
ar
X

iv
:1

00
4.

22
91

v2
 [

cs
.D

S]
 2

7
A

ug
 2

01
0

One Tree Suffices: A Simultaneous O(1)-Approximation for

Single-Sink Buy-at-Bulk

Ashish Goel ∗

Stanford University

Ian Post †

Stanford University

August 18, 2018

Abstract

We study the single-sink buy-at-bulk problem with an unknown cost function. We wish to
route flow from a set of demand nodes to a root node, where the cost of routing x total flow
along an edge is proportional to f(x) for some concave, non-decreasing function f satisfying
f(0) = 0. We present a simple, fast, combinatorial algorithm that takes a set of demands and
constructs a single tree T such that for all f the cost f(T) is a 47.45-approximation of the
optimal cost for that f . This is within a factor of 2.33 of the best approximation ratio currently
achievable when the tree can be optimized for a specific function. Trees achieving simultaneous
O(1)-approximations for all concave functions were previously not known to exist regardless of
computation time.

1 Introduction

Many natural network design settings exhibit some form of economies of scale that reduce the costs
when many flows are aggregated together. We may benefit from cheaper bandwidth when laying
high capacity network links [AZ98], reduced infrastructure costs or bulk discounts for shipping large
amounts of goods together [SCRS97], or summarization and compression of correlated information
flows [KEW02]. These scenarios are known in the literature as buy-at-bulk problems. In a general
buy-at-bulk problem we are given a graph and a set of demands for flow between nodes. The cost
per unit length for routing a total of x flow along an edge is f(x) for some function f . To model
the economies of scale, we assume f is concave and monotone non-decreasing.

We will focus on single-sink (or single-source) case, where all demands must be routed to
a given root. When f is known, the problem becomes the well-studied single-sink buy-at-bulk
(SSBaB) problem. SSBaB is NP -hard—it generalizes the Steiner tree problem—but constant-
factor approximations are known for any given f (e.g. [GMM01, GR10]). The special case where
f has the form f(x) = min{x,M} for some M (edges can be “rented” for linear cost or “bought”
for a fixed cost) is known as the single-sink rent-or-buy (SSRoB) problem and has also received
significant attention (e.g. [KM00, EGRS10]).

∗Departments of Management Science and Engineering, and by courtesy, Computer Science, Stanford University.

Email: ashishg@stanford.edu. Research funded by an NSF IIS grant, by funds from Google, Microsoft, and Cisco, a

3-COM faculty fellowship, and by the ARL Network Science CTA.
†Department of Computer Science, Stanford University. Email: itp@stanford.edu. Research funded by an NSF

IIS grant.

1

http://arxiv.org/abs/1004.2291v2
mailto:ashishg@stanford.edu
mailto:itp@stanford.edu

Buy-at-bulk algorithms produce trees that are heavily tailored to the particular function at
hand, but in some scenarios f may be unknown or known to change over time. One setting where
this arises is in aggregation of data in sensor networks. The degree of redundancy among different
sensor measurements may be unknown, or the same network may be used for aggregating different
types of information with different amounts of redundancy. In other situations rapid technological
advancement may cause bandwidth costs to change drastically over time. Further, in the interest
of simplifying the design process and building robust networks, it may be useful to decouple the
problem of designing the network topology from that of determining the exact characteristics of
the information or goods flowing through that network. In these settings it is desirable to find a
single tree that is simultaneously good for all cost-functions, and from a theoretical perspective,
the existence of such trees would reveal surprising structure in the problem.

There are two natural objective functions which capture the idea of simultaneous approximation
for multiple cost functions. Let F be the set of all concave, monotone non-decreasing cost functions
satisfying f(0) = 0, f(T) be the cost of a routing tree T under function f , and T ∗

f be the optimal
routing graph for f . Note that due to the concavity of f we may assume that T ∗

f is a tree. Let R
be a randomized algorithm that returns a feasible routing tree T . First, we could try to minimize
the quantity

sup
f∈F

ER[f(T)]

f(T ∗
f)

(1)

which we call the oblivious approximation ratio. If the oblivious ratio is small, then R returns a
distribution that works well in expectation for any f . However, there may be no sample from this
distribution that works for everything: for any tree T there may be functions for which f(T) is
expensive.

To circumvent this problem we can work with the much stronger simultaneous approximation
ratio. For a deterministic or randomized algorithm A that returns a tree TA the simultaneous ratio
of A is defined as:

EA

[

sup
f∈F

f(TA)

f(T ∗
f)

]

(2)

A bound on the simultaneous ratio subsumes one on the oblivious ratio and proves there exists a
single tree that is simultaneously good for all f .

We emphasize that the distinction between the simultaneous and oblivious objectives is not a
technicality in the objective but rather a fundamental difference and that the gap between these
ratios can be large. Consider the problem of embedding arbitrary metrics into tree metrics, another
problem that requires bounding the cost under many different functions (i.e. distortion of each edge).
It is well-known that distributions over trees can achieve O(log n) expected distortion for all edges
[FRT03] but that even for simple graphs like the n-cycle no single tree can do better than Ω(n)
distortion [RR98]. Therefore, the ratio between maximum expected distortion and the expected
maximum distortion is Ω(n/ log n) in this case.

Goel and Estrin [GE03] introduced the problem of simultaneous SSBaB and gave an algorithm
with an O(logD) bound on the simultaneous ratio (2), where D is the total amount of demand.
Goel and Post [GP09] recently improved the oblivious ratio (1) to O(1) for a large constant. Trees
for which the simultaneous ratio was O(1) were not known to exist regardless of computation time.

2

In this paper we give the first constant guarantee on the simultaneous ratio, resolving the major
open question of Goel and Estrin and Goel and Post [GE03, GP09]. Several aspects of our algorithm
and analysis bear mentioning:

• We achieve a simultaneous approximation ratio of 47.45. This is within a factor of 2.33 of
the current best approximation for normal SSBaB of 20.42 [GR10] and substantially smaller
than the O(1) oblivious bound [GP09], which we estimate to be around 15 million.

• The algorithm is entirely combinatorial, in contrast to the result of Goel and Post [GP09],
which uses separation oracles to prove an O(1)-oblivious distribution exists but reveals little
of its structure.

• Our analysis is short and simple, no more complex than the analysis of a normal SSBaB
algorithm.

• The runtime is only O((t(n,m) +m+ n log n) logD) for a graph with n nodes, m edges, and
D demand, where t(n,m) is the runtime of an SSRoB approximation.

The algorithm is quite simple. We first find approximate trees for a set of rent or buy basis func-
tions, prune this set to obtain a subset L of trees whose total rent costs are increasing geometrically
while total buy costs are dropping geometrically, and then prove it suffices to approximate every
tree in L. The set of bought nodes for each tree in L defines a series of tree layers, which we stitch
together using light approximate shortest-path trees (LASTs) [KRY95] to approximate both the
minimum spanning tree (MST) and shortest-path tree. Finally, we consider any layer in the tree.
Using the geometrically changing costs and the properties of the LAST construction, we conclude
that everything within the layer is an approximate MST, and everything outside approximates the
shortest-path tree cost.

1.1 Related Work

The SSBaB problem was first posed by Salman et al. [SCRS97], and the first general approximation
algorithm was given by Awerbuch and Azar [AA97], who used metric tree embeddings [Bar96] to
achieve an O(log2 n) ratio, later improved to O(log n) using better embeddings by Bartal [Bar98]
and Fakcharoenphol et al. [FRT03]. Guha et al. [GMM01] gave the first constant approximation,
and follow-up work by Talwar [Tal02], Gupta et al. [GKPR07], Jothi and Raghavachari [JR04],
Grandoni and Italiano [GI06], and Grandoni and Rothvoß [GR10] has since reduced the constant
to 20.42. Most recent algorithms for SSBaB (and several related problems) are based on the sample
and augment framework of Gupta et al. [GKPR07]. Many algorithms using this framework have
been derandomized by van Zuylen [vZ09].

The special case of SSRoB has also been extensively studied, often as a special case of the
connected facility location problem. The first constant factor approximation was given by Ravi
and Salman [RS99] as a special case of the traveling purchaser problem. Karger and Minkoff
[KM00] gave an alternate algorithm and introduced connected facility location. Gupta et al. im-
proved the approximation to 9.01 [GKK+01], Swamy and Kumar to 4.55 [SK04], and Gupta et
al. to 3.55 [GKPR07]. Gupta et al. [GST08] derandomized the 3.55-approximation to achieve a
4.2-approximation. Eisenbrand et al. [EGRS10] developed a randomized 2.92-approximation, which
recently improved to 2.8 using the 1.39-approximation for Steiner tree of Byrka et al. [BGRS10].

3

Since we employ the 2.8-approximation, and the claimed ratio does not currently appear else-
where in the literature, we present the brief calculation deriving this value in the appendix. Both
Williamson and van Zuylen [WvZ07] and Eisenbrand et al. [EGRS10] independently derandomized
the 2.92-approximation to achieve a deterministic 3.28-approximation.

The problem of simultaneous approximation for multiple cost functions has been studied using
both the oblivious and simultaneous objectives. Goel and Estrin [GE03] were the first to explic-
itly pose the question of simultaneous approximations and gave an algorithm with an O(logD)
simultaneous guarantee. Prior to that Khuller et al. [KRY95] gave an algorithm to simultaneously
approximate the two extreme cost functions f(x) = 1 and f(x) = x—a result which plays an im-
portant role in this paper—and metric tree embeddings had been applied to SSBaB [AA97, FRT03]
to achieve an O(log n) bound for the oblivious objective. Enachescu et al. [EGGM05] gave an O(1)
simultaneous guarantee for the special case of grid graphs with some spatial correlation. Goel and
Post [GP09] proved that an oblivious guarantee of O(1) is achievable for all graphs. Gupta et al.
[GHR06] and Englert and Räcke [ER09] have studied several generalizations of the problem where
both the demands and function are unknown, and multiple sinks are allowed. In these settings the
guarantee is generally O(log n) or O(polylog n).

2 Notation and Preliminaries

Formally, we are given a graph G = (V,E) with edge lengths le for e ∈ E, a root node r, and a set
of demand nodes D ⊆ V with integer demands dv . The total demand is D =

∑

v dv. We want to
route dv flow from each v to r as cheaply as possible, where the cost of routing xe flow along edge
e is lef(xe) for some unknown, concave, monotone increasing function f satisfying f(0) = 0. Not
knowing f , our objective is to find a feasible tree T minimizing supf f(T)/f(T

∗
f), where T ∗

f is the
optimal graph for f .

We first show that we can restrict our analysis to a smaller class of basis functions. Let
ǫ > 0 be a small constant which will trade off the runtime and the approximation ratio, and
K = ⌈log1+ǫD⌉. For 0 ≤ i ≤ K, define Mi = (1 + ǫ)i, Ai(x) = min{x,Mi}, and T ∗

i as the
optimal tree for Ai. By the monotonicity and concavity of f , whenever Mi ≤ x ≤ Mi+1 we have
f(Mi) ≤ f(x) ≤ f(Mi+1) ≤ (1+ ǫ)f(Mi), so with a loss of only a factor of 1+ ǫ we can interpolate
between f(Mi) and f(Mi+1) and assume f is piecewise linear with breakpoints only at powers of
1 + ǫ. A nondecreasing concave function that is linear between powers of 1 + ǫ can be written as a
nonnegative linear combination of {Ai}0≤i≤K by setting coefficients equal to the changes in slope:
if the slope drops from δi to δi+1 at (1 + ǫ)i it induces the term (δi − δi+1)Ai(x). Now for a linear
combination

∑

i aiAi(x) and a tree T

∑

i aiAi(T)
∑

i aiAi(T
∗
f)
≤

∑

i aiAi(T)
∑

i aiAi(T
∗
i)

=

∑

i aiAi(T
∗
i)

Ai(T)
Ai(T ∗

i
)

∑

i aiAi(T
∗
i)

≤ max
i

Ai(T)

Ai(T
∗
i)

so it suffices to upper bound maxiAi(T)/Ai(T
∗
i).

We now define some notation and subroutines that will be important for our algorithm. The
problem of finding a good aggregation tree for the function Ai(x) = min{x,Mi} is an instance of
the SSRoB problem, and we can find a λ-approximate tree Ti, where λ is the best approximation
ratio known, currently equal to 2.8 using the algorithm of Eisenbrand et al. [EGRS10] and Byrka
et al. [BGRS10]. We will assume the algorithm is deterministic. If not (as in the case of the 2.8-
approximation) we repeat it a polynomial number of times and pick the best tree, so we are close

4

to a λ-approximation with very high probability. In this case, our simultaneous approximation
algorithm will have some tiny probability of failure.

The cost Ai(Ti) can be broken into two pieces, the rent cost and the buy cost, based on whether
Ai is maxed out at Mi:

Definition 2.1. For an aggregation tree Ti for cost function Ai with xe flow on edge e, the rent
cost Ri and normalized buy cost Bi are defined as

Ri =
∑

e∈Ti, xe<Mi

leAi(xe)

Bi =
∑

e∈Ti, xe≥Mi

le
Ai(xe)

Mi
=

∑

e∈Ti, xe≥Mi

le

Note that edge costs composing Ri are weighted by the amount of flow they carry, but edges in
Bi are not; they use unweighted edge costs. The total cost of Ti is given by Ai(Ti) = Ri +MiBi.
The rent and buy costs also partition the nodes of Ti into two sets:

Definition 2.2. The core Ci of tree Ti consists of r and all nodes spanned by bought edges and the
periphery contains all vertices outside Ci.

If we condition on the nodes in Ci then the rent-or-buy problem becomes easy: demands outside
the core pay linear cost until they reach Ci, so they should take the shortest path, whereas within
Ci we pay a fixed cost per edge length, so the best strategy is to follow the min spanning tree. The
cost Ri is therefore at least the sum of shortest path distances to Ci, while Bi is at least the weight
of the MST of Ci.

In addition to the SSRoB approximation, we will also employ the light, approximate shortest-
path tree algorithm of Khuller et al. [KRY95]:

Definition 2.3 ([KRY95]). For α ≥ 1 and β ≥ 1, an (α, β)-light, approximate shortest-path or
(α, β)-LAST is a spanning tree T of G with root r such that

• For each vertex v, the distance from v to r in T is at most α times the shortest path distance
from v to r in G.

• The edge weight of T is at most β times the weight of an MST of G.

Khuller et al. show how to construct an (α, β)-LAST for any α > 1 and β ≥ α+1
α−1 . Roughly, the

algorithm performs a depth-first traversal of the MST of G starting from r, checking the stretch of
the shortest path to each node. If the path to some v has blown up by at least an α factor, then
it updates the tree to take the shortest path from v to r, adjusting other tree edges and distances
accordingly. See the paper [KRY95] for a full description and analysis.

Finally, we define four parameters α, β, γ, and δ used by our algorithm whose values we will
optimize at the end.

• α > 1 is the approximation ratio for shortest paths used in our LAST.

• β ≥ α+1
α−1 is the corresponding approximation to the MST in the LAST.

• γ > 1 is the factor by which normalized buy costs Bi increase from layer to layer in our tree.

• δ > 1 is the factor by which rent costs Ri drop from layer to layer.

We now turn to a more thorough explanation of tree layers.

5

3 Tree Layers

In the normal SSBaB problem, the cost function is defined as f(x) = minj{σj + δjx}, the cheapest
of a collection of different “pipes” or “cables” given to the algorithm, each with an affine cost
function σj + δjx. It is common (e.g. [GMM01, GKPR07]) to first prune these pipes to a smaller
set with geometrically decreasing δj ’s and geometrically increasing σj’s and then build a solution
in layers where each layer routes with a different pipe.

We perform an analogous procedure. We would like to build our simultaneous tree T in a series
of nested layers defined by the cores Ci of each tree Ti, so that the core of T under Ai is similar
to Ci, but we have no guarantees on the relationships between different cores: Ci and Ck may be
entirely disjoint except for r. However, we will show that as long as normalized buy costs Bi and Bk

are within a constant factor of each other, the same core can be used for both trees. Consequently,
we are able to define nested layers by choosing one Ci for each order of magnitude of Bi.

After finding λ-approximate trees Ti for each Ai, we loop through the costs Bi and Ri, discarding
i whenever Bi does not drop by γ or Ri does not grow by δ. We are left with a subset L of the Ti

where the Bi’s are dropping by a factor of γ and the Ri’s are growing by a factor of δ. The cores
Ci for each i ∈ L will define the layers of our tree. Algorithm 1 describes the procedure in more
detail.

Algorithm 1: Finding tree layers

Input: Graph G and demands D
Output: Set L and cores Ci for each i ∈ L

1 for i← 0 to K do

2 Ti ← λ-approximate tree for Ai(x)
3 for i← 1 to K do

4 if Ai(Ti−1) < Ai(Ti) then Ti ← Ti−1

5 for i← K − 1 down to 0 do

6 if Ai(Ti+1) < Ai(Ti) then Ti ← Ti+1

7 for i← 0 to K do

8 calculate Ci, Bi, Ri

9 LB ← ∅
10 B ←∞
11 for i← 0 to K do

12 if Bi <
1
γ
B then

13 LB ← LB ∪ {i}
14 B ← Bi

15 L← ∅
16 R←∞
17 foreach i ∈ LB in decreasing order do

18 if Ri <
1
δ
R then

19 L← L ∪ {i}
20 R← Ri

21 return L and Ci for each i ∈ L

Intuitively, as it becomes more expensive to buy edges the optimum will buy fewer edges and

6

rent more. In the case of approximations, the progression becomes muddled because for some i
the approximation guarantee may be tight while for i+1 we may get lucky and find the optimum,
resulting in both rent and normalized buy costs dropping. We first show that the monotonicity in
buy and rent costs still holds as long as each Ti is better for Ai than both Ti−1 and Ti+1.

Lemma 3.1. After line 8 of Algorithm 1, for every i we have Bi ≥ Bi+1 and Ri ≤ Ri+1.

Proof. First we show that for each i, Ai(Ti) ≤ min{Ai(Ti+1), Ai(Ti−1)}. After the loop on lines
3–4, we have Ai(Ti) ≤ Ai(Ti−1), and after the second loop on lines 5–6 we have Ai(Ti) ≤ Ai(Ti+1),
so we only need to show that the second loop does not break the first condition. If the second loop
updates Ti then Ai(Ti) will only shrink, and if it changes Ti−1 it does this by setting Ti−1 ← Ti

which preserves Ai(Ti) ≤ Ai(Ti−1).
Now consider Ai(Tk) for any k. By definition Ai(x) ≤ x and Ai(x) ≤ Mi, so to upper bound

Ai(Tk) we may assume edges within Ck pay Mi per unit length, which sums to MiBk, and edges
outside Ck pay linear cost, or Rk total, implying Ai(Tk) ≤ Rk +MiBk. Therefore

Ri +MiBi = Ai(Ti) ≤ Ai(Ti+1) ≤ Ri+1 +MiBi+1

=⇒Mi(Bi −Bi+1) ≤ Ri+1 −Ri

Similarly,

Ri+1 +Mi+1Bi+1 = Ai+1(Ti+1) ≤ Ai+1(Ti) ≤ Ri +Mi+1Bi

=⇒ Ri+1 −Ri ≤Mi+1(Bi −Bi+1)

Combining the inequalities,

Mi(Bi −Bi+1) ≤ Ri+1 −Ri ≤Mi+1(Bi −Bi+1)

If Bi −Bi+1 < 0 the inequality is false because Mi+1 > Mi, so we conclude Bi ≥ Bi+1. And using
the first inequality, 0 ≤Mi(Bi −Bi+1) ≤ Ri+1 −Ri, so Ri ≤ Ri+1.

We need to show that we can restrict our attention to Ti for i ∈ L. Suppose i < k but Bi ≤ γBk.
Using Lemma 3.1, observe that Ak(Ti) ≤ Ri + MkBi ≤ Rk + δMkBk ≤ δAk(Tk). Note this is
independent of the size of the intersection of the cores Ci and Ck and any differences in routing.
The following lemma generalizes this simple but key observation and proves that approximating
each i ∈ L is sufficient.

Lemma 3.2. Suppose there exists a tree T and constants cB and cR such that for all i ∈ L there
exists a partition of the edges of T into two sets TBi

and TRi
satisfying

• A0(TBi
) ≤ cBBi

• AK(TRi
) ≤ cRRi

then for all k ∈ {0, . . . ,K}, Ak(T) ≤ max{cBγ, cRδ}λAk(T
∗
k).

Proof. Let k ∈ {0, . . . ,K}. Let j = max{j ∈ LB|j ≤ k}. Either j = k or k was discarded due to j
on lines 11–14 because Bk ≥ 1

γ
Bj, and either way Bj ≤ γBk. Now let i = min{i ∈ L|i ≥ j}. Again

i = j or j was pruned due to i on lines 17–20, and Ri ≤ δRj . Applying Lemma 3.1 with i ≥ j and
j ≤ k, we have Bi ≤ Bj ≤ γBk and Ri ≤ δRj ≤ δRk.

7

This is sufficient to bound the cost of Ak(T):

Ak(T) = Ak(TRi
) +Ak(TBi

) ≤ AK(TRi
) +MkA0(TBi

)

≤ cRRi + cBMkBi

≤ cRδRk + cBγMkBk

≤ max{cRδ, cBγ}Ak(Tk) ≤ max{cRδ, cBγ}λAk(T
∗
k)

The equality follows because TBi
and TRi

partition the edges of T . The first inequality is because
AK(x) and MkA0(x) both upper bound Ak(x), the second is by assumption, the third is from
the derivation above, the fourth uses Ak(Tk) = Rk + MkBk, and the last is because Tk is a λ-
approximation.

We will primarily assume that our SSRoB algorithm is a generic approximation, but Lemma
3.2 can easily be improved to take advantage of an SSRoB algorithm with a stronger guarantee
that separately bounds Ri and MiBi in terms of the optimal costs R∗

i and MiB
∗
i .

Corollary 3.3. Let T , cB, and cR be as in Lemma 3.2, and suppose

• Ri ≤ µRR
∗
i + µBMiB

∗
i

• MiBi ≤ νRR
∗
i + νBMiB

∗
i

then for all k, Ak(T) ≤ max{cRδµR + cBγνR, cRδµB + cBγνB}Ak(T
∗
k).

Proof. We change the inequalities in the proof above as follows:

Ak(T) ≤ cRδRk + cBγMkBk ≤ cRδ(µRR
∗
k + µBMkB

∗
k) + cBγ(νRR

∗
k + νBMkB

∗
k)

≤ max{cRδµR + cBγνR, cRδµB + cBγνB}Ak(T
∗
k)

4 Constructing the Tree

The construction of the tree itself is quite simple. We have a set of indices L and core sets Ci for
i ∈ L. Starting with the largest i ∈ L, i.e. smallest Bi, and working downward, we connect each
Ci to T , the tree so far, with a LAST. Algorithm 2 describes the procedure more formally. The
notation G/T represents contracting T to a single node in G, and G[Ci] is the induced subgraph
on Ci, so (G/T)[Ci] denotes first contracting T and then restricting to nodes in Ci.

Lemma 4.1. The graph T constructed by Algorithm 2 is a tree and spans all demand nodes.

Proof. Observe that 0 ∈ L, and R0 = 0, so C0 covers all demands. Therefore after the last iteration
T spans D. Each iteration only adds edges spanning new vertices, so no cycles are created.

The tree may contain paths connecting Steiner nodes that carry no flow. Such edges can be
safely pruned or just ignored because they contribute nothing to the cost.

All that remains is to define the partitions TBi
and TRi

and prove the bounds needed in Lemma
3.2. The set TBi

contains all edges present in T after connecting Ci, and TRi
contains the rest. Both

cost bounds will follow easily from the geometrically changing costs: the cost A0(TBi
) is dominated

by the cost of the Ci layer, an approximate MST, and AK(TRi
) is dominated by the rent costs of

the next layer, an approximate shortest-path tree. First, we bound the normalized buy cost of TBi
:

8

Algorithm 2: Constructing the tree

Input: Graph G. Set L and accompanying Ci for each i ∈ L
Output: Aggregation tree T

1 T ← {r}
2 foreach i ∈ L in decreasing order do

3 T ′ ← (α, β)-LAST of (G/T)[Ci] with root T
4 T ← T ∪ T ′

5 return T

Lemma 4.2. Let i ∈ L, and TBi
be the tree T after the round when Ci is added. Then the edge

cost A0(TBi
) is at most βγ

γ−1Bi.

Proof. The proof is by decreasing induction on i, i.e. in the order in which the layers are built. Let
c be a constant to be chosen at the end. The base case is the largest i ∈ L, which is the smallest i
such that Bi = 0. In this case, Ci = {r}, TBi

= {r}, and the edge cost is 0.
Now let i ∈ L, k = min{k ∈ L|k > i} be the previous (inner) layer, and suppose the edge cost of

TBk
is at most cBk. By the construction of L, we know Bk < 1

γ
Bi, implying TBk

costs at most c
γ
Bi.

The cost of an MST of Ci in G is at most Bi, and TBk
may already span part of Ci, so connecting

the rest with an MST1 of (G/TBk
)[Ci] costs at most Bi. Using an (α, β)-LAST scales the cost by

at most β.
The total cost of edges laid so far is at most c

γ
Bi + βBi, so the proof is complete as long as

cBi ≥ c
γ
Bi + βBi. Set c =

βγ
γ−1 :

c ≥ β +
c

γ
⇐⇒ c

(

1− 1

γ

)

≥ β ⇐⇒ c ≥ βγ

γ − 1

Now we bound the rent costs of TRi
by a similar proof.

Lemma 4.3. Let i ∈ L and TRi
= T/TBi

, i.e. all edges outside of TBi
. Then the rent cost AK(TRi

)
is at most αδ

δ−α−1Ri.

Proof. We prove by increasing induction on i ∈ L (the reverse of Lemma 4.2) that AK(TRi
) ≤ cRi

for some c to be determined. Since 0 ∈ L, and TB0
covers everything, the base case TR0

costs 0 too.
For the inductive case, let i ∈ L, k = max{k ∈ L|k < i} be the next (outer) layer, and TRk

have rent cost at most cRk. As before, note Rk < 1
δ
Ri, so AK(TRk

) ≤ c
δ
Ri. Tree TBi

spans Ci

and possibly more, so if all demands outside TBi
took the shortest path from their sources to TBi

the shortest-path cost would be at most Ri. However, the edges of TRk
have moved some demands

around, and by the time they reach the current layer they may be farther from TBi
than their

original sources were. But by the triangle inequality the cost of sending all demands from their
current locations to TBi

via shortest paths is at most c
δ
Ri +Ri, the cost of sending all flow in TRk

back to its source and from there to TBi
using shortest paths. The LAST algorithm guarantees

α-approximate shortest paths, multiplying the cost by α.

1We could allow Steiner nodes and use a Steiner tree approximation, but this would not improve the worst-case

bound.

9

Consequently the total rent cost for TRi
is bounded by c

δ
Ri + α

(

c
δ
Ri +Ri

)

, which needs to be

at most cRi. We can set c = αδ
δ−α−1 :

c ≥ c

δ
+

cα

δ
+ α⇐⇒ c

(

1− 1

δ
− α

δ

)

= c
δ − α− 1

δ
≥ α⇐⇒ c ≥ αδ

δ − α− 1

We note that Lemma 4.3 explains how we circumvent a major obstacle to an O(1)-simultaneous
approximation—the Ω(log n) distortion lower bound for embedding arbitrary metrics into tree
metrics [Bar96]. If we needed to maintain distances between many pairs of nodes the task would
be hopeless, but Lemma 4.3 shows that it suffices to preserve the distance of each node to the next
layer, so the graph of distances to be maintained forms a tree.

We can now complete the proof of our main theorem and choose the optimal parameters.

Theorem 4.4. The tree T achieves a simultaneous approximation ratio of (1+ ǫ)λ(8+4
√
5) using

a λ-approximation to SSRoB. In particular,

• There is a randomized polynomial time algorithm that finds a 47.45 simultaneous approxima-
tion with high probability.

• There is a deterministic polynomial time algorithm that finds a 55.58 simultaneous approxi-
mation.

• There exists a tree that is a 16.95 simultaneous approximation.

Proof. Applying Lemma 3.2 with cB = βγ
γ−1 (Lemma 4.2) and cR = αδ

δ−α−1 (Lemma 4.3), the final
approximation ratio for an arbitrary cost function f is

(1 + ǫ)λmax

{

βγ2

γ − 1
,

αδ2

δ − α− 1

}

where the extra 1 + ǫ comes from the approximation of f by a combination of Ai’s. Now it is a
simple matter of applying calculus to find the optimal values for α, β, γ, and δ. We set

α =
1 +
√
5

2
β = 2 +

√
5 γ = 2 δ = 3 +

√
5

for which βγ2

γ−1 = αδ2

δ−α−1 . The derivation of these values is presented in the appendix.

This gives us βγ2

γ−1 = 4(2 +
√
5) so the simultaneous approximation ratio is

(1 + ǫ)λ(8 + 4
√
5).

Now,

• Using the best randomized approximation λ = 2.8, and the ratio is 47.45 with high probability.

• Using the best deterministic approximation λ = 3.28, and the ratio is 55.58.

• If the algorithm is allowed to run in exponential time λ = 1, and the ratio is 16.95.

10

The 2.8-approximation of Eisenbrand et al. [EGRS10] actually provides a slightly stronger guar-
antee on Ri and Bi, and we can use Corollary 3.3 to get a tiny improvement in the approximation
ratio at the cost of a more complex derivation:

Theorem 4.5. There is a randomized polynomial time algorithm that finds a 47.07 simultaneous
approximation with high probability.

Proof. Lemma 2 and Theorem 5 in [EGRS10] prove that

E[Ri] ≤ 2R∗
i +

.807

x
MiB

∗
i E[MiBi] ≤ ρ(x+ ǫ)R∗

i + ρMiB
∗
i

where ρ = 1.39 is the Steiner tree approximation ratio and x ∈ (0, 1] is a parameter. Applying
Corollary 3.3 with

µR = 2 µB =
.807

x
νR = ρ(x+ ǫ) νB = ρ

the simultaneous ratio is bounded by

(1 + ǫ)max

{

2αδ2

δ − α− 1
+

ρ(x+ ǫ)βγ2

γ − 1
,

.807αδ2

x(δ − α− 1)
+

ρβγ2

γ − 1

}

Using

x = .5995 α = 1.5495 β =
α+ 1

α− 1
γ = 2 δ = 2α+ 2

yields a simultaneous ratio of 47.07. The parameters are derived in the appendix.

We leave as an open question the problem of exploiting Corollary 3.3 to substantially improve
the ratio.

4.1 Runtime

Let t(n,m) be the running time of our SSRoB approximation on a graph with n vertices and m
edges, which must be at least Ω(n) to write down the output. When ǫ is constant, running the
SSRoB approximation for each i takes O(t(n,m) logD). Subsequent loops in Algorithm 1 take
O(n logD) = O(t(n,m) logD).

For each of the O(logD) iterations of Algorithm 2 we need to do a graph contraction and run
the LAST algorithm, which requires computing the MST and shortest path trees. The computation
of the shortest path tree takes O(m+ n log n) and dominates the other steps. Combining the two
algorithms, the total time is O((t(n,m) +m+ n log n) logD).

11

5 Open Problems

We have answered the open questions posed by Goel and Estrin and Goel and Post [GE03, GP09],
but there are several avenues for further work. Our simultaneous ratio of 47.45 already surpasses
many algorithms for normal SSBaB and is only a factor of 2.33 away from the best. It would be nice
to eliminate this gap or, alternately, prove that a gap exists between the approximation achievable
for fixed f and the best simultaneous ratio. We know of no lower bounds on what simultaneous
ratio may be possible, so any progress in this direction would also be interesting. Generalizing the
settings in which O(1) simultaneous ratios are possible would be interesting, but may be unlikely
given that one must contend with lower bounds for metric tree embedding [Bar96] and multi-sink
buy-at-bulk [And04].

Acknowledgements

We thank the anonymous reviewers for many helpful comments that improved the presentation and
for suggesting Corollary 3.3 and Theorem 4.5.

References

[AA97] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In Proceedings of the 38th
annual IEEE Symposium on Foundations of Computer Science, 1997. 3, 4

[And04] M. Andrews. Hardness of buy-at-bulk network design. In Proceedings of the 45th
IEEE Symposium on Foundations of Computer Science, pages 115–124, 2004.
doi:10.1109/FOCS.2004.32. 12

[AZ98] M. Andrews and L. Zhang. The access network design problem. In Proceedings of
the 39th IEEE Symposium on Foundations of Computer Science, pages 40–49, 1998.
doi:10.1109/SFCS.1998.743427. 1

[Bar96] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic appli-
cations. In Proceedings of the 37th IEEE Symposium on Foundations of Computer
Science, pages 184–193, 1996. 3, 10, 12

[Bar98] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings of
the 30th annual ACM Symposium on Theory of Computing, pages 161–168, 1998.
doi:10.1145/276698.276725. 3

[BGRS10] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità.
An improved LP-based approx-imation for Steiner tree. In Proceedings of the
42nd ACM Symposium on Theory of Computing, pages 583–592. ACM, 2010.
doi:10.1145/1806689.1806769. 3, 4, 16

[EGGM05] M. Enachescu, A. Goel, R. Govindan, and R. Motwani. Scale-free aggregation in
sensor networks. Theoretical Computer Science, 344(1):15–29, 2005.
doi:10.1016/j.tcs.2005.06.023. 4

12

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.6906
http://dx.doi.org/10.1109/FOCS.2004.32
http://dx.doi.org/10.1109/FOCS.2004.32
http://dx.doi.org/10.1109/SFCS.1998.743427
http://dx.doi.org/10.1109/SFCS.1998.743427
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.8507
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.8507
http://dx.doi.org/10.1145/276698.276725
http://dx.doi.org/10.1145/276698.276725
http://dx.doi.org/10.1145/1806689.1806769
http://dx.doi.org/10.1145/1806689.1806769
http://dx.doi.org/10.1145/1806689.1806769
http://dx.doi.org/10.1016/j.tcs.2005.06.023
http://dx.doi.org/10.1016/j.tcs.2005.06.023
http://dx.doi.org/10.1016/j.tcs.2005.06.023

[EGRS10] F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Connected facility location
via random facility sampling and core detouring. Journal of Computer and System Sci-
ences, 2010. doi:10.1016/j.jcss.2010.02.001. 1, 3, 4, 11, 16

[ER09] M. Englert and H. Räcke. Oblivious routing for the Lp-norm. In Proceedings of the
50th IEEE Symposium on Foundations of Computer Science, pages 32–40, 2009. 4

[FRT03] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. In Proceedings of the 35th annual ACM Symposium on Theory
of Computing, pages 448–455, 2003. doi:10.1145/780542.780608. 2, 3, 4

[GE03] A. Goel and D. Estrin. Simultaneous optimization for concave costs: single sink ag-
gregation or single source buy-at-bulk. In Proceedings of the 14th annual ACM-SIAM
Symposium on Discrete Algorithms, pages 499–505, 2003. 2, 3, 4, 12

[GHR06] A. Gupta, M.T. Hajiaghayi, and H. Räcke. Oblivious network design. In Proceedings of
the 17th annual ACM-SIAM Symposium on Discrete Algorithms, pages 970–979, 2006.
doi:10.1145/1109557.1109665. 4

[GI06] F. Grandoni and G.F. Italiano. Improved approximation for single-sink buy-at-bulk.
Lecture Notes in Computer Science, 4288:111–120, 2006. doi:10.1007/11940128_13.
3

[GKK+01] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a virtual
private network: A network design problem for multicommodity flow. In Proceedings
of the 33rd annual ACM Symposium on Theory of Computing, pages 389–398, 2001.
doi:10.1145/380752.380830. 3

[GKPR07] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden. Approximation via cost sharing:
Simpler and better approximation algorithms for network design. Journal of the ACM
(JACM), 54(3), 2007. doi:10.1145/1236457.1236458. 3, 6

[GMM01] S. Guha, A. Meyerson, and K. Munagala. A constant factor approximation for the single
sink edge installation problems. In Proceedings of the 33rd annual ACM Symposium
on Theory of Computing, pages 383–388, 2001. doi:10.1145/380752.380827. 1, 3, 6

[GP09] A. Goel and I. Post. An oblivious O(1)-approximation for single source buy-at-bulk. In
Proceedings of the 50th IEEE Symposium on Foundations of Computer Science, 2009.
arXiv:0908.3740v1. 2, 3, 4, 12

[GR10] F. Grandoni and T. Rothvoß. Network design via core detouring for problems without
a core. In 37th International Colloquium on Automata, Languages and Programming.
To appear., 2010. 1, 3

[GST08] A. Gupta, A. Srinivasan, and É. Tardos. Cost-sharing mechanisms for network design.
Algorithmica, 50(1):98–119, 2008. doi:10.1007/s00453-007-9065-y. 3

[JR04] R. Jothi and B. Raghavachari. Improved approximation algorithms for the single-sink
buy-at-bulk network design problems. In Proceedings of the 9th Scandinavian Work-
shop on Algorithm Theory, pages 336–348, 2004. doi:10.1016/j.jda.2008.12.003.
3

13

http://dx.doi.org/10.1016/j.jcss.2010.02.001
http://dx.doi.org/10.1016/j.jcss.2010.02.001
http://dx.doi.org/10.1016/j.jcss.2010.02.001
http://www.dcs.warwick.ac.uk/~harry/pdf/obliviouslpnorm.pdf
http://dx.doi.org/10.1145/780542.780608
http://dx.doi.org/10.1145/780542.780608
http://dx.doi.org/10.1145/780542.780608
http://doi.acm.org/10.1145/644108.644191
http://doi.acm.org/10.1145/644108.644191
http://dx.doi.org/10.1145/1109557.1109665
http://dx.doi.org/10.1145/1109557.1109665
http://dx.doi.org/10.1007/11940128_13
http://dx.doi.org/10.1007/11940128_13
http://dx.doi.org/10.1145/380752.380830
http://dx.doi.org/10.1145/380752.380830
http://dx.doi.org/10.1145/380752.380830
http://dx.doi.org/10.1145/1236457.1236458
http://dx.doi.org/10.1145/1236457.1236458
http://dx.doi.org/10.1145/1236457.1236458
http://dx.doi.org/10.1145/380752.380827
http://dx.doi.org/10.1145/380752.380827
http://dx.doi.org/10.1145/380752.380827
http://arxiv.org/abs/0908.3740v1
http://arxiv.org/abs/0908.3740v1
http://www.disp.uniroma2.it/users/grandoni/Pubblicazioni/GR10icalp.pdf
http://www.disp.uniroma2.it/users/grandoni/Pubblicazioni/GR10icalp.pdf
http://dx.doi.org/10.1007/s00453-007-9065-y
http://dx.doi.org/10.1007/s00453-007-9065-y
http://dx.doi.org/10.1016/j.jda.2008.12.003
http://dx.doi.org/10.1016/j.jda.2008.12.003
http://dx.doi.org/10.1016/j.jda.2008.12.003

[KEW02] B. Krishnamachari, D. Estrin, and S. Wicker. Modelling data-centric routing in
wireless sensor networks. In IEEE INFOCOM, pages 1–11, 2002. 1

[KM00] D Karger and M. Minkoff. Building Steiner trees with incomplete global knowledge. In
Proceedings 41st IEEE Symposium on Foundations of Computer Science, pages 613–
623, 2000. 1, 3

[KRY95] S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning trees and
shortest-path trees. Algorithmica, 14(4):305–321, 1995. arXiv:cs/0205045v1. 3, 4, 5,
15

[RR98] Y. Rabinovich and R. Raz. Lower bounds on the distortion of embedding finite metric
spaces in graphs. Discrete and Computational Geometry, 19(1):79–94, 1998.
doi:10.1007/PL00009336. 2

[RS99] R. Ravi and F.S. Salman. Approximation algorithms for the traveling purchaser prob-
lem and its variants in network design. Lecture Notes in Computer Science, 1643:29–
40, 1999. doi:10.1007/3-540-48481-7_4. 3

[SCRS97] FS Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Buy-at-bulk network design:
Approximating the single-sink edge installation problem. In Proceedings of the 8th an-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 619–628, 1997. 1, 3

[SK04] C. Swamy and A. Kumar. Primal–dual algorithms for connected facility location prob-
lems. Algorithmica, 40(4):245–269, 2004. doi:10.1007/s00453-004-1112-3. 3

[Tal02] K. Talwar. The single-sink buy-at-bulk lp has constant integrality gap. In Proceedings
of the 9th International IPCO Conference on Integer Programming and Combinatorial
Optimization, pages 475–486, 2002. doi:10.1007/3-540-47867-1_33. 3

[vZ09] A. van Zuylen. Deterministic sampling algorithms for network design. Algorithmica,
pages 1–42, 2009. doi:10.1007/s00453-009-9344-x. 3

[WvZ07] D.P. Williamson and A. van Zuylen. A simpler and better derandomization of an
approximation algorithm for single source rent-or-buy. Operations Research Letters,
35(6):707–712, 2007. doi:10.1016/j.orl.2007.02.005. 4

A Derivation of optimal parameters

Here we derive the optimal values for the parameters used in the proofs of Theorems 4.4 and 4.5.

Parameters for Theorem 4.4. We need to minimize the expression

max

{

βγ2

γ − 1
,

αδ2

δ − α− 1

}

(3)

The easiest parameters to fix are γ and δ. For γ:

d

dγ

[

βγ2

γ − 1

]

= β
(2γ)(γ − 1)− γ2

(γ − 1)2
= 0 =⇒ γ(γ − 2) = 0 =⇒ γ = 2

14

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.7212
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.7212
http://people.csail.mit.edu/karger/Papers/maybecast.ps
http://arxiv.org/abs/cs/0205045v1
http://arxiv.org/abs/cs/0205045v1
http://arxiv.org/abs/cs/0205045v1
http://dx.doi.org/10.1007/PL00009336
http://dx.doi.org/10.1007/PL00009336
http://dx.doi.org/10.1007/PL00009336
http://dx.doi.org/10.1007/3-540-48481-7_4
http://dx.doi.org/10.1007/3-540-48481-7_4
http://dx.doi.org/10.1007/3-540-48481-7_4
http://doi.acm.org/10.1145/314161.314397
http://doi.acm.org/10.1145/314161.314397
http://dx.doi.org/10.1007/s00453-004-1112-3
http://dx.doi.org/10.1007/s00453-004-1112-3
http://dx.doi.org/10.1007/s00453-004-1112-3
http://dx.doi.org/10.1007/3-540-47867-1_33
http://dx.doi.org/10.1007/3-540-47867-1_33
http://dx.doi.org/10.1007/s00453-009-9344-x
http://dx.doi.org/10.1007/s00453-009-9344-x
http://dx.doi.org/10.1016/j.orl.2007.02.005
http://dx.doi.org/10.1016/j.orl.2007.02.005
http://dx.doi.org/10.1016/j.orl.2007.02.005

For δ:

d

dδ

[

αδ2

δ − α− 1

]

= α
2δ(δ − α− 1)− δ2

(δ − α− 1)2
= 0

=⇒ δ2 − 2αδ − 2δ = δ(δ − 2α− 2) = 0 =⇒ δ = 2α+ 2

Plugging γ = 2 and δ = 2α+ 2 into (3), β γ2

γ−1 = 4β, and

αδ2

δ − α− 1
=

α(2α + 2)2

(2α + 2)− α− 1
= 4α(α + 1)

so (3) is now max{4β, 4α(α + 1)}. The constraints on α and β require β ≥ α+1
α−1 [KRY95], so one

term blows up if the other shrinks. To minimize the maximum set the two expressions to be equal:

β =
α+ 1

α− 1
= α(α+ 1) =⇒ α(α− 1) = 1 =⇒ α2 − α− 1 = 0 =⇒ α =

1±
√
5

2

Using α = 1+
√
5

2 , we get

β =
α+ 1

α− 1
=

3 +
√
5

−1 +
√
5
=

(3 +
√
5)(1 +

√
5)

4
=

8 + 4
√
5

4
= 2 +

√
5

and δ = 2α+ 2 = 3 +
√
5.

Parameters for Theorem 4.5. We need to minimize

max

{

2αδ2

δ − α− 1
+

ρ(x+ ǫ)βγ2

γ − 1
,

.807αδ2

x(δ − α− 1)
+

ρβγ2

γ − 1

}

(4)

For γ and δ, both expressions inside the max function are minimized exactly as above in Theorem
4.4 with γ = 2 and δ = 2α+2. Also as in Theorem 4.4, β can be set to α+1

α−1 , the minimum allowed
by the constraints. Plugging in these values and simplifying, expression 4 becomes

4(α+ 1)max

{

2α+
ρ(x+ ǫ)

α− 1
,
.807α

x
+

ρ

α− 1

}

Set the two expressions inside the maximization to be equal, and solve the resulting quadratic
equation in x to get (for ǫ = 0):

x =
1

2
− α(α − 1)

ρ
+

√

α2(α− 1)2

ρ2
− .193α(α − 1)

ρ
+

1

4

using that x > 0.
The problem is now to minimize

4(α + 1)

(

2α+
ρx

α− 1

)

= 4α(α + 1) +
2ρ(α + 1)

α− 1
+ 4(α+ 1)

√

α2 − .193ρα

α− 1
+

ρ2

(α− 1)2

This expression is unwieldy to optimize analytically but when ρ = 1.39 it achieves a minimum of
about 47.068 for α ≈ 1.5495. When α = 1.5495, x ≈ .5995.

15

B Approximation ratio for SSRoB

The current-best algorithm for SSRoB [EGRS10] depends on the approximation ratio for Steiner
tree, which has recently been reduced to 1.39 [BGRS10]. The improved SSRoB ratio does not
currently appear in the literature, so we include the calculation for completeness. See the original
paper for details.

Theorem B.1 ([EGRS10, BGRS10]). There is a 2.8-approximation for SSRoB.

Proof. By the proof of Theorem 6 in [EGRS10], there is an SSRoB algorithm with expected cost

ρ(MB∗ + (x+ ǫ)R∗) + 2R∗ + 0.807
MB∗

x

where ρ is the approximation ratio for Steiner tree and x is a parameter in (0, 1]. Set the coefficients
of R∗ and MB∗ to be equal and solve the resulting quadratic equation in x. For ρ = 1.39, choosing
x = .5735 gives an approximation ratio of 2.80.

16

	Abstract
	1 Introduction
	1.1 Related Work

	2 Notation and Preliminaries
	3 Tree Layers
	4 Constructing the Tree
	4.1 Runtime

	5 Open Problems
	References
	A Derivation of optimal parameters
	B Approximation ratio for SSRoB

