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Abstract of this as each point i® gets assigned to the closest cen-

ter in K. The points that get assigned to the same center
We present the first linear tinfé +<)-approximational-  form a cluster. Thek-means problem is NP-hard even for
gorithm for thek-means problem for fixeld ande. Our al- kE = 2. Another popular definition of clustering is the

gorithm runs inO(nd) time, which is linear in the size of median problem. This is defined in the same manner as the
the input. Another feature of our algorithm is its simplic- k-means problem except for the fact that the objective func-
ity — the only technique involved is random sampling. tion is 3° . pd(p, K). Observe that the distance measure
used in the definition of thé-means problem is not a met-
ric. This might lead one to believe that solving theneans
problem is more difficult than the-median problem. How-
ever, in this paper, we give strong evidence that this may not

The problem of clustering a group of data items into sim- P€ the case. _
ilar groups is one of the most widely studied problems in A lot of research has been devoted to solving ihe
computer science. Clustering has applications in a vaoiety Means problem exactly (see'[ll] and thg references therein)
areas, for example, data mining, information retrievak, im Even the be'st known algorithms for this problem take at
age processing, and web search ([5, 7, 14, 9]). Given theleagtﬂ(nd) time. Recently, some work 'has been devoted
wide range of applications, many different definitions of t0 finding (1 + ¢)-approximation algorithms for thé-
clustering exist in the literature ([8, 4]). Most of thesdide ~ Means problem, where can be an arbitrarily small con-
nitions begin by defining a notion of distance between two Stant. This has led to algorithms with much improved run-
data items and then try to form clusters so that data itemsNing time. Further, if we look at the applications of the
with small distance between them get clustered together. Means pro.bler.n, they Oftgn involve mapping subjegnve fea-

Often, clustering problems arise in a geometric setting, tures to points in the Euclidean space. Since there is an erro

i.e., the data items are points in a high dimensional Eu- inherentin this mapping, finding(@ + ¢)-approximate so-
clidean space. In such settings, it is natural to define thelution does not lead to a deterioration in the solution fer th

distance between two points as the Euclidean distance be@ctual application. _ _ .
tween them. One of the most popular definitions of cluster- 1N this paper, we give the first truly linear tinfe + ¢)-
ing is thek-means clustering problenBiven a set of points ~ @PProximation algorithm for thé-means problem. Treat-

1. Introduction

P, thek-means clustering problems seeks to find aféeff N & ande as constants, our algorithm runs@nd) time,
L centers. such that which is linear in the size of the input. Another feature of
) our algorithmis its simplicity — the only technique invotie
> dp, K) is random sampling.
peP

is minimized. Note that the points ik can be arbitrary 1.1. Related work
points in the Euclidean space. Helf@, K) refers to the dis-
tance betweep and the closest center iid. We can think The fastest exact algorithm for themeans clustering
problem was proposed by Inaba et al. [11]. They observed
1 Author's present address: Dept of Computer Science andegming, that the number of Voronoi partitions &f points inR< is

IT Kharagpur 721302. O(n*?) and so the optimat-means clustering could be de-




termined exactly in timeO(n*4+1). They also proposed
a randomized1 + ¢)-approximation algorithm for the-
means clustering problem with running tirdgn /e?).

Matousek [13] proposed a deterministid + ¢)-
approximation algorithm for thek-means problem
with running time O(ne=2**dlog"n). Badoiu et al.
[3] proposed a(l + ¢)-approximation algorithm for
the k-median clustering problem with running time
02,/ g0M nlog®®n). Their algorithm can be ex-
tended to get d1 + ¢)-approximation algorithm for the
k-means clustering problem with a similar running time. de
la Vega et al. [6] proposed @ + ¢)-approximation algo-
rithm for thek-means problem which works well for points
in high dimensional points in high dimensions. The run-
ning time of this algorithm isO(g(k,¢)nlog®n) where
g(k,e) = exp|(k3/e®)(In(k/e)Ink]. Recently, Har-Peled
et al. [10] proposed a(l + e¢)-approximation algo-
rithm for the k-means clustering whose running time
is O(n + kk“e’@d“)klogkﬂnlogk%). Their algo-

The 2-means clustering problem has also gener-
ated enough research interest in the past. Our algo-
rithm yields a (1 + ¢)-approximation algorithm for the
2-means clustering problem with constant probabil-
ity in time 0(2/9°" dn). This is the first dimension
independent (in the exponent) algorithm for this prob-
lem that runs in linear time.

The basic idea of our algorithm is very simple. We be-
gin with the observation of Inaba et. al. [11] that given a set
of points, their centroid can be very well approximated by
sampling a constant number of points and finding the cen-
troid of this sample. So if we knew the clusters formed by
the optimal solution, we can get good approximations to the
actual centers. Of course, we do not know this fact. How-
ever, if we sample (k) points, we know that we will get
a constant number of points from the largest cluster. Thus,
by trying all subsets of constant size from this sample, we
can essentially sample points from the largest clustehi# t
way, we can estimate the centers of large clusters. How-

rithm is also fa|r|y Comp|icated and relies on several €ver, in order to Sample from the smaller CIUSterS, we need

results in computational geometry that depend exponen-0 prune points from the larger clusters. This pruning has
tially on the number of dimensions. So this is more suitable to balance two facts — we would not like to remove points

for low dimensions only.

There exist other definitions of clustering, for example,
k-median clustering where the objective is to minimize the
sum of the distances to the nearest centerfanenter clus-
tering, where the objective is to minimize the maximum dis-
tance (see [1, 2, 3, 10, 12] and references therein).

1.2. Our contributions

We present a linear timél + ¢)-approximation algo-
rithm for the k-means problem. Treating ande as con-
stants, the running time of our algorithm is better in com-
parison to the previously known algorithms for this prob-

lem. However, the algorithm due to Har-Peled and Mazum-
dar [10] deserves careful comparison. Note that their algo-

rithm, though linear im, is not linear in the input size of
the problem, which isin (for n points ind dimensions).

Therefore, their algorithm is better only for low dimen-
sions; ford = Q(logn), our algorithm is much faster. Even

use of Johnson-Lindenstraus lemma will not make the run-
ning time comparable as it has its own overheads. Many re-

cent algorithms rely on techniques like exponential grid or

from the smaller clusters and yet we want to remove enough
points from the larger clusters.

Our algorithm appears very similar in spirit to that of
Badiou et al. [3]. In fact both these algorithms begin with
the same premise of random sampling. However, in order
to sample from the smaller clusters, their algorithm has to
guess the sizes of the smaller clusters and the distances be-
tween clusters. This causes@(log*n) multiplicative fac-
tor in the running time of their algorithm. We completely
avoid this extra factor by a much more careful pruning al-
gorithm. Moreover this makes our algorithm considerably
simpler.

2. Preliminaries

Let P be a set ofr points in the Euclidean spade.
Given a set ok points K, which we also denote agnters
define thek—means cost oP with respect tak, A(P, K),
as

AP.K) = d(p, K)?,

peP

scaling that have high overheads. For instance, normaliz-Where d(p, K) denotes the distance betwegnand the
ing with respect to minimum distance between points may ¢l0Sest point t in K. The k—means problem seeks to

incur an extra2(n) cost per point depending on the com- ind & set K of size k such thatA(P, K) is minimized.
putational model. In [3], the authors have used rounding L&t &x(P) denote the cost of the optimal solution to the

techniques based on approximations of the optitregnter

value without specifying the cost incurred in the process.
The techniques employed in our algorithm have no such1

hidden overheads.

k—means problem with respect fa

In this paper we have addressed the unconstrained probleene this
set can consist of any points ink<.



If K happens to be a singleton det}, then we shall de-
note A(P, K) by A(P,y). Similar comments apply when
P is a singleton set.

Definition 2.1. We say that the point seP is (k,¢)-
irreducibleif Ax_1(P) > (1 4 32¢)A,(P). Otherwise we
say that the point set i, ¢)-reducible

Reducibility basically captures the fact that if instead of
finding the optimalk-means solution, we find the optimal
(k — 1)-means solution, we will still be close to the former

Suppose”’ is a subset of” and we want to get a good
approximation to the optimal 1-means for the point Bét
Following lemma 2.2, we would like to sample fraii. But
the problem is thaP’ is not explicitly given to us. The fol-
lowing lemma states that if the size Bf is close to that of
P, then we can sample a slightly larger set of points from
P and hopefully this sample would contain enough random
samples fromP’. Let us define things more formally first.
Let P be a set of points an®’ be a subset oP such that
|P’'| > B|P|, whereg is a constant between 0 and 1. Sup-

solution. We now look at some properties of the 1-meanspose we take a sampfof size% from P. Now we con-

problem.

2.1. Properties of the 1-means problem

Definition 2.2. For a set of points?, define thecentroid
¢(P), of P as the point=z2”

Pl

For any point: € R¢, it is easy to check that

A(P,z) = A(P,¢(P)) 4+ |P| - A(¢(P), x). (1)

From this we can make the following observation.

Fact 2.1. Any optimal solution to the 1-means problem with
respect to an input point sét chooseg:(P) as the center.

We can also deduce an important property of any opti-
mal solution to thé&-means problem. Suppose we are given
an optimal solution to thé-means problem with respect
to the inputP. Let K = {z1,...,2;} be the set of cen-
ters constructed by this solutioA. produces a partitioning
of the point setP into K clusters, namelyP,, ..., Px. P;
is the set of points for which the closest pointAnis x;.

In other words, the clusters correspond to the points in the

Voronoi regions irit? with respect ta. Now, Fact 2.1 im-
plies thatr; must be the centroid af; for all 5.

Since we will be interested in fast algorithms for comput-
ing good approximations to themeans problem, we first
consider the cask = 1. Inaba et. al. [11] showed that the
centroid of a small random sample of pointsiincan be a
good approximation te(P).

Lemma 2.2. [11]LetT be a set ofn points obtained by
independently sampling points uniformly at random from
a point setP. Then, for any > 0,

A(S,e(T)) < (1+$) Ay (P)

holds with probability at least — 6.

Therefore, if we choose: as%, then with probability at
least 1/2, we get él + ¢)-approximation taA; (P) by tak-
ing the center as the centroid @f Thus, a constant size
sample can quickly yield a good approximation to the opti-
mal 1-means solution.

sider all possible subsets of si%eof S. For each of these
subsetss’, we compute its centroie(.5’), and consider this

as a potential center for the 1-means problem instance on
P’. In other words, we considek(P’, ¢(S")) for all such
subsetsS’. The following lemma shows that one of these
subsets must give a close enough approximation to the op-
timal 1-means solution foP’.

Lemma 2.3. (Superset Sampling Lemma) The following
event happens with constant probability

AP c(S) < (1+e)A1(P)

min
57:5'C8,|8"|=2
Proof. With constant probability,5 contains at least
points fromP’. The rest follows from Lemma 2.2. O

We use the standard notatif#ip, r) to denote the open
ball of radiusr around a poinp.

We assume the input parametefor the approximation
factor satisfie® < ¢<1.

3. A linear time algorithm for 2-means clus-
tering

Before considering thé&-means problem, we consider
the 2-means problem. This contains many of the ideas in-
herent in the more general algorithm. So it will make it eas-
ier to understand the more general algorithm.

Theorem 3.1. Given a point seP of sizen in ¢, there ex-
ists an algorithm which produces(@ + ¢)-approximation
to the optimal 2-means solution on the point g&twith
constant probability. Further, this algorithm runs in time
0(21/9°™ dn).

Proof. Let « = ¢/64. We can assume tha? is (2, «)-
irreducible. Indeed supposB is (2, «)-reducible. Then
A(P) < (1 + ¢/2)A(P). We can get a solution to
the 1-means problem faP by computing the centroid of
P in O(nd) time. The cost of this solution is at most
(1 4+ €/2)A3(P). Thus we have shown the theorem#f
is (2, «)-reducible.

Consider an optimal 2-means solution fér Let ¢; and
co be the two centers in this solution. LE{ be the points



which are closer te; thanc, and P, be the points closer
to cp thanc;. Soc; is the centroid of?; andc, that of Ps.
Without loss of generality, assume th& | > | Px|.
Since|P;| > |P|/2, Lemma 2.3 implies that if we sam-
ple a setS of size O (1) from P and look at the set of
centroids of all subsets o of size%, then at least one of
these centroids, call it; has the property thak (P, c}) <
(1 + a)A(P1,c1). Since our algorithm is going to cycle
through all such subsets 6f we can assume that we have
found such a point.
Let the distance between andc; bet, i.e.,d(c1,c2) =
t.

Lemma 3.2. d(c1,¢}) < t/4.
Proof. Supposel(c;, ¢}) > t/4. Equation (1) implies that
2| P

16 -

But we also know that left hand side is at mogk(Py, ¢1).
Thus we get?|Py| < 16aA(Py, c1).
Applying Equation (1) once again, we see that

A(Py,¢)) = A(Pr,e1) = |PL|A(er, ¢)) >

A(Pl,CQ) = A(Pl,cl) + t2|P1| < (1 + 160[)A(P1,(31).

Therefore, A(P,c2) < (1 + 16a)A(Pi,c1) +
A(Py,c2) < (1 + 16c)Ay(P). This contradicts the fact
that P is (2, «)-irreducible. O

Now consider the balB(c},t/4). The previous lemma
implies that this ball is contained in the b#{c,,¢/2) of
radiust/2 centered at;. SoB(c},t/4) is contained inP;.
Since we are looking for the point,, we can delete the
points in this ball and hope that the resulting point set has a
good fraction of points fron#.

This is what we prove next. Le?, denote the point set
Py —B(c,t/4). Let P’ denoteP] U P,. As we noted above
P; is a subset of’.

Claim 3.3. |P;| > «fP{]
Proof. Suppose not, i.e| | < a|Pj|. Notice that
2| P

16
SinceA(Py,c}) < (1 + a)A(Py, 1), it follows that

A(Plvcll) > A(Pllacll) >

t2|P]| < 16(1 + a)A(Py,c1) ()

So,
A(P,Cl) = A(Pl,C1)+A(P2,C1)
= A(Py,c1) + A(Py, o) + t2| Py
< AP 1) + A(Py, c2)
+16ca(1 4+ a)A(Pr, 1)
< (14 320)A(Pr,c1) + A(Pe, c2)
< (14 32a)A4(P),

where the second equation follows from (1), while third in-
equality follows from (2) and the fa¢P,| < a|Pj|. Butthis
contradicts the fact tha® is (2, )-irreducible. This proves
the claim. O

The above claim combined with Lemma 2.2 implies
that if we sampleO (Z;) points from P’, and consider
the centroids of all subsets of siz(?lein this sample, then
with constant probability we shall get a poitit for which
A(Py, ch) < (14 a)A(Py, c2). Thus, we get the center$
andc), which satisfy the requirements of our lemma.

The only problem is that we do not know the value of
the parametet. We will somehow need to guess this value
and yet maintain the fact that our algorithm takes only lin-
ear amount of time.

We can assume that we have fourjdthis does not re-
quire any assumption of). Now we need to sample from
P’ (recall thatP’ is the set of points obtained by remov-
ing the points inP distant at most/4 from ¢}). Suppose
we know the parametérsuch thatl; < |P'| < 5.

Consider the points aP in descending order of distance
fromc;. LetQ; be the first72r points in this sequence. No-
tice thatP’ is a subset of); and| P’| > |Q%|/2. Also we can
find @, in linear time (because we can locate the point at po-
sition 72+ in linear time). SincgP»| > «|P’|, we see that
|Ps| > «|Qf|/2. Thus, Lemma 2.2 implies that it is enough
to sampleO (%) points from@Q)’, to locatec), (with con-
stant probability of course).

But the problem with this scheme is that we do not know
the valuei. One option is try all possible values @fwhich
will imply a running time ofO(n log n) (treating the terms
involving o andd as constant). Also note that we cannot use

approximate range searching because preprocessing takes

O(nlogn) time.

We somehow need to combine the sampling and the idea
of guessing the value af Our algorithm proceeds as fol-
lows. It tries values of in the order0, 1, 2, .. .. In iteration
i, we find the set of pointQ;. Note thatQ);_ , is a subset of
Q;. InfactQ;_ , is the half ofQ; which is farther from.
Soiniterationi-+1), we can begin from the set of poirdg
(instead ofP’). We can find the candidate poidt by sam-
pling from Q;_ ;. Thus we can find);_ , in time linear in
Q741 ] only.

Further in iterationi, we also maintain the suth(P —
.¢}). SinceA(P—Ql, . c}) = A(P— Q) ;) +A(Q)
i+1,€1), we can compute)(P — Qj,,c}) in iteration

i+ 1in time linear inQj_ ;. This is needed because when
we find a candidate in iterationi + 1, we need to com-
pute the2-means solution when all points in— @’ are as-
signed toc} and the points i, are assigned to the nearer
of ¢; andc;. We can do this in time linear ifQ; , | if we
maintain the quantitieA(P — @}, ¢}) for all 4.

Thus, we see that iterationtakes time linear inQ;|.
Since|Q;|'s decrease by a factor of 2, the overall running



yow

time for a given value o} is O(2(*/*)""dn). Since the

number of possible candidates feris 021/, the

running time is as stated. Algorithm k-meangP, k,¢)

Inputs:  Point setP,
Claim 3.4. The costA, reported by the algorithm satisfies Number of clusterg,
Ag(P)<A<L(1 + a)As(P). Approximation ratice.

) i o Output :  k-means clustering aP.
Proof. A,(P)<A is obvious as we are associating each

point with one of the2 centers being reported and accu- 1. Fori = 1to k do

mulating the corresponding cost. Now, consider the case Obtain the clustering

when we have the candidate center set where each centgr Irred- k-means P, i, 4, ¢, £ /64k, 0).

is a(l + «)-approximate centroid of it's respective cluster. 2. Return the clustering which has minimum cost.

As we are associating each point to the approximate cen-
troid of the corresponding cluster or a center closer than
it, it follows that A<(1 + «)As(P). If we report the min-
imum cost clustering¢, then since the actual cost of the
clustering (due to the corresponding Voronoi partitioning
can only be better than the cost that we report (because we

associate some points with approximate centroids of cor- SO far the algorithm looks very similar to the = 2
responding cluster rather than the closest center), we hav&ase. But now we want to modify it to a linear time algo-

Figure 1. The k-means Algorithm

AC)<AZ(1 + a)As(P). rithm: This is where the algorithm gets more involved. As
0 mentioned above, we can not guess the paranmegy we
try to guess the size of the point set obtained by removing
This proves the theorem. O the balls of radiug/4 around{cy, . . ., ¢; }. So we work with

the remaining point set with the hope that the time taken for
4. A linear time algorithm for k-means clus- this remaining point set will also be small and so the over-
tering all time will be linear. Although similar in spirit to the = 2
case, we still need to prove some more details in this case.

We now present the generaimeans algorithm. We first  Now, we describe the actuatmeans algorithm.
present a brief outline of the algorithm.

4.1. Outline 4.2. The algorithm

Our algorithm begins on the same lines as the 2-means The algorithm is described in Figures 1 and 2. Figure 1
algorithm. Again, we can assume that the solution is ir- is the main algorithm. The inputs are the point Bet: and
reducible, i.e., removing one of the centers does not cre-an approximation factos. Let o denotes/64k. The algo-
ate a solution which has cost within a small factor of the rithm k-meang P, k, ) tries to find the highest such that
optimal solution. Consider an optimal solution which has  is (i, a)-irreducible. Essentially we are saying that it is

centers, . .., ¢, and which correspondingly partitions the €nough to findi centers only. Since we do not know this
point setP into clustersP,, ..., P,. Assume thatP;| > value ofi, the algorithm tries all possible valuesiof
-+« > | Pg|. Our goal again will be to find approximations We now describe the algorithm Irred- k-
chy... ¢ t0c,. .., ¢ respectively. means@, m, k,C,a,Sum). We have found a set’
Suppose we have found centers,...,c,. Sup- of k —m centers already. The pointsih— @ have been as-
poset is the distance between the closest pair of centroidssigned toC. We need to assign the remaining point<jn
{c1,...,¢;} and{c;11,...,cr}. As in the case ok = 2, The casen = 0 is clear. In step 2, we try to find a new cen-
we can show that the points at distant at mg&t from ter by the random sampling method. This will work
{c},...,c;} get assigned tey,...,c; by the optimal so-  provided a good fraction of the points @ do not get as-
lution. So, we can delete these points. Now we can showsigned toC. If this is not the case then in step 3, we
that among the remaining points, the sizeff; is sig- assign half of the points i) to C' and call the algo-
nificant. Therefore, we can use random sampling to ob-rithm recursively with this reduced point set. For the base
tain a center;, ; which is a pretty good estimate of, ;. case, wheriC| = 0, as P, is the largest cluster, we re-

Of course we do not know the valueifand so a naive im-  quire to sample only)(k/«) points. This is tackled in Step
plementation of this idea gives a@(n(logn)*) time 2. Step 3 is not performed in this case, as there are no cen-
algorithm. ters.



Algorithm Irred- k-means@, m, k, C, «, Sum
Inputs @: Remaining point set
m: number of cluster centers yet to be found
k: total number of clusters
C: set ofk — m cluster centers found so far
«: approximation factor
Sum: the cost of assigning points
in P — @ to the centers i@
Output The clustering of the points i in & clusters.

1L.fm=0
Assign the points irf) to the
nearest centers i@1'.
Sum = Sum + The clustering cost Qf
Return the clustering.
2. (a) Sample a set of sizeO (%) from Q.
(b) For each set subsét of S of sizeO (1) do
Compute the centroidof 5.
Obtain the clustering
Irred- k-meang @, m — 1, k, C U {c}, o, Sum).
3. (a) Consider the points i) in ascending order
of distance fronC'
(b) LetU be the first@|/2 points in this sequence.
(c) Assign the points i/ to the nearest centersdn
(d) Sum = Sum + The clustering cost Gt
(e) Compute the clustering
Irred- k-meang@ — U, m, k, C, a, Sum).
4. Return the clustering which has minimum cost.

Figure 2. The irreducible k-means algorithm

4.3. Correctness and running time

Theorem 4.1. Suppose a point sét is (k, «)-irreducible.
Then the algorithnirred- k-meang P, k, k, 0, «, 0) returns
a k-means solution on input of cost at mostl+a) A (P)

with probabilityy*, wherey is a constant, independent fof

ande.

Proof. Consider an optimat-means solution on inpu®.
Let the centers bécy,...,c} and let these partition the
point setP into clustersP, ..., Py respectively. The only
source of randomization in our algorithm is the invocations |P,ld(cy, !
to the superset sampling lemma (Lemma 2.3). Recall that
the desired event in the superset sampling lemma happens
with constant probability. For ease of exposition, we shall

desired event in the superset sampling lemma always hap-
pens.

Observe that when we callired- k-meanswith input
(P, k,k,0,,0), it gets called recursively again several
times (although with different parameters). Icebe the set
of all calls tolIrred- k-meanswhen we start it with input
(P, k,k,0,,0). LetC; be those calls i€ in which the pa-
rameterC (i.e., the set of centers already found) has size
1.

For all values ofi, our algorithm shall maintain the fol-
lowing invariant :

Invariant ; The sefC; contains a call in which the list
of parameters@, m, k, C, o, Sum) has the following
properties :

(1) LetC = {c},...,c}. Thenforj = 1,...,4,
A(Pj,C;v) S (1 + O[)A(Pj,cj').
(2) The setP — Q isasubsetof, U---U P;.

Clearly, if we show that the invariant holds foe= &, then
we are done. It holds trivially for = 0. Suppose the invari-
ant holds for some fixeél We shall show that the invariant
holds for(i + 1) as well.

Since the invariant holds far there exist parameter lists
in C; which satisfy the invariant mentioned above. Among
such parameter lists, choose a lig, m, k, C, o, Sum) for
which |@Q| is smallest. Consider the closest pair of centers
between the setsy, ..., ¢;} and{c;y1,...,cr} —letthese
centers be, andc; respectively. Let = d(c,, ;).

Lemma 4.2. Let S be the set of point8(c},t/4) U --- U
B(c;,t/4),1.e., the points which are distant at mogt from
{c},...,c;}. ThenSis contained inP; U - - - U P;. Further,
P — S contains at mostP;;1|/a points of P, U - - - U P;.

Proof. Suppose for the sake of contradiction ti#gtcon-
tains a point fromS, j > 4. Say P; contains a point: of
B(cy,t/4),q < i.

Claim 4.3. d(cy, c;) > t/4.

Proof. Suppose not. Then distance betwéén,, x) < t/2.
Note thatx is assigned to the center closest to it. So,
d(cj,x) < d(cq,z) < t/2.S0,d(cj,cq) < t, which is a
contradiction. O

We know thatA (P, c;) < (1 + a)A(P,,¢,). But we
know from equation (1) thal\(Py,c) = A(Py,cq) +

cq, ch)?. Thus we get

q

| Pyld(cqs clq)2 < alA(Py, cq)- 3)

assume that this desired event in fact always happens when Now observe thati(c,, c;) < d(cq,¢c;) + d(ci, x) +
we invoke this lemma. At the end of this proof, we willcom-  d(z, c;). Also, d(x, ¢;) < d(x,¢q) < d(z,cq) + d(cq, cy)-
pute the actual probability with which our algorithm suc- Thus, we geti(c,, ¢;) < 2d(c,, ) + 2d(cy, c;). From the
ceeds. Thus, unless otherwise stated, we assume that thelaim above, we get(c,, ¢;) < 4d(cqy, c;,). But suppose we



assign all the points i, to c;. Let us compute the cost of

doing this.
A(Py,ci) = A(Py,cq) + [Pyld(cq, 0.7)2

< A(Py,cq) + 16| Pyld(cq, C;)Q

< (1+16a)A(Py,cq)

where the last inequality follows from the equation (3). But

this violates the condition tha? is (k, «)-irreducible. So,

S'is contained inP, U --- U P,.

Recall that the closest pair of centers between
{e1,...,¢;} and {¢;11,...,cx} are ¢, and ¢; respec-
tively. SupposeP — S contains more thafP;|/« points
of P, U--- U P, In that case, these points are as-
signed to centers at distance at legst. It follows that
the cost of the optimal solutioth,(P) is at Ieast%.

In other wordst?|P,| < 16aAx(P). But then if we as-
sign all the points inP; to ¢,, the cost increases by at most
16aA(P), which implies thatP is (k, «)-reducible, a con-
tradiction. This proves the lemma. O

Recall that we are looking at the parameter list
(Q,m,k,C,«a,Sum which satisfies the invariant for
i. As in the Lemma above, lef denote the point set
B(cy,t/4) U --- U B(c,t/4). Let P’ denoteP — S. We
know thatP; ;1 U --- U Py is contained inP’ N Q.

Claim 4.4. |Pyy,| > 2| P'].

Proof. By the Lemma above, there are at mgat, |/« el-
ementsof,U...UP; in P’'. SO|P’'| < |Piy1|/a+|Pit1|+
e |Pe| < [Pl /e + k| Piga| < E[Pipal- O

It follows that|P;, 1| > [P N Q. So, if we knewP”,
then using Lemma 2.3, we can get a paifat; which is a
close approximation te; 1 by samplingO(k/a?) points
from P’ N Q. But of course we do not know”.

Lemma4.5. |[P'NQ|>1Q|/2.
Proof. Suppose not, i.e|P’ N Q| < |Q|/2.

Claim 4.6. Consider the points i) sorted in ascending
order of the distance fro®. LetU be the firs§Q|/2 points
in this order. TherU does not contain a point d?’ N Q.

Proof. Supposer € P’ andy € P — P’. Then we claim
thaty is closer toC' thanz is. Indeed, by definition of’,
there is a center € {c¢1,...,¢;} such thatd(c,y) < t/4.

If + were closer taC thany is, then there is a center in
{e1,...,¢;} whose distance from is at most /4. But then
x € P — P’, a contradiction. O

So, if U is as defined in the claim above, thBhN Q is a
subset of) —U. SinceP;, 1 U- - -U Py is contained ilP’ NQ
(because of Lemma 4.2 and the fact thaits in the param-
eter list which satisfies the invariant foy, it follows that

P41 U---U Py is a subset of) — U. Thus, the parame-
terlist(Q — U, C, k, m, a, Sum) which is formed in Step(e)
of the algorithm satisfies the invariant fbas well, i.e., it
is in C;. But this violates the fact thdt), C, k, m, o, Sum)
was the parameter list satisfying the invariantfar C; for
which|Q| is smallest. This proves the lemma. O

The lemma above implies thaP’ N Q| > |Q|/2. Com-
bined with Claim 4.4, we getP;;1| > %. The superset
sampling lemma combined with the claim above imply that
by samplingO(k/a?) points from@, we shall get a point
Cngl such thaﬂ(PiH s Cngl) < (1+04)A(PZ‘+1 s CZ‘+1). This
is the case handled by the step 2(b) in the algorittred-
k-means In this case the algorithm is called again with pa-
rameter§@Q, m—1,k,CU{c;,, }, o, Sum). Itis easy to see
now that this parameter list satisfies the invariantifer1.
Thus we have shown that the invariant holds for all values
of 4.

As we mentioned earlier, a parameter list
(Q,m,k,C,a,Sum which satisfies the invariant for
1 = k has the desired centers(@nh

Claim 4.7. The costA, reported by the algorithm satisfies
Ak (P)<SA<(1 + a)Ag(P).

Proof. Ax(P)<A is obvious as we are associating each
point with one of thek centers being reported and accu-
mulating the corresponding cost. Now, consider the case
when we have the candidate center set where each center
is a(1 + «)-approximate centroid of it's respective cluster.
As we are associating each point to the approximate cen-
troid of the corresponding cluster or a center closer than
it, it follows that A<(1 + «)Ag(P). If we report the min-
imum cost clusteringC, then since the actual cost of the
clustering (due to the corresponding Voronoi partitiofing
can only be better than the cost that we report (because we
associate some points with approximate centroids of cor-
responding cluster rather than the closest center), we have
A(C)<SA<L(1 + a)Ag(P).

([l

This proves the correctness of our algorithm. We just
need to calculate the probability with which the algorithm
is called with such a parameter list.

Note that the only source of randomnesslired- &-
meansis in the Step 2(a). The sampling gives the desired
result with constant probability (according to Lemma 2.3).
Further each time we execute Step 2, we decreadsy
1. So, in any sequence of successive recursive calls, there
can be at most invocations of Step 2. Now, we have just
shown that there is a parameter listdp for which C' con-
tains a set of centers close to the optimal clusters. Let us
look at the sequence of recursive calls which have resulted



in this parameter list. In these sequence of calls, as we men- Using the notion of balanced clusters in conjunction with
tioned above, there are invocations of the random sam- Lemma 2.2, by eliminating at moé&t + 1:)~|P| outliers, we
pling. Each of these work correctly with constant probabil- can approximate the cost of the optintaimeans clustering
ity. Therefore, the probability that we actually see this pa with at mosty|P| outliers.

rameter list during the execution of this algorithmyfsfor An interesting direction for further research is to ex-
some constan. O tend our methods for other clustering problems. Also, it
_ o _ is an open problem to get a polynomial tinfé + ¢)-
Now we establish the running time of our algorithm. . approximation algorithm for thé-means clustering prob-

Theorem 4.8. The algorithm Irred- k-means when  lemwhenn, k andd are not constants.
called with parameters(P, k,k,0,«,0) runs in time
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