≤ 1 to get

6=
log =

log 1/?

:2
≤

24=
log =
1−?

�2= log = · max(1, ?/(1 − ?))

=
24

�2(1 − ?)max(1, ?/(1 − ?))

19

=
24

�2 max(1 − ?, ?) ≤ 48

�2
,

which gives the desired result. �

Lemma B.4 (Fast pruning). The pruning procedure described in Lemma B.3 can be implemented in time

$(⌈</=⌉=$ log<
log :) by using $(⌈</=⌉ · log<

log :) calls to the = × = matrix multiplication oracle.

Proof. We implement the algorithm using matrix multiplication as follows:

• While < > (=/:)(1 + >(1)):

– Split the list of < :-cliques arbitrarily into ⌈</=⌉ lists of at most = :-cliques,

– For each of the ⌈</=⌉ lists of at most = :-cliques:

* Compute * ∈ {0, 1}=×= such that *8, 9 = 1 if and only if the 8-th clique in the list

contains vertex 9,

* Compute " = **⊤ in time $(=$),
* For each clique 8 in the list, iterate over all cliques 9 > 8 in the list, and if"8, 9 > 3

log =

log 1/? ,

mark clique 9 as removed,

– Construct a list of all cliques that are not removed in any of the ⌈</=⌉ lists. By Lemma B.3,

this list has size at most ⌈</=⌉ · (=/:)(1 + >(1)) ≤ (</:)(1 + >(1)). Update < to be the

size of this new list.

The while loop performs at most log: < =
log<

log : iterations, and the inner loop has time complex-

ity $(⌈</=⌉=$ + <=) ≤ $(⌈</=⌉=$). Therefore the total time complexity is $(⌈</=⌉=$ log<
log :).

�

C Adversarial correlation with independent Rademacher vectors

Lemma C.1. Let E1 , ..., E< ∈ {±1}= be independent Rademacher vectors. Then with high probability there

exists some vector F ∈ {±1}= such that 〈E8 , F〉 ≥ Ω(=/
√
<) for all 8 ∈ [<] as long as = ≫ < log<.

In other words, for any : = Ω(=/
√
<) small enough (i.e., < = Ω(=2/:2) small enough), with high

probability there exists some vectorF ∈ {±1}= such that 〈E8 , F〉 ≥ : for all 8 ∈ [<] as long as = ≫ < log<.

Proof. We consider without loss of generality the case when < is odd. Let F 9 = Maj(E1, 9 , . . . , E<,9)
for all 9 ∈ [=], i.e., the majority element. Note that 〈E8 , F〉 = 2

∑=
9=1 1F 9=E8 , 9 − =, where 1F 9=E8 , 9

are independent Ber(?) random variables, with ? the probability that E8, 9 = Maj(E1, 9 , . . . , E<,9).
Note that if E1, 9 , . . . , E8−1, 9 , E8+1, 9 , . . . , E<,9 already forms a majority of ≥ <+1

2 elements, then

E8, 9 cannot influence the majority and it will be in the majority with probability 1/2. Oth-

erwise, E1, 9 , . . . , E8−1, 9 , E8+1, 9 , . . . , E<,9 must have an equal number of 1 and −1 elements, and

E8, 9 will always be in the majority. The latter case happens with probability 2
(<−1
(<−1)/2

)
/2<−1,

which grows asymptotically as 2√
�</2

(1 ± >(1)) (e.g., see the growth of the central binomial

coefficient in [Luk69], page 35). Therefore ? = 1/2 + Ω(1/
√
<). From this, by Hoeffding’s

20

inequality, we get that ℙ(〈E8 , F〉 −Ω(=/
√
<) ≥ C) ≤ exp(−Ω(C2/=)), so with high probability

〈F, E8〉 ≥ Ω(=/
√
<) − $(

√
= log<) for all E1 , . . . , E< . The first term dominates as long as =≫ < log<.

�

21

	Introduction
	Overview of our algorithm
	The naive greedy algorithm
	Tensoring twice: greedy matches the guarantees of MR4617517-Buhai23

	Semirandom planted clique with p=1/2
	Semirandom planted clique with general p
	Discussion
	Acknowledgements
	References
	Restricted isometry property
	Pruning a list of k-cliques
	Adversarial correlation with independent Rademacher vectors

