
A Simple Linear Time (1 + ε)-Approximation Algorithm for k-Means Clustering
in Any Dimensions

Amit Kumar
Dept. of Computer Science

& Engg., IIT Delhi
New Delhi-110016, India
amitk@cse.iitd.ernet.in

Yogish Sabharwal
IBM India Research Lab

Block-I, IIT Delhi,
New Delhi-110016, India
ysabharwal@in.ibm.com

Sandeep Sen1

Dept. of Computer Science
& Engg., IIT Delhi

New Delhi-110016, India
ssen@cse.iitd.ernet.in

Abstract

We present the first linear time(1+ε)-approximation al-
gorithm for thek-means problem for fixedk andε. Our al-
gorithm runs inO(nd) time, which is linear in the size of
the input. Another feature of our algorithm is its simplic-
ity – the only technique involved is random sampling.

1. Introduction

The problem of clustering a group of data items into sim-
ilar groups is one of the most widely studied problems in
computer science. Clustering has applications in a varietyof
areas, for example, data mining, information retrieval, im-
age processing, and web search ([5, 7, 14, 9]). Given the
wide range of applications, many different definitions of
clustering exist in the literature ([8, 4]). Most of these defi-
nitions begin by defining a notion of distance between two
data items and then try to form clusters so that data items
with small distance between them get clustered together.

Often, clustering problems arise in a geometric setting,
i.e., the data items are points in a high dimensional Eu-
clidean space. In such settings, it is natural to define the
distance between two points as the Euclidean distance be-
tween them. One of the most popular definitions of cluster-
ing is thek-means clustering problem. Given a set of points
P , thek-means clustering problems seeks to find a setK of
k centers, such that

∑

p∈P

d(p, K)2

is minimized. Note that the points inK can be arbitrary
points in the Euclidean space. Hered(p, K) refers to the dis-
tance betweenp and the closest center inK. We can think
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of this as each point inP gets assigned to the closest cen-
ter in K. The points that get assigned to the same center
form a cluster. Thek-means problem is NP-hard even for
k = 2. Another popular definition of clustering is thek-
median problem. This is defined in the same manner as the
k-means problem except for the fact that the objective func-
tion is

∑

p∈P d(p, K). Observe that the distance measure
used in the definition of thek-means problem is not a met-
ric. This might lead one to believe that solving thek-means
problem is more difficult than thek-median problem. How-
ever, in this paper, we give strong evidence that this may not
be the case.

A lot of research has been devoted to solving thek-
means problem exactly (see [11] and the references therein).
Even the best known algorithms for this problem take at
leastΩ(nd) time. Recently, some work has been devoted
to finding (1 + ε)-approximation algorithms for thek-
means problem, whereε can be an arbitrarily small con-
stant. This has led to algorithms with much improved run-
ning time. Further, if we look at the applications of thek-
means problem, they often involve mapping subjective fea-
tures to points in the Euclidean space. Since there is an error
inherent in this mapping, finding a(1 + ε)-approximate so-
lution does not lead to a deterioration in the solution for the
actual application.

In this paper, we give the first truly linear time(1 + ε)-
approximation algorithm for thek-means problem. Treat-
ing k andε as constants, our algorithm runs inO(nd) time,
which is linear in the size of the input. Another feature of
our algorithm is its simplicity – the only technique involved
is random sampling.

1.1. Related work

The fastest exact algorithm for thek-means clustering
problem was proposed by Inaba et al. [11]. They observed
that the number of Voronoi partitions ofk points in<d is
O(nkd) and so the optimalk-means clustering could be de-



termined exactly in timeO(nkd+1). They also proposed
a randomized(1 + ε)-approximation algorithm for the2-
means clustering problem with running timeO(n/εd).

Matousek [13] proposed a deterministic(1 + ε)-
approximation algorithm for thek-means problem
with running time O(nε−2k2dlogkn). Badoiu et al.
[3] proposed a (1 + ε)-approximation algorithm for
the k-median clustering problem with running time
O(2(k/ε)O(1)

dO(1)nlogO(k)n). Their algorithm can be ex-
tended to get a(1 + ε)-approximation algorithm for the
k-means clustering problem with a similar running time. de
la Vega et al. [6] proposed a(1 + ε)-approximation algo-
rithm for thek-means problem which works well for points
in high dimensional points in high dimensions. The run-
ning time of this algorithm isO(g(k, ε)nlogkn) where
g(k, ε) = exp[(k3/ε8)(ln(k/ε)lnk]. Recently, Har-Peled
et al. [10] proposed a(1 + ε)-approximation algo-
rithm for the k-means clustering whose running time
is O(n + kk+2ε−(2d+1)klogk+1nlogk 1

ε ). Their algo-
rithm is also fairly complicated and relies on several
results in computational geometry that depend exponen-
tially on the number of dimensions. So this is more suitable
for low dimensions only.

There exist other definitions of clustering, for example,
k-median clustering where the objective is to minimize the
sum of the distances to the nearest center andk-center clus-
tering, where the objective is to minimize the maximum dis-
tance (see [1, 2, 3, 10, 12] and references therein).

1.2. Our contributions

We present a linear time(1 + ε)-approximation algo-
rithm for thek-means problem. Treatingk andε as con-
stants, the running time of our algorithm is better in com-
parison to the previously known algorithms for this prob-
lem. However, the algorithm due to Har-Peled and Mazum-
dar [10] deserves careful comparison. Note that their algo-
rithm, though linear inn, is not linear in the input size of
the problem, which isdn (for n points in d dimensions).
Therefore, their algorithm is better only for low dimen-
sions; ford = Ω(log n), our algorithm is much faster. Even
use of Johnson-Lindenstraus lemma will not make the run-
ning time comparable as it has its own overheads. Many re-
cent algorithms rely on techniques like exponential grid or
scaling that have high overheads. For instance, normaliz-
ing with respect to minimum distance between points may
incur an extraΩ(n) cost per point depending on the com-
putational model. In [3], the authors have used rounding
techniques based on approximations of the optimalk-center
value without specifying the cost incurred in the process.
The techniques employed in our algorithm have no such
hidden overheads.

The 2-means clustering problem has also gener-
ated enough research interest in the past. Our algo-
rithm yields a (1 + ε)-approximation algorithm for the
2-means clustering problem with constant probabil-
ity in time O(2(1/ε)O(1)

dn). This is the first dimension
independent (in the exponent) algorithm for this prob-
lem that runs in linear time.

The basic idea of our algorithm is very simple. We be-
gin with the observation of Inaba et. al. [11] that given a set
of points, their centroid can be very well approximated by
sampling a constant number of points and finding the cen-
troid of this sample. So if we knew the clusters formed by
the optimal solution, we can get good approximations to the
actual centers. Of course, we do not know this fact. How-
ever, if we sampleO(k) points, we know that we will get
a constant number of points from the largest cluster. Thus,
by trying all subsets of constant size from this sample, we
can essentially sample points from the largest cluster. In this
way, we can estimate the centers of large clusters. How-
ever, in order to sample from the smaller clusters, we need
to prune points from the larger clusters. This pruning has
to balance two facts – we would not like to remove points
from the smaller clusters and yet we want to remove enough
points from the larger clusters.

Our algorithm appears very similar in spirit to that of
Badiou et al. [3]. In fact both these algorithms begin with
the same premise of random sampling. However, in order
to sample from the smaller clusters, their algorithm has to
guess the sizes of the smaller clusters and the distances be-
tween clusters. This causes anO(logkn) multiplicative fac-
tor in the running time of their algorithm. We completely
avoid this extra factor by a much more careful pruning al-
gorithm. Moreover this makes our algorithm considerably
simpler.

2. Preliminaries

Let P be a set ofn points in the Euclidean space<d.
Given a set ofk pointsK, which we also denote ascenters,
define thek−means cost ofP with respect toK, ∆(P, K),
as

∆(P, K) =
∑

p∈P

d(p, K)2,

where d(p, K) denotes the distance betweenp and the
closest point top in K. The k−means problem seeks to
find a set1 K of size k such that∆(P, K) is minimized.
Let ∆k(P ) denote the cost of the optimal solution to the
k−means problem with respect toP .

1 In this paper we have addressed the unconstrained problem,where this
set can consist of anyk points in<d.



If K happens to be a singleton set{y}, then we shall de-
note∆(P, K) by ∆(P, y). Similar comments apply when
P is a singleton set.

Definition 2.1. We say that the point setP is (k, ε)-
irreducible if ∆k−1(P ) ≥ (1 + 32ε)∆k(P ). Otherwise we
say that the point set is(k, ε)-reducible.

Reducibility basically captures the fact that if instead of
finding the optimalk-means solution, we find the optimal
(k − 1)-means solution, we will still be close to the former
solution. We now look at some properties of the 1-means
problem.

2.1. Properties of the 1-means problem

Definition 2.2. For a set of pointsP , define thecentroid,

c(P ), of P as the point
∑

p∈P
p

|P | .

For any pointx ∈ <d, it is easy to check that

∆(P, x) = ∆(P, c(P )) + |P | · ∆(c(P ), x). (1)

From this we can make the following observation.

Fact 2.1. Any optimal solution to the 1-means problem with
respect to an input point setP choosesc(P ) as the center.

We can also deduce an important property of any opti-
mal solution to thek-means problem. Suppose we are given
an optimal solution to thek-means problem with respect
to the inputP . Let K = {x1, . . . , xk} be the set of cen-
ters constructed by this solution.K produces a partitioning
of the point setP into K clusters, namely,P1, . . . , PK . Pi

is the set of points for which the closest point inK is xi.
In other words, the clusters correspond to the points in the
Voronoi regions in<d with respect toK. Now, Fact 2.1 im-
plies thatxi must be the centroid ofPi for all i.

Since we will be interested in fast algorithms for comput-
ing good approximations to thek-means problem, we first
consider the casek = 1. Inaba et. al. [11] showed that the
centroid of a small random sample of points inP can be a
good approximation toc(P ).

Lemma 2.2. [11]Let T be a set ofm points obtained by
independently samplingm points uniformly at random from
a point setP . Then, for anyδ > 0,

∆(S, c(T )) <

(

1 +
1

δm

)

∆1(P )

holds with probability at least1 − δ.

Therefore, if we choosem as 2
ε , then with probability at

least 1/2, we get a(1 + ε)-approximation to∆1(P ) by tak-
ing the center as the centroid ofT . Thus, a constant size
sample can quickly yield a good approximation to the opti-
mal 1-means solution.

SupposeP ′ is a subset ofP and we want to get a good
approximation to the optimal 1-means for the point setP ′.
Following lemma 2.2, we would like to sample fromP ′. But
the problem is thatP ′ is not explicitly given to us. The fol-
lowing lemma states that if the size ofP ′ is close to that of
P , then we can sample a slightly larger set of points from
P and hopefully this sample would contain enough random
samples fromP ′. Let us define things more formally first.
Let P be a set of points andP ′ be a subset ofP such that
|P ′| ≥ β|P |, whereβ is a constant between 0 and 1. Sup-
pose we take a sampleS of size 4

βε from P . Now we con-

sider all possible subsets of size2ε of S. For each of these
subsetsS′, we compute its centroidc(S′), and consider this
as a potential center for the 1-means problem instance on
P ′. In other words, we consider∆(P ′, c(S′)) for all such
subsetsS′. The following lemma shows that one of these
subsets must give a close enough approximation to the op-
timal 1-means solution forP ′.

Lemma 2.3. (Superset Sampling Lemma) The following
event happens with constant probability

min
S′:S′⊂S,|S′|= 2

ε

∆(P ′, c(S′)) ≤ (1 + ε)∆1(P
′)

Proof. With constant probability,S contains at least2ε
points fromP ′. The rest follows from Lemma 2.2.

We use the standard notationB(p, r) to denote the open
ball of radiusr around a pointp.

We assume the input parameterε for the approximation
factor satisfies0 < ε≤1.

3. A linear time algorithm for 2-means clus-
tering

Before considering thek-means problem, we consider
the 2-means problem. This contains many of the ideas in-
herent in the more general algorithm. So it will make it eas-
ier to understand the more general algorithm.

Theorem 3.1. Given a point setP of sizen in <d, there ex-
ists an algorithm which produces a(1 + ε)-approximation
to the optimal 2-means solution on the point setP with
constant probability. Further, this algorithm runs in time
O(2(1/ε)O(1)

dn).

Proof. Let α = ε/64. We can assume thatP is (2, α)-
irreducible. Indeed supposeP is (2, α)-reducible. Then
∆1(P ) ≤ (1 + ε/2)∆2(P ). We can get a solution to
the 1-means problem forP by computing the centroid of
P in O(nd) time. The cost of this solution is at most
(1 + ε/2)∆2(P ). Thus we have shown the theorem ifP
is (2, α)-reducible.

Consider an optimal 2-means solution forP . Let c1 and
c2 be the two centers in this solution. LetP1 be the points



which are closer toc1 thanc2 andP2 be the points closer
to c2 thanc1. Soc1 is the centroid ofP1 andc2 that ofP2.
Without loss of generality, assume that|P1| ≥ |P2|.

Since|P1| ≥ |P |/2, Lemma 2.3 implies that if we sam-
ple a setS of size O

(

1
ε

)

from P and look at the set of
centroids of all subsets ofS of size 2

ε , then at least one of
these centroids, call itc′1 has the property that∆(P1, c

′
1) ≤

(1 + α)∆(P1, c1). Since our algorithm is going to cycle
through all such subsets ofS, we can assume that we have
found such a pointc′1.

Let the distance betweenc1 andc2 bet, i.e.,d(c1, c2) =
t.

Lemma 3.2. d(c1, c
′
1) ≤ t/4.

Proof. Supposed(c1, c
′
1) > t/4. Equation (1) implies that

∆(P1, c
′
1) − ∆(P1, c1) = |P1|∆(c1, c

′
1) ≥

t2|P1|

16
.

But we also know that left hand side is at mostα∆(P1, c1).
Thus we gett2|P1| ≤ 16α∆(P1, c1).

Applying Equation (1) once again, we see that

∆(P1, c2) = ∆(P1, c1) + t2|P1| ≤ (1 + 16α)∆(P1, c1).

Therefore, ∆(P, c2) ≤ (1 + 16α)∆(P1, c1) +
∆(P2, c2) ≤ (1 + 16α)∆2(P ). This contradicts the fact
thatP is (2, α)-irreducible.

Now consider the ballB(c′1, t/4). The previous lemma
implies that this ball is contained in the ballB(c1, t/2) of
radiust/2 centered atc1. SoB(c′1, t/4) is contained inP1.
Since we are looking for the pointc2, we can delete the
points in this ball and hope that the resulting point set has a
good fraction of points fromP2.

This is what we prove next. LetP ′
1 denote the point set

P1−B(c′1, t/4). LetP ′ denoteP ′
1 ∪P2. As we noted above

P2 is a subset ofP ′.

Claim 3.3. |P2| ≥ α|P ′
1|

Proof. Suppose not, i.e.,|P2| ≤ α|P ′
1|. Notice that

∆(P1, c
′
1) ≥ ∆(P ′

1, c
′
1) ≥

t2|P ′
1|

16
.

Since∆(P1, c
′
1) ≤ (1 + α)∆(P1, c1), it follows that

t2|P ′
1| ≤ 16(1 + α)∆(P1, c1) (2)

So,

∆(P, c1) = ∆(P1, c1) + ∆(P2, c1)

= ∆(P1, c1) + ∆(P2, c2) + t2|P2|
≤ ∆(P1, c1) + ∆(P2, c2)

+16α(1 + α)∆(P1, c1)

≤ (1 + 32α)∆(P1, c1) + ∆(P2, c2)

≤ (1 + 32α)∆2(P ),

where the second equation follows from (1), while third in-
equality follows from (2) and the fact|P2| ≤ α|P ′

1|. But this
contradicts the fact thatP is (2, α)-irreducible. This proves
the claim.

The above claim combined with Lemma 2.2 implies
that if we sampleO

(

1
α2

)

points from P ′, and consider
the centroids of all subsets of size2α in this sample, then
with constant probability we shall get a pointc′2 for which
∆(P2, c

′
2) ≤ (1 + α)∆(P2, c2). Thus, we get the centersc′1

andc′2 which satisfy the requirements of our lemma.
The only problem is that we do not know the value of

the parametert. We will somehow need to guess this value
and yet maintain the fact that our algorithm takes only lin-
ear amount of time.

We can assume that we have foundc′1 (this does not re-
quire any assumption ont). Now we need to sample from
P ′ (recall thatP ′ is the set of points obtained by remov-
ing the points inP distant at mostt/4 from c′1). Suppose
we know the parameteri such thatn2i ≤ |P ′| ≤ n

2i−1 .
Consider the points ofP in descending order of distance

fromc′1. LetQ′
i be the first n

2i−1 points in this sequence. No-
tice thatP ′ is a subset ofQ′

i and|P ′| ≥ |Q′
i|/2. Also we can

findQ′
i in linear time (because we can locate the point at po-

sition n
2i−1 in linear time). Since|P2| ≥ α|P ′|, we see that

|P2| ≥ α|Q′
i|/2. Thus, Lemma 2.2 implies that it is enough

to sampleO
(

1
α2

)

points fromQ′
i to locatec′2 (with con-

stant probability of course).
But the problem with this scheme is that we do not know

the valuei. One option is try all possible values ofi, which
will imply a running time ofO(n log n) (treating the terms
involvingα andd as constant). Also note that we cannot use
approximate range searching because preprocessing takes
O(nlogn) time.

We somehow need to combine the sampling and the idea
of guessing the value ofi. Our algorithm proceeds as fol-
lows. It tries values ofi in the order0, 1, 2, . . .. In iteration
i, we find the set of pointsQ′

i. Note thatQ′
i+1 is a subset of

Q′
i. In factQ′

i+1 is the half ofQ′
i which is farther fromc′1.

So in iteration(i+1), we can begin from the set of pointsQ′
i

(instead ofP ′). We can find the candidate pointc′2 by sam-
pling from Q′

i+1. Thus we can findQ′
i+1 in time linear in

|Q′
i+1| only.
Further in iterationi, we also maintain the sum∆(P −

Q′
i, c

′
1). Since∆(P −Q′

i+1, c
′
1) = ∆(P −Q′

i, c
′
1)+∆(Q′

i−
Q′

i+1, c
′
1), we can compute∆(P − Q′

i+1, c
′
1) in iteration

i + 1 in time linear inQ′
i+1. This is needed because when

we find a candidatec′2 in iterationi + 1, we need to com-
pute the2-means solution when all points inP −Q′

i are as-
signed toc′1 and the points inQ′

i are assigned to the nearer
of c′1 andc′2. We can do this in time linear in|Q′

i+1| if we
maintain the quantities∆(P − Q′

i, c
′
1) for all i.

Thus, we see that iterationi takes time linear in|Q′
i|.

Since|Q′
i|’s decrease by a factor of 2, the overall running



time for a given value ofc′1 is O(2(1/α)O(1)

dn). Since the

number of possible candidates forc′1 is O(2(1/α)O(1)

), the
running time is as stated.

Claim 3.4. The cost,∆, reported by the algorithm satisfies
∆2(P )≤∆≤(1 + α)∆2(P ).

Proof. ∆2(P )≤∆ is obvious as we are associating each
point with one of the2 centers being reported and accu-
mulating the corresponding cost. Now, consider the case
when we have the candidate center set where each center
is a(1 + α)-approximate centroid of it’s respective cluster.
As we are associating each point to the approximate cen-
troid of the corresponding cluster or a center closer than
it, it follows that∆≤(1 + α)∆2(P ). If we report the min-
imum cost clustering,C, then since the actual cost of the
clustering (due to the corresponding Voronoi partitioning)
can only be better than the cost that we report (because we
associate some points with approximate centroids of cor-
responding cluster rather than the closest center), we have
∆(C)≤∆≤(1 + α)∆2(P ).

This proves the theorem.

4. A linear time algorithm for k-means clus-
tering

We now present the generalk-means algorithm. We first
present a brief outline of the algorithm.

4.1. Outline

Our algorithm begins on the same lines as the 2-means
algorithm. Again, we can assume that the solution is ir-
reducible, i.e., removing one of the centers does not cre-
ate a solution which has cost within a small factor of the
optimal solution. Consider an optimal solution which has
centersc1, . . . , ck and which correspondingly partitions the
point setP into clustersP1, . . . , Pk. Assume that|P1| ≥
· · · ≥ |Pk|. Our goal again will be to find approximations
c′1, . . . , c

′
k to c1, . . . , ck respectively.

Suppose we have found centersc′1, . . . , c
′
i. Sup-

poset is the distance between the closest pair of centroids
{c1, . . . , ci} and{ci+1, . . . , ck}. As in the case ofk = 2,
we can show that the points at distant at mostt/4 from
{c′1, . . . , c

′
i} get assigned toc1, . . . , ci by the optimal so-

lution. So, we can delete these points. Now we can show
that among the remaining points, the size ofPi+1 is sig-
nificant. Therefore, we can use random sampling to ob-
tain a centerc′i+1 which is a pretty good estimate ofci+1.
Of course we do not know the value oft, and so a naive im-
plementation of this idea gives anO(n(log n)k) time
algorithm.

Algorithm k-means(P, k, ε)
Inputs : Point setP ,

Number of clustersk,
Approximation ratioε.

Output : k-means clustering ofP .

1. Fori = 1 to k do
Obtain the clustering

Irred- k-means(P, i, i, φ, ε/64k, 0).
2. Return the clustering which has minimum cost.

Figure 1. The k-means Algorithm

So far the algorithm looks very similar to thek = 2
case. But now we want to modify it to a linear time algo-
rithm. This is where the algorithm gets more involved. As
mentioned above, we can not guess the parametert. So we
try to guess the size of the point set obtained by removing
the balls of radiust/4 around{c1, . . . , ci}. So we work with
the remaining point set with the hope that the time taken for
this remaining point set will also be small and so the over-
all time will be linear. Although similar in spirit to thek = 2
case, we still need to prove some more details in this case.
Now, we describe the actualk-means algorithm.

4.2. The algorithm

The algorithm is described in Figures 1 and 2. Figure 1
is the main algorithm. The inputs are the point setP , k and
an approximation factorε. Let α denoteε/64k. The algo-
rithm k-means(P, k, ε) tries to find the highesti such that
P is (i, α)-irreducible. Essentially we are saying that it is
enough to findi centers only. Since we do not know this
value ofi, the algorithm tries all possible values ofi.

We now describe the algorithm Irred- k-
means(Q, m, k, C, α, Sum). We have found a setC
of k−m centers already. The points inP −Q have been as-
signed toC. We need to assign the remaining points inQ.
The casem = 0 is clear. In step 2, we try to find a new cen-
ter by the random sampling method. This will work
provided a good fraction of the points inQ do not get as-
signed toC. If this is not the case then in step 3, we
assign half of the points inQ to C and call the algo-
rithm recursively with this reduced point set. For the base
case, when|C| = 0, asP1 is the largest cluster, we re-
quire to sample onlyO(k/α) points. This is tackled in Step
2. Step 3 is not performed in this case, as there are no cen-
ters.



Algorithm Irred- k-means(Q, m, k, C, α, Sum)
Inputs Q: Remaining point set

m: number of cluster centers yet to be found
k: total number of clusters
C: set ofk − m cluster centers found so far
α: approximation factor
Sum: the cost of assigning points

in P − Q to the centers inC
Output The clustering of the points inQ in k clusters.

1. If m = 0
Assign the points inQ to the

nearest centers inC.
Sum = Sum + The clustering cost ofQ.
Return the clustering.

2. (a) Sample a setS of sizeO
(

k
α2

)

from Q.
(b) For each set subsetS′ of S of sizeO

(

1
α

)

do
Compute the centroidc of S′.
Obtain the clustering
Irred- k-means(Q, m− 1, k, C ∪ {c}, α, Sum).

3. (a) Consider the points inQ in ascending order
of distance fromC.

(b) LetU be the first|Q|/2 points in this sequence.
(c) Assign the points inU to the nearest centers inC.
(d) Sum = Sum + The clustering cost ofU .
(e) Compute the clustering

Irred- k-means(Q − U, m, k, C, α, Sum).
4. Return the clustering which has minimum cost.

Figure 2. The irreducible k-means algorithm

4.3. Correctness and running time

Theorem 4.1. Suppose a point setP is (k, α)-irreducible.
Then the algorithmIrred- k-means(P, k, k, ∅, α, 0) returns
ak-means solution on inputP of cost at most(1+α)∆k(P )
with probabilityγk, whereγ is a constant, independent ofk
andε.

Proof. Consider an optimalk-means solution on inputP .
Let the centers be{c1, . . . , ck} and let these partition the
point setP into clustersP1, . . . , Pk respectively. The only
source of randomization in our algorithm is the invocations
to the superset sampling lemma (Lemma 2.3). Recall that
the desired event in the superset sampling lemma happens
with constant probability. For ease of exposition, we shall
assume that this desired event in fact always happens when
we invoke this lemma. At the end of this proof, we will com-
pute the actual probability with which our algorithm suc-
ceeds. Thus, unless otherwise stated, we assume that the

desired event in the superset sampling lemma always hap-
pens.

Observe that when we callIrred- k-meanswith input
(P, k, k, ∅, α, 0), it gets called recursively again several
times (although with different parameters). LetC be the set
of all calls to Irred- k-meanswhen we start it with input
(P, k, k, ∅, α, 0). Let Ci be those calls inC in which the pa-
rameterC (i.e., the set of centers already found) has size
i.

For all values ofi, our algorithm shall maintain the fol-
lowing invariant :

Invariant : The setCi contains a call in which the list
of parameters(Q, m, k, C, α, Sum) has the following
properties :

(1) Let C = {c′1, . . . , c
′
i}. Then for j = 1, . . . , i,

∆(Pj , c
′
j) ≤ (1 + α)∆(Pj , cj).

(2) The setP − Q is a subset ofP1 ∪ · · · ∪ Pi.

Clearly, if we show that the invariant holds fori = k, then
we are done. It holds trivially fori = 0. Suppose the invari-
ant holds for some fixedi. We shall show that the invariant
holds for(i + 1) as well.

Since the invariant holds fori, there exist parameter lists
in Ci which satisfy the invariant mentioned above. Among
such parameter lists, choose a list(Q, m, k, C, α, Sum) for
which |Q| is smallest. Consider the closest pair of centers
between the sets{c1, . . . , ci} and{ci+1, . . . , ck} – let these
centers becr andcl respectively. Lett = d(cr, cl).

Lemma 4.2. Let S be the set of pointsB(c′1, t/4) ∪ · · · ∪
B(c′i, t/4), i.e., the points which are distant at mostt/4 from
{c′1, . . . , c

′
i}. ThenS is contained inP1 ∪ · · · ∪ Pi. Further,

P − S contains at most|Pi+1|/α points ofP1 ∪ · · · ∪ Pi.

Proof. Suppose for the sake of contradiction thatPj con-
tains a point fromS, j > i. SayPj contains a pointx of
B(c′q, t/4), q ≤ i.

Claim 4.3. d(cq, c
′
q) ≥ t/4.

Proof. Suppose not. Then distance betweend(cq, x) < t/2.
Note that x is assigned to the center closest to it. So,
d(cj , x) ≤ d(cq, x) < t/2. So,d(cj , cq) < t, which is a
contradiction.

We know that∆(Pq, c
′
q) ≤ (1 + α)∆(Pq , cq). But we

know from equation (1) that∆(Pq, c
′
q) = ∆(Pq , cq) +

|Pq|d(cq, c
′
q)

2. Thus we get

|Pq|d(cq, c
′
q)

2 ≤ α∆(Pq , cq). (3)

Now observe thatd(cq , cj) ≤ d(cq, c
′
q) + d(c′q, x) +

d(x, cj). Also, d(x, cj) ≤ d(x, cq) ≤ d(x, c′q) + d(cq, c
′
q).

Thus, we getd(cq, cj) ≤ 2d(c′q, x) + 2d(cq, c
′
q). From the

claim above, we getd(cq, cj) ≤ 4d(cq, c
′
q). But suppose we



assign all the points inPq to cj . Let us compute the cost of
doing this.

∆(Pq , cj) = ∆(Pq , cq) + |Pq|d(cq, cj)
2

≤ ∆(Pq , cq) + 16|Pq|d(cq, c
′
q)

2

≤ (1 + 16α)∆(Pq, cq)

where the last inequality follows from the equation (3). But
this violates the condition thatP is (k, α)-irreducible. So,
S is contained inP1 ∪ · · · ∪ Pi.

Recall that the closest pair of centers between
{c1, . . . , ci} and {ci+1, . . . , ck} are cr and cl respec-
tively. SupposeP − S contains more than|Pl|/α points
of P1 ∪ · · · ∪ Pi. In that case, these points are as-
signed to centers at distance at leastt/4. It follows that

the cost of the optimal solution∆k(P ) is at leastt
2|Pl|
16α .

In other words,t2|Pl| ≤ 16α∆k(P ). But then if we as-
sign all the points inPl to cr, the cost increases by at most
16α∆k(P ), which implies thatP is (k, α)-reducible, a con-
tradiction. This proves the lemma.

Recall that we are looking at the parameter list
(Q, m, k, C, α, Sum) which satisfies the invariant for
i. As in the Lemma above, letS denote the point set
B(c′1, t/4) ∪ · · · ∪ B(c′i, t/4). Let P ′ denoteP − S. We
know thatPi+1 ∪ · · · ∪ Pk is contained inP ′ ∩ Q.

Claim 4.4. |Pi+1| ≥
α
k |P

′|.

Proof. By the Lemma above, there are at most|Pi+1|/α el-
ements ofP1∪. . .∪Pi in P ′. So|P ′| ≤ |Pi+1|/α+|Pi+1|+
. . . + |Pk| ≤ |Pi+1|/α + k|Pi+1| ≤

k
α |Pi+1|.

It follows that |Pi+1| ≥
α
k |P

′ ∩ Q|. So, if we knewP ′,
then using Lemma 2.3, we can get a pointc′i+1 which is a
close approximation toci+1 by samplingO(k/α2) points
from P ′ ∩ Q. But of course we do not knowP ′.

Lemma 4.5. |P ′ ∩ Q| ≥ |Q|/2.

Proof. Suppose not, i.e.,|P ′ ∩ Q| ≤ |Q|/2.

Claim 4.6. Consider the points inQ sorted in ascending
order of the distance fromC. LetU be the first|Q|/2 points
in this order. ThenU does not contain a point ofP ′ ∩ Q.

Proof. Supposex ∈ P ′ andy ∈ P − P ′. Then we claim
thaty is closer toC thanx is. Indeed, by definition ofP ′,
there is a centerc ∈ {c1, . . . , ci} such thatd(c, y) ≤ t/4.
If x were closer toC than y is, then there is a center in
{c1, . . . , ci} whose distance fromx is at mostt/4. But then
x ∈ P − P ′, a contradiction.

So, ifU is as defined in the claim above, thenP ′∩Q is a
subset ofQ−U . SincePi+1∪· · ·∪Pk is contained inP ′∩Q
(because of Lemma 4.2 and the fact thatQ is in the param-
eter list which satisfies the invariant fori), it follows that

Pi+1 ∪ · · · ∪ Pk is a subset ofQ − U . Thus, the parame-
ter list (Q−U, C, k, m, α, Sum) which is formed in Step(e)
of the algorithm satisfies the invariant fori as well, i.e., it
is in Ci. But this violates the fact that(Q, C, k, m, α, Sum)
was the parameter list satisfying the invariant fori in Ci for
which |Q| is smallest. This proves the lemma.

The lemma above implies that|P ′ ∩ Q| ≥ |Q|/2. Com-
bined with Claim 4.4, we get|Pi+1| ≥

α|Q|
4k . The superset

sampling lemma combined with the claim above imply that
by samplingO(k/α2) points fromQ, we shall get a point
c′i+1 such that∆(Pi+1, c

′
i+1) ≤ (1+α)∆(Pi+1, ci+1). This

is the case handled by the step 2(b) in the algorithmIrred-
k-means. In this case the algorithm is called again with pa-
rameters(Q, m−1, k, C∪{c′i+1}, α, Sum). It is easy to see
now that this parameter list satisfies the invariant fori + 1.
Thus we have shown that the invariant holds for all values
of i.

As we mentioned earlier, a parameter list
(Q, m, k, C, α, Sum) which satisfies the invariant for
i = k has the desired centers inC.

Claim 4.7. The cost,∆, reported by the algorithm satisfies
∆k(P )≤∆≤(1 + α)∆k(P ).

Proof. ∆k(P )≤∆ is obvious as we are associating each
point with one of thek centers being reported and accu-
mulating the corresponding cost. Now, consider the case
when we have the candidate center set where each center
is a(1 + α)-approximate centroid of it’s respective cluster.
As we are associating each point to the approximate cen-
troid of the corresponding cluster or a center closer than
it, it follows that∆≤(1 + α)∆k(P ). If we report the min-
imum cost clustering,C, then since the actual cost of the
clustering (due to the corresponding Voronoi partitioning)
can only be better than the cost that we report (because we
associate some points with approximate centroids of cor-
responding cluster rather than the closest center), we have
∆(C)≤∆≤(1 + α)∆k(P ).

This proves the correctness of our algorithm. We just
need to calculate the probability with which the algorithm
is called with such a parameter list.

Note that the only source of randomness inIrred- k-
meansis in the Step 2(a). The sampling gives the desired
result with constant probability (according to Lemma 2.3).
Further each time we execute Step 2, we decreasem by
1. So, in any sequence of successive recursive calls, there
can be at mostk invocations of Step 2. Now, we have just
shown that there is a parameter list inCk for which C con-
tains a set of centers close to the optimal clusters. Let us
look at the sequence of recursive calls which have resulted



in this parameter list. In these sequence of calls, as we men-
tioned above, there arek invocations of the random sam-
pling. Each of these work correctly with constant probabil-
ity. Therefore, the probability that we actually see this pa-
rameter list during the execution of this algorithm isγk for
some constantγ.

Now we establish the running time of our algorithm.

Theorem 4.8. The algorithm Irred- k-means when
called with parameters(P, k, k, ∅, α, 0) runs in time

O(2(k/α)O(1)

dn), wheren = |P |.

Proof. Let T (n, m) be the running time of our algorithm
on input (Q, m, k, C, α, Sum) where n = |Q|. Then in
Step 2(b), we haveu(k, α) subsets of the sample, where
u(k, α) = O(2(k/α)O(1)

). Computation of a centroid of any
set S′ in Step 2(b) takesO(d) time. Steps 3(a)-(d) take
O(nd) time. Therefore we get the recurrence

T (n, m) = O(u(k, α))T (n, m − 1) + T (n/2, m)

+O((n + u(k, α))d).

It is not difficult to show from this thatT (n, k) is
O(2(k/α)O(1)

dn).

We can now state our main theorem.

Theorem 4.9. A (1+ε)-approximatek-means clustering of

a point setP in <d can be found in timeO(2(k/ε)O(1)

dn),
with constant probability.

Proof. We can run the algorithmIrred- k-meansck times
for some constantc to ensure that it yields the desired result
with constant probability. This still keeps the running time
O(2(k/α)O(1)

dn). So let us assume this algorithm gives the
desired solution with constant probability.

Notice that the running time of our main algorithm in
Figure 1 is alsoO(2(k/α)O(1)

dn). We just have to show that
it is correct.

Let i be the highest index for whichP is (i, α)-
irreducible. So, it follows that

∆i(P ) ≤ (1+32α)∆i+1(P ) ≤ · · · ≤ (1+32α)k−i∆k(P ).

Further, we know that the algorithmIrred- k-meanson in-
put (P, i, i, ∅, α, 0) yields a set ofi centersC for which
∆(P, C) ≤ (1 + α)∆i(P ). Therefore, we get a solution
of cost at most(1 + 32α)k∆k(P ). Note that(1 + 32α)k =

(1 + ε/2k)k ≤ 1 + ε. This proves the theorem.

5. Concluding remarks

Our algorithm is very well suited for handling outliers -
in fact, it becomes simpler.

Using the notion of balanced clusters in conjunction with
Lemma 2.2, by eliminating at most(1+µ)γ|P | outliers, we
can approximate the cost of the optimalk-means clustering
with at mostγ|P | outliers.

An interesting direction for further research is to ex-
tend our methods for other clustering problems. Also, it
is an open problem to get a polynomial time(1 + ε)-
approximation algorithm for thek-means clustering prob-
lem whenn, k andd are not constants.
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