
Scalable and Efficient Parallel and Distributed Simulation of Complex,
Dynamic and Mobile Systems

Luciano Bononi, Michele Bracuto, Gabriele D’Angelo, Lorenzo Donatiello
Dipartimento di Scienze dell’Informazione, Università degli Studi di Bologna,

Mura Anteo Zamboni 7, 40126, Bologna, Italy
{bononi,bracuto, gdangelo, donat}@cs.unibo.it

Abstract

In this work we illustrate the design and implementation
guidelines of a recently developed middleware defined to
support the parallel and distributed simulation of large
scale, complex and dynamically interacting system
models. The distributed simulation of complex system
models, may suffer the communication and
synchronization required to maintain the causality
constraints between distributed model components. We
designed and implemented the ARTÌS middleware as a
new framework by incorporating a set of features that
allow adaptive optimization by exploiting many complex
and dynamic model and distributed simulation
characteristics. As an example, a dynamic migration
mechanism for the run-time adaptive allocation of model
entities has been designed and exploited for dynamic load
and communication balancing. Optimizations have been
introduced to obtain the maximum advantage from
heterogeneous and asymmetric communication systems,
from shared memory to LAN and Internet communication.
Other optimizations have been introduced by the
exploitation of concurrent replications of parallel and
distributed simulations, in order to increase the resources
utilization and to maximize the speedup of simulation
processes. Solutions have been designed, implemented
and tuned to obtain a significant reduction in the
communication and synchronization overheads between
the physical execution units, and an increased model
scalability and simulation speedup, even in worst-case
modeling assumptions and simulation scenarios.

1. Introduction

 The simulation attempts to represent certain features
of the behavior of a physical or abstract system by the
behavior of another system. In other words, a computer
simulation is a program execution that manages and
updates a set of model variables. The model is an
abstraction of the real system, and it is composed by

This work was supported by the Italian Ministry of Education,
Universities and Research (MIUR) in the framework of the FIRB-Perf
project:“Performance Evaluation of Complex Systems: Techniques,
Methodologies and Tools”.

model entities. Each model entity is defined by the data
structures implementing the entity state, and by the
executable code that represents the entity-state evolution.
In discrete-event simulation, the evolution is event-based,
that is, one event is the cause for state changes, occurring
at discrete time instants. One event is processed by one
execution unit by executing an event handler process. The
execution of one event may schedule new events in the
future, or cancel the future execution of scheduled events.
A simulation process is a process that incarnates the
ordered events’ execution, and the behaviors of at least
one model entity. A synchronization mechanism is needed
to order the events’ executions, by following their causal
order. The causal order can be informally defined as the
notion of “happens before” ordering of events. The real
system evolution and the interactions between system
entities is represented by the model state variables’
updates. The causal order of events can be obtained
through i) a totally ordered event list in monolithic
simulators, and ii) a distributed synchronization
mechanism implemented through message passing
communication of event notifications, in parallel and
distributed simulators. It results a great importance of the
communication efficiency in distributed simulation
scenarios.
 In recent years, the research for tools and
methodologies for modeling and simulation of large-scale
and complex systems has obtained a great interest.
Examples of models challenging currently available
simulation systems and tools range from large-scale
wireless systems, like cellular, mobile ad hoc and sensor
networks, up to biology-inspired models and molecular
systems, elementary particles physics and cosmology
systems [26, 24, 27, 28]. The simulation-based
investigation of complex systems is widely adopted and it
is often preferred, in practice, to the complexity of
alternative numerical and analytical modeling and
resolution methods [23, 28]. Simulation models currently
considered interesting for the analysis may include a
potentially huge number of simulated objects. Such
simulations may require a relevant computation time to
complete (e.g. due to the implementation of complex
behaviors, with dense and computation intensive state
updates). Detailed and complex simulated objects (model
components) may require complex and large data

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

structures implementing the model state. For these
reasons, large scale and complex simulation models may
be unpractical to simulate on a single-processor execution
unit, because of huge memory requirements and large
amount of time required to complete the simulation runs
[27, 28].
 Many practical experiences have demonstrated that
the memory bottleneck reduction, the model scalability
and the speed-up in the simulation of complex systems,
can be achieved by using parallel and distributed models
and execution architectures, i.e. a Parallel Discrete Event
Simulation (PDES) approach [1, 9, 16, 17, 26, 28].
Parallel and Distributed Simulation (PADS) is the
acronym used to refer to execution of concurrent
simulation processes over tightly coupled, or loosely
coupled computation architectures, respectively. The
advantage of PADS is given by the exploitation of
aggregate memory and computation resources of the
Physical Execution Units (PEUs) architectures. More
recently, the distributed simulation community contributed
in the definition of IEEE 1516 High Level Architecture: a
new standard for distributed modeling and simulation
[20]. The new standard defines rules and interfaces
allowing for heterogeneous components’ interoperability
in parallel and distributed simulations. Model components
(formally known as federates) are executed as Logical
Processes (LPs) over a set of interconnected PEUs.
Federates’ execution is supported by standard
management APIs for the communication and
synchronization tasks, implemented by a run-time
middleware (RTI). The High Level Architecture (HLA)
has currently become a synonymous for the standard rules
and services to be considered as the basis for the
implementation of distributed simulations, and the
Runtime (RTI) simulation kernel [11, 15, 20].
 In order to exploit the maximum level of computation
parallelism, many research activities dealt with dynamic
balancing of LP’s executions (both cpu-loads and virtual
time-advancing speeds) by trading-off communication,
synchronization and speedup, both in optimistic and
conservative approaches [8, 12, 14, 29, 30, 31]. Under a
conservative synchronization algorithm, a LP executes the
next event with timestamp t only when it is sure that no
event-messages will be notified whose timestamps are
lower than t (safety condition). In the optimistic approach
events can be executed without necessarily evaluate the
safety predicate condition. If a violation of the event
causality is detected, that is, an out-of-order message is
received by an LP, a rollback process is executed to
resume last correct state.
 The distributed federates interact and synchronize via
event-message notifications (basically, message passing
communication). Unfortunately, the need for distributed
model-components communication and synchronization
services may require massive interprocess communication.

Complex systems with detailed and fine-grained
simulation models can be considered communication-
intensive under the distributed simulation approach. As a
result, interprocess communication may become the main
bottleneck of the distributed simulation paradigm, and
solutions to reduce the cost of communication must be
addressed by the research in this field.
 Many approaches have been investigated in order to
reduce the overhead effects of distributed synchronization
and communication in both optimistic and conservative
distributed simulations. Solutions have been proposed,
based on both model aggregation and on communication
filtering, and also by trading off model accuracy and
computation load balancing issues, respectively [19, 25].
Basically, the approaches defined in [2, 9, 14, 15, 22, 29,
30] rely on the reduction of communication obtained
when the update of an event- or state-information (e.g.
event-messages) is not flooded to the whole system, but it
is propagated only to the subset of causally dependent
components. This is the basis of publishing/subscribing
mechanisms for sharing state-information and event-
notifications between causally dependent components [11,
15, 26]. In spite of the previously mentioned approaches
for communication reduction, the efficient implementation
of interprocess communication remains a primary
background issue, to contrast the possible communication
bottleneck of parallel and distributed simulations.
 Recently implemented middleware solutions based on
the High Level Architecture (HLA) [11, 20] have shown
that the parallel and distributed simulation of massive and
complex systems can result in relevant overheads.
Overheads are due to the complex and full management of
a wide set of run-time services and to the latency due to
distributed communication bottlenecks. Specifically, most
of the preliminary implementations of the interprocess
communication services have been implemented in sub-
optimal way, without considering the heterogeneity of the
simulation execution platforms [3, 13].

 We designed a new, parallel and distributed
simulation middleware named Advanced RTI System
(ARTÌS). The aim of the ARTÌS middleware is to support
parallel and distributed simulations of complex and
dynamic systems. ARTÌS design is oriented to support the
model components’ heterogeneity, distribution and reuse,
and to increase the simulation performances, scalability
and speedup, in parallel and distributed simulation
scenarios [4]. ARTÌS is designed to implement dynamic
adaptation of the interprocess communication layer to the
heterogeneous communication support offered by possibly
different simulation-execution units. Specifically, ARTÌS
performs adaptive evaluation of the communication
bottlenecks. It supports multiple communication
infrastructures and services, from shared memory to MPI,
LAN and Internet-based communication [4].

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

 ARTÌS has been integrated with the Generic Adaptive
Interaction Architecture (GAIA), to support a simple
model components’ migration mechanism that can be
adapted on the top of HLA-based distributed simulations
[3]. The adoption of GAIA enabled a dynamic partition
and allocation of interacting model components, allocated
over the LPs, and respectively executed over a set of
multiple, distributed PEUs. In this way, we obtained an
adaptive, tuneable mechanism able to adapt and react to
dynamic systems’ behavior under the load balancing and
communication-reduction viewpoints. In addition, many
other solutions and optimizations have been introduced in
the ARTÌS framework. As an example, the support for
Concurrent Replication of Parallel and Distributed
Simulations (CR-PADS) [6] is realized to maximize the
speedup and utilization of system resources, when
implementing a set of parallel and distributed simulations
of complex dynamic system models. More recently, three
classes of solutions have been proposed to improve the
performance of simulations executed over commodity off-
the-shelf computation and communication architectures:
multi-threaded software and Hyper-Threading support by
the processor architectures, data marshalling solutions for
shared-memory and network-based communications [7].
In this paper we sketch the illustration of all the main
issues and results achieved in the ARTÌS design and
implementation.
 The paper structure is the following: in section 2 we
outline the state of the art of PADS and existing runtime
implementations; in Section 3 we illustrate the key design
and implementation issues of ARTÌS; in section 4 we
outline solutions for dynamic and complex systems’
simulation; in section 5 we illustrate a solution to improve
resources’ utilization and simulation performances; in
section 6 we sketch some optimizations; in section 7 we
summarize our conclusions and future work.

2. State of the art

 One of the main issues for PADS was the lack of a
modeling and simulation interoperability standard. This
resulted in many duplicate model implementations,
inability to share models and information between
heterogeneous simulators and a very low code reuse. In
2000, many years of research work involving both public
and private units, led to the IEEE 1516 standard High
Level Architecture (HLA) being approved [15, 20]. The
HLA standard defines APIs for the communication and
synchronization tasks among federates. The distributed
simulation is supported by a runtime middleware (RTI),
whose implementation techniques are not regulated by the
standard. The RTI is mainly responsible for providing a
general support for distributed objects' interaction,
attributes' ownership and many other optimistic and
conservative event-management policies. The IEEE 1516

standard has gained a good popularity but it is still
considered too complex for the implementation of
distributed simulation middleware solutions and
architectures. The existing ones are often too slow in
supplying the expected results. Specifically, the IEEE
1516 Standard has been criticized about its structure and
its effective ability to manage really complex and dynamic
models [13]. By analyzing the existing RTI
implementations, to the best of our knowledge, few
currently available middleware solutions have been
designed with some emphasis on the adaptive exploitation
of the communication infrastructure heterogeneity, which
may be characterizing the distributed simulation-execution
scenario. More specifically, the Georgia-tech RTI-kit [18]
implementation has been realized by introducing some
optimization in the exploitation of the shared memory
execution-system architecture. Many other
implementations still rely on UDP or TCP socket-based
interprocess communication, even when executed on a
single execution unit. It is worth noting that rare
implementations provided the source code to users,
allowing them to configure the middleware on the basis of
the user needs and the execution-system architectures. The
support for heterogeneous communication services and
architectures should be considered as a design principle in
the implementation of a distributed simulation
middleware. Moreover, the adaptive optimization and
management of the middleware communication layer
realized over heterogeneous network architectures,
technologies and services should be considered both in the
initialization phase, and at runtime, in a distributed
simulation process. More specifically, none of the
proposed RTI implementation took under consideration
the specific assumptions and characteristics of simulation
execution of complex, dynamic and mobile system-
models. Our work on the ARTÌS implementation
introduced these concepts, to provide a scalable, adaptive,
easy to configure and efficient execution and
communication support for PADS.

3. The ARTÌS software architecture

 The ARTÌS implementation follows a component-
based design, that results in an extendible middleware
suitable for many applications. Currently, ARTÌS supports
both the conservative and optimistic synchronization. The
former is implemented with both the time-stepped
approach, and the Chandy-Misra-Bryant (CMB) algorithm
[10]. The latter relies on a Time Warp algorithm
implementation [21]. In our experience in the simulation
of complex and dynamic systems, the conservative
approach resulted more efficient than the optimistic one.
This is due to the highly unpredictable characteristics of
dynamic and mobile models of interest. Under the

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

optimistic approach, the simulation has given frequent
rollbacks, by increasing the simulation overhead.
 In ARTÌS, preliminary design optimizations have been
evaluated for synchronization and communication
protocols in Local Area Network (LAN) or Shared
Memory (SHM) multiprocessor architectures. The
communication and synchronization modules should be
adaptive and user-transparent about all adaptation and
optimizations required to improve performances.
 Figure 1 shows the current structure of the ARTÌS
middleware. ARTÌS is composed by a set of logical
modules organized in a stack-based architecture. The
communication layer is located at the bottom of the
middleware architecture, and it is composed by a set of
different communication modules. The ARTÌS
middleware is able to select the best interaction module
with respect to the dynamic allocation of Logical
Processes (LPs) in the execution environment. As an
example, the presence of a shared memory for the
communication among parallel or distributed Logical
Processes (LPs) offers the advantage of low latency, and
reliable communication mechanism. The shared memory
communication module required accurate design,
implementation and testing. The optimal module is highly
scalable, easy to manage, and with low latency and
overheads. We tested solutions based on semaphores and
locks that showed high latency and scaling problems. The
number of semaphores that could be instantiated in a
system is often limited and statically controlled by the
operating system kernel. Busy-waiting solutions
drastically reduce the latency, but introduce high CPU
computation overheads. In ARTÌS, the current shared
memory synchronization module works with “wait on
signals" and a limited set of temporized spin-locks. This
solution has demonstrated very low latency and limited
CPU overheads. Moreover, it resulted in good
performance obtained in multi-CPU systems, good
scalability and no need for any reconfiguration at the
operating system kernel level.

Introspection

Performance

Logging

Layer

RTI Core

API

User Simulation Level

Communication

Real−Time

GAIA

C/C++ TCP/IP JAVA

Unibo API
Gaming API

IEEE 1516
HLA

Man. Man. Man. Man. Man.
OwnershipObjectDeclarationFederationTimeDDM

Cloning & Replication

Shared
Memory

MulticastMPIR−UDPTCP/IP

Figure 1. The ARTÌS software architecture

 When shared memory is not available between two or
more LPs located on different hosts, the other modules
support LPs’ communication by using either a light
Reliable-UDP/IP (R-UDP/IP), or the standard TCP/IP
protocol stack. The ARTÌS choice is based on the network
characteristics: in a reliable LAN, the R-UDP solution
will be preferred for the low overhead. In general
Internet–based simulations, the TCP/IP stack will be
adopted. Recently, the module support for the Message
Passing Interface (MPI) has been integrated in the
middleware. The MPI is a communication protocol which
represents a “de facto” standard for communication
among nodes in the High Performance Computing (HPC)
architectures.
 On top of the communication modules’ layer, the
ARTÌS runtime core layer (RTI Core) is composed by a
set of management modules directly inspired by a typical
HLA-based simulation middleware, and made compliant
with the IEEE 1516 Standard.
 Many different modules have been implemented:
Data Distribution Management (DDM) in charge of
managing the dynamic subscription/distribution of event-
and data-update messages, the Time Management, the
Federation Management, Declaration Management,
Object Management and Ownership Management. Most
of those modules are in preliminary stage of design and
implementation and will be refined in future, by adding
more features. Currently, our primary goal was to obtain a
easy to use middleware, suitable to run complex and
dynamic models, and working as test-bed for new features
and experimentations reported in this paper.
 The simulation middleware services are exported by
ARTÌS to the upper user simulation layer, by
implementing a set of modules implementing different
APIs. The HLA IEEE 1516 API module is implemented
to allow the integration of IEEE 1516 compliant models to
the ARTÌS framework. The native set of APIs, called the
University of Bologna APIs (Unibo APIs), offers a
simpler access to distributed simulation services, with
respect to IEEE 1516 Standard APIs. The bindings for the
Unibo APIs are currently provided for C/C++/JAVA
languages. Thanks to the recently introduced Java
bindings, models and simulators can be written in Java.
This allows seamless integration of new Java modules
with native modules, and integration of Java simulation
models. Currently, we are implementing a specific set of
APIs designed for ARTÌS support to Internet Gaming
applications. We are currently developing a set of simple
test games to identify the optimal API design.
 Additional orthogonal modules are dedicated to other
specific features, like the adaptive runtime management of
synchronization and communication overheads. As an
example, a real-time introspection mechanism offers an
internal representation of the middleware state at runtime.
Logging and Performance modules support the user

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

simulation with online traces, statistics and runtime data
analysis. The Migration (GAIA) module will be described
in the next section, by illustrating how distributed model
entities migrations made simulations of dynamic models
more efficient.
 The runtime has been recently upgraded with
simulation cloning and concurrent replication modules.
The cloning module allows the dynamic cloning of
simulation executions, and it is useful to concurrently
analyze “what-if” scenarios. The concurrent replication
model can be exploited to increase the simulation
performances (basically, to decrease the WCT) and its
contribution will be discussed in section 5.

4. Simulation of massive, complex and
dynamic systems

 We define a dynamic system as a system where the
interactions (i.e. the causal effects of events) are
dynamically subject to fast changes driven by the system
(and model) evolution over the simulated time. Given this
general definition, a wireless network can be an example
of a highly dynamic system. To realize a correct evolution
under the event-causality viewpoint, every model
components’ interaction should be notified, as an event-
message, to all the causally dependent model components.
This task is done by the run-time event message
distribution mechanism. The intensive communication
inherent to complex systems under the distributed
simulation approach makes inter-process communication a
potential bottleneck for the distributed simulation
paradigm. The way inter-process communication can be
sustained in distributed systems depends on the PEUs and
on the communication support, that is, on the simulation
system resources, architectures and characteristics. As
previously said, message passing communication can be
performed efficiently over shared memory architectures,
while it would require medium and high communication
latencies over local and wide area network communication
services.
 It is self evident how the physical clustering of
interacting model components on a shared memory
architecture could result in the advantage to exploit the
most efficient message passing implementation.
Unfortunately, in highly dynamic systems any optimal
static clustering and allocation, based on the current
component-interaction scheme at a given point in the
simulation, will become immediately suboptimal, due to
the dynamics of the model interactions. In presence of a
dynamic system, a dynamic approach for the event-
distribution and state-information-updates (e.g. dynamic
lists and subscription groups) would lead to additional
communication and management overheads. In some
scenarios, the communication cost of list-updates or fine-

grained events’ communication between a dynamically
variable set of components, could make attractive a
complementary approach.
 As an example, when the system communication
infrastructure is characterized by significant performance
asymmetry (e.g. shared memory vs. LAN
communication), like in networked clusters of PCs, the
migration cost needed to dynamically cluster the set of
interacting components over a single Physical Execution
Unit (PEU) could become attractive. This would be even
more attractive if the following three assumptions could
be satisfied: i) components’ migration could be
implemented incrementally as a simple data-structure (i.e.
state) transfer, ii) the component state would be
comparable with the amount of data exchanged for
interactions, and iii) the object interaction scheme would
be maintained for a significant time (i.e. time-locality). In
our approach the optimization is dynamically performed
at run-time, by the GAIA module migrating the model
entities between LPs [3]. In this way, the modeller is
alleviated by the optimization task, and the system
converges towards a balanced, tuneable and pseudo-
optimal model components’ distribution driven by the
model interaction scheme.

4.1. Case study: the wireless and mobile system model

 In the following, as an example of a dynamically
variable system, we focus on a wireless multi-hop Mobile
Ad Hoc Network (MANET) [22]. Simulation models for
wireless systems incarnate all the assumptions that
motivated our design. The number of simulated hosts in
our expectations can reach high values, requiring the
simulation of massively populated scenarios. Topology
changes due to simulated hosts’ mobility map on causality
effects in the “areas of influence” of each mobile device,
resulting in dynamically shaped causality-domains and
component interaction schemes. Given two or more
neighbor-hosts sharing the wireless medium, the causal
effect of signal interference could result in a complex
chain of local-state events up to the high protocols’ layer.
In our approach, we define a model entity as the data
structure defined to model a Simulated Mobile Host
(SMH). A certain degree of time-locality of local
communication can be considered an acceptable
assumption in many wireless system models, depending
on the communication load and the mobility model
assumptions.
 A high degree of causality in the simulation of the
wireless hosts’ communication is driven by the local
topology interaction (i.e. transmissions) between
neighbour hosts. Under the modeling and simulation
viewpoint, wireless systems can be considered highly
dynamic systems: if a SMH changes its position, it will
eventually interact with a new community of neighbour

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

hosts. The system dynamics can be influenced by motion
model and speed, and also by the SMHs density.
 Our testbed consists of a distributed discrete event
simulation of model components (i.e. logical processes)
executed over a set of physical execution units (PEUs),
connected by a physical LAN network. Our design
approach is mainly focused on the adaptive
communication reduction between the PEUs where
Logical Processes (LP) are executed. Every LP is
statically allocated and executed on a single PEU.
Specifically, one single LP cannot be split over two or
more PEUs, more LPs can be executed over a single PEU,
and LPs cannot be migrated between PEUs.
 Every LP is managed by a run-time simulation core
(RTI) as a single simulation component. On the other
hand, a single LP is implicitly formed by a set of threads.
The main thread of each LP manages and updates the state
(i.e. local data structures) of a set of Simulated Mobile
Hosts (SMHs). A communication between wireless hosts
can be modelled as a set of interactions (i.e. message-
events) between any couple of adjacent SMHs. Since a
wireless communication must be always modelled as a
broadcast within a limited local transmission range, this
requires that each SMH within a variable range would be
notified with the transmission-related event-messages.
Each event would result in a multiple set of one-to-one
interactions (i.e. event messages) among local SMHs. If
the sender SMH and its neighbors belong to the same LP
(i.e. they are executed on the same PEU), or if they belong
to different LPs implemented over the same PEU, then
their interactions can be considered local (e.g. shared
memory communication) and do not involve any physical
network communication. On the other hand, every
interaction involving participants implemented over
foreign LPs (e.g. LPs implemented over different PEUs)
may require time expensive physical network
communication. By reducing the physical network
communication we can reduce the synchronization delays.
By clustering neighbor SMHs within the same LP, or
within the LPs executed over the same PEU, we obtain the
advantage of closing the causality effect of modelled
communication within the PEU where the interacting LPs
(and respective SMHs) are executed. In addition,
clustered interacting SMHs would limit interactions with
the management layers of the RTI, by further reducing the
computation and communication overheads.
 To sum up, by limiting the network communication in
favour of the local (shared memory) communication, the
wall clock time required by the simulation run-time to
achieve full synchronization would be reduced. This
would make it possible to obtain a fast simulation.
 A static approach could be adopted to optimally
distribute the SMHs within the LPs in the simulation
initialization phase. The optimal solution for allocation is
hard to find and could be defined in many ways,

depending on the targeted overheads’ reduction.
Typically, the optimality is defined with respect to latency
(to reduce the physical network communication cost) or
computation (to obtain an optimally balanced execution
parallelism). Anyway, this should be explicitly performed
offline by the modeller, on the basis of the modeling
assumptions. In addition, as it is demonstrated in figure 2,
the model dynamics (e.g. the SMH mobility) would make
useless the optimal initial distribution after few simulation
steps. This result may translate in a performance
degradation for the simulation speedup, mainly due to the
increasing cost of communication and synchronization
required between distributed model components (logical
processes).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1000 1500 2000 2500 3000

S
pe

ed
-u

p

Timesteps

Ad Hoc Network (25 m/s): Speed-up

GAIA Migration ON: M=3, N=3
GAIA Migration ON/OFF: M=3, N=3

GAIA Migration OFF: M=3, N=3
Monolithic

Figure 2. Effect of GAIA over ARTÌS simulation

 The curves “GAIA Migration ON” and “GAIA
Migration OFF” show the runtime speedup obtained by
distributed implementations with respect to a monolithic
simulation of the wireless system model. It is worth noting
that the optimal runtime allocation and balancing obtained
with GAIA gives better results (N=3 LPs are simulated
over M=3 PEUs). The curve “GAIA Migration ON/OFF”
shows the effect of the initial static optimization: under
the effect of the model dynamics (without the GAIA
runtime optimization) the performance converges to the
suboptimal performance in few timesteps. In GAIA the
optimization is dynamically performed at run-time, by the
proposed simulation middleware migrating the SMHs
between LPs. In this way, the modeller is alleviated by the
optimization task, and the system converges towards a
balanced, tuneable and pseudo-optimal model
components’ distribution driven by the model interaction
scheme.

5. Concurrent replication of parallel and
distributed simulation (CR-PADS)

 A new direction for trying to maximize the speedup of
the simulation processes and the utilization of
computation (and communication) resources in the system

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

architecture supporting the parallel or distributed
simulation is based on the Concurrent Replication of
Parallel and Distributed Simulations (CR-PADS) [6]. Our
assumption, based on a common implementation rule, is
that a simulation-based analysis is not limited to the
execution of a single run of a parallel or distributed
simulation, but requires many independent set of
observations for a correct and significant statistical
analysis of results. To satisfy this requirements we choose
to modify our ARTÌS simulation framework, by adding a
module which is able to implement CR-PADS, rather than
executing a sequence of multiple parallel or distributed
simulation runs.
 The replication concept is intended here as a
mechanism that duplicates the logical processes (LPs) of
parallel and distributed simulation runs starting from the
initialization phase of every single run. Every replica is
based on the same model definition, and realizes an
independent execution based on local initial parameters,
variable factors for the analysis, and different random
number generation seeds. In other words, many
independent simulation runs are executed concurrently by
replicating them only at the beginning of the simulation
process (differently from cloning schemes, creating
replicas at runtime). Each replica is an independent run,
with its own seeds, and model initialization. The CR-
PADS approach is different from the Multiple Replication
In Parallel approach (MRIP) where a number of
sequential runs are executed in parallel over the available
set of PEUs (see figure 3.a). In the following we are going
to explain the motivations for our proposal of a
Concurrent Replication mechanism for Parallel and
Distributed Simulation (CR-PADS) by sketching the
differences among the MRIP, the PADS and the CR-
PADS approaches, under both the computation and
communication viewpoints. In figure 3, by assuming that
N CPUs are made available for computation (no matter if
they belong to parallel or distributed architectures) we
want a set of many independent runs to be executed (only
two in the figure for clarity). Obviously, the aim is to have
the completion of the overall simulation process in the
lowest time and with the maximum utilization of
computation and communication resources.
By focusing on the MRIP approach (figure 3.a) the
independent runs can be executed by launching in parallel
the sequential simulations over the available CPUs. It
results that the possible concurrency of the model
execution cannot be exploited to obtain simulation
speedup, because every computation is linearly executed
as a sequence of tasks. In this scenario, the model data
structures and computation must fit on the CPU system
and may suffer memory and computation limitations.
Moreover, as the figure 3.a illustrates, if the available
resources are more than the number of runs required, the

potential associated to some resources may remain
unexploited.

Cpu 1

Cpu 2

Cpu N
:
:

Cpu 1

Cpu 2

Cpu N
:
:

PADS run #2PADS run #1

Concurrent Replicated PADS runs #1 and #2

PADS vs. CR-PADS
Speedup

b)

c)

a)
Cpu 1

Cpu 2

Cpu N
:
:

MRIP vs. PADS
Speedup

resource not used

sequential run #1

sequential run #2
WCtime

WCtime

WCtime

Cpu 1

Cpu 2

Cpu N
:
:

Cpu 1

Cpu 2

Cpu N
:
:

PADS run #2PADS run #1

Concurrent Replicated PADS runs #1 and #2

PADS vs. CR-PADS
Speedup

b)

c)

a)
Cpu 1

Cpu 2

Cpu N
:
:

MRIP vs. PADS
Speedup

resource not used

sequential run #1

sequential run #2
WCtime

WCtime

WCtime

Figure 3. A comparison of MRIP, PADS and CR-PADS

 The parallel or distributed simulation (PADS)
approach (see figure 3.b) may introduce advantages,
because every independent run could exploit the whole
computation architecture, by mapping and exploiting the
degree of parallelism inherent to the model over the
concurrent CPUs. This implies that a single run may
complete in less time than a sequential run. On the other
hand, the linear execution of two (or many) runs in the
scenario of figure 3.b may result in a speedup depending
on the number of resources and the number of runs
required under MRIP and PADS, respectively. With
PADS, the advantages of the aggregate memory
architecture may assist the model data structures
management, and the whole set of computation resources
(CPUs) can be exploited in parallel. The problem arising
under the PADS scenario is represented in the figure 3.b:
frequent synchronizations are required among the model
components (by assuming a conservative event-based or
time-stepped implementation). Every synchronization
barrier initially unblocks the concurrent computation of
CPUs. As soon as the computation phase is terminated,
every process starts a message passing phase to
synchronize again its execution with other processes. This
implies that i) the whole set of processes advances with
the speed of the slowest (or more computation intensive)
one, and ii) the final phase before the synchronization
barrier is communication-intensive and may suffer
additional delays due to the congestion and delays of the
inter-process communication infrastructure. The
communication delay problem may result in a high
percentage of synchronization delay, under loosely
coupled distributed architectures (e.g. over CPUs
interconnected by LAN or Internet technology). In other
words, between any couple of synchronizations, every
CPU in figure 3.b swings between computation and idle

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

periods, while the underlying communication
infrastructures swings between idle and communication
periods, respectively.
 In [6] we showed it is possible to obtain a more fluent
computation and communication by merging the
execution tasks of more than one parallel or distributed
simulation replica over the computation and
communication architecture. In other words, by launching
multiple, independent and concurrent parallel or
distributed simulation runs over the system we may obtain
that CPUs do not spend so much idle time waiting for
synchronizations because they can switch to the execution
of computation requests by the other replicas which
already completed their synchronization phase (figure
3.c). The same happens under the communication system
viewpoint, because the message passing from all the
replicas may increase the uniform utilization of the
communication system. As a result, idle CPU times and
idle or congested communication channels are smoothed,
and this may result in additional speedup with respect to
the whole time required for completing the whole set of
simulation runs. The risk in this approach is to spend too
much time in switching processes’ executions, and in the
creation of communication bottlenecks and live-locks,
resulting in trashing effects. Our design is based on a set
of guidelines that we followed in order to obtain the
maximum advantage from the replication mechanism, by
opportunely managing the processes executions and
communications, and by keeping under control the
overheads introduced.
 We defined the structure of the ARTÌS framework
such that a separation of the simulation and replication
management is specifically oriented to a clean design and
to the exploitation of management techniques that reduce
the communication overheads. Our choice is to create
replicas by replicating virtual LPs that realize a simulation
run. A set of replicas of virtual LPs is managed as a single
LP by the runtime management. This simplifies the
management under the ARTÌS viewpoint and allows an
optimization and balancing of the utilization of
communication resources, based on queue management,
priority and fairness protocols.
 The management of Random Numbers Generators
(RNGs) in CR-PADS is simpler than in cloning approach,
because seeds can be chosen at the beginning of the runs.
Figures 4 and 5 show the time required to complete the x
concurrent simulation runs (indicated by X values) for the
wireless ad hoc network model composed by 1000 SMHs,
and N LPs executed over M PEUs. Shared memory, and
LAN-based PEU architectures, are considered in figures 4
and 5, respectively. In figure 4, the CR-PADS parallel
executions over tightly coupled (shared memory) PEUs
gives advantages (with respect to PADS) with more than
one concurrent replication, and introduces overheads
when the number of replicas saturates the computation

power and/or communication bandwidth of the PEU
execution architecture. In distributed scenarios (LAN-
based communication, see figure 5), the CR-PADS gives
even better results, because the communication latency is
the bottleneck parameter in the execution architecture, and
more concurrent replicas can exploit more residual
computation power [6].

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=1, N=2, 1000 SMHs

CR-PADS OFF
CR-PADS ON

Figure 4. Total WCT vs. Number of runs (replications)

Parallel simulation scenario: M=1, N=2, 1000 SMHs

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18 20

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=3, N=6, 1000 SMHs

CR-PADS OFF
CR-PADS ON

Figure 5. Total WCT vs. Number of runs (replications)

Distributed simulation scenario: M=3, N=6, 1000 SMHs

6. Communication and computation
optimization for PADS

 To the best of our knowledge, the influence of Hyper-
Threading (HT) technology on PADS architectures and
frameworks has not been investigated in detail. Intel’s HT
technology is a new architectural solution for support of
virtual concurrency in the processes’ execution [7].
Thanks to simple heuristics, HT-enabled OSes should be
able to adapt the process scheduling to the HT
architecture, with the aim of optimizing the overall
execution of processes.
 On the application side, it is quite common for parallel
and distributed simulation frameworks to allocate a single

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

LP for each available processor. This is based on the
assumption that one single LP will be the only running
process and would not cause context switches and other
relevant overheads. On the other hand, each time the LP is
blocked due to communication and synchronization
delays, the CPU time would be wasted [6]. The effects of
HT technology could significantly change the assumptions
related to current implementation choices.
 Under the software architecture viewpoint, most of
the modern PADS middlewares are based on multi-
threaded implementation, and basically should take
advantage of the HT support. It would be interesting to
evaluate if the increasing in the number of logical
processes could be exploited as a new dimension for
PADS optimization: to concurrently run more LPs than
the number of physical processors, over HT processor
architectures.
 To give answers to the above questions about HT
technology and PADS assumptions, we evaluated the
performances of the real ARTÌS simulation framework on
a real experimental testbed, instead of relying on synthetic
CPU benchmarks.

ARTìS and HyperThreading

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8

LPs

W
a

ll
 C

lo
c

k
 T

im
e

 (
s
)

HT OFF HT ON

Figure 6: WCT obtained with Hyper-Threading support

On and OFF in a PADS simulation of 6000 model

entities, as a function of the number of LPs

 The wireless mobile ad hoc network model of a
complex and dynamic system with 6000 SMHs, was
assumed for the analysis. The experiments have been
executed over a PEU equipped by Dual Xeon Pentium IV
2800 MHz, 3 GB RAM. The first group of tests is based
on Hyper-Threading support enabled for the PEU (HT-
ON), and the second one is based on Hyper-Threading
support disabled directly by BIOS settings (HT-OFF).
 In Figure 6, results show that the number of HT-
enabled PEU (HT-ON) indicated on the X axis performs
always better than the HT-disabled (HT-OFF) version. In
addition, the HT-ON scenario shows an increasing
simulation scalability, with respect to HT-OFF.

In ARTÌS, a reduction of the overheads and channel
accesses could result in increased channel utilization and
reduction of the communication bottlenecks. For this
reason we investigated if and how a message marshalling
approach could reduce the simulation WCT.
 The data marshalling approach consists in the
concatenation of more than one logical message in the
same communication messages. In order to control the
degradation in the average communication latency, the
data marshalling process is controlled by a timer: once
every a maximum time limit the messages buffered on the
LP are sent in a data marshalling packet (or frame). The
proposed optimization has been applied both to shared
memory and TCP/IP communications. Figure 7 shows the
results for the ARTÌS optimization applied to a distributed
simulation architecture when executing a PADS
simulation of 3000, 6000 and 9000 model entities in the
wireless ad hoc network model.

0

500

1000

1500

2000

2500

3000

3500

W
a
ll
 C

lo
c
k

 T
im

e
 (
s

)

3000 6000 9000

SMHs

Marshalling ON vs Marshalling OFF

Marshalling ON Marshalling OFF

Figure 7: WCT obtained with Marshalling On/OFF in a

PADS simulation of 3000, 6000 and 9000 model

entities

7. Conclusions

 In this work we illustrated the design and
implementation guidelines of the ARTÌS middleware
defined to support the parallel and distributed simulation
of large scale, complex and dynamically interacting
system models. We designed and implemented the ARTÌS
middleware by incorporating a set of features that allow
adaptive optimization by exploiting many complex and
dynamic model and distributed simulation characteristics.
As an example, a dynamic migration mechanism (GAIA)
for the run-time adaptive allocation of model entities has
been designed and exploited for dynamic load and
communication balancing. Optimizations have been
introduced to obtain the maximum advantage from
heterogeneous and asymmetric communication systems,
from shared memory to LAN and Internet-based
communication. Other optimizations have been introduced
by the exploitation of concurrent replications of parallel

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

and distributed simulations, in order to increase the
resources utilization and to maximize the speedup of
simulation processes. Solutions have been designed,
implemented and tuned to obtain a significant reduction in
the communication and synchronization overheads
between the physical execution units, and an increased
model scalability and simulation speedup, even in worst-
case modeling assumptions and simulation scenarios.
Other solutions have been proposed to improve the
performance of simulations executed over commodity off-
the-shelf computation and communication architectures:
multi-threaded software and Hyper-Threading support by
the processor architectures, data marshalling solutions for
shared-memory and network-based communications. All
the proposed solutions have been evaluated on real testbed
evaluation scenarios, and under variable configurations.
Results obtained demonstrate that a performance
improvement can be obtained by adopting and tuning the
proposed solutions in opportune way. The experimental
analysis performed in [3, 4, 5, 6, 7] has provided some
interesting guidelines about the way to adopt and to
compose the proposed solutions in ARTÌS.

References
[1] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, and
H.Y. Song, “PARSEC: a parallel simulation environment for complex
systems”, IEEE Computer, 31(10), October 1998, pp.77-85

[2] A. Berrached, M. Beheshti, O. Sirisaengtaksin, and A. Korvin,
“Alternative Approaches to multicast group allocation in HLA data
distribution”, Proc. Of the 1998 Spring Simulation Interoperability
Workshop, 1998

[3] L.Bononi, G.D'Angelo, L.Donatiello, “HLA-Based Adaptive
Distributed Simulation of Wireless Mobile Systems”, in Proceedings of
IEEE/ACM Intern. Workshop on Parallel and Distributed Simulation
(PADS'03), San Diego, CA, June 2003

[4] L.Bononi, M.Bracuto, G.D'Angelo, L. Donatiello, "ARTÌS: a Parallel
and Distributed Simulation Middleware for Performance Evaluation", in
LNCS 3280 - 2004 Proceedings of the 19-th International Symposium
on Computer and Information Sciences (ISCIS 2004), Kemer-Antalya,
Turkey, October 27-29, 2004, pp. 627-637

[5] L.Bononi, M.Bracuto, G.D'Angelo, L. Donatiello, "A New Adaptive
Middleware for Parallel and Distributed Simulation of Dynamically
Interacting Systems", in Proceedings of the 8-th IEEE International
Symposium on Distributed Simulation and Real Time Applications
(DS-RT 2004), Budapest, Hungary, October 21-23, 2004

[6] L.Bononi, M.Bracuto, G.D'Angelo, L.Donatiello "Concurrent
Replication of Parallel and Distributed Simulation", Proceedings of the
19th ACM/IEEE/SCS International Workshop on Principles of
Advanced and Distributed Simulation (PADS 2005), Monterey, CA,
USA, June 2005

[7] L.Bononi, M.Bracuto, G.D'Angelo, L. Donatiello, “Analysis of high
performance communication and computation solutions for parallel and
distributed simulation”, submitted for publication, 2005

[8] A. Boukerche, and S.K. Das, “Dynamic Load Balancing Strategies
for Conservative Parallel Simulation”, Proc. of 11-th Workshop on
Parallel and Distributed Simulation (PADS’97), June 1997,
Lockenhaus, Austria, pp. 20-28

[9] A. Boukerche, and A. Fabbri, “Partitioning Parallel Simulation of
Wireless Networks”, Proc. of the 2000 Winter Simulation Conference
(WSC), 2000

[10] K.M.Chandy and J.Misra, “Distributed simulation: a case study in
design and verification of distributed programs”, IEEE transactions on
Software Engineering, 5(5): 440-452, 1979

[11] J. Dahmann, R.M. Fujimoto, and R.M. Weatherly, “High Level
Architecture for Simulation: an update”, Winter Simulation Conference,
December 1998

[12] S.R. Das, “Adaptive protocols for Parallel Discrete Event
Simulation”, Proc. of Winter Simulation Conference, 1996

[13] W.J. Davis, G.L. Moeller, “The High Level Architecture: is there a
better way?”, proc. Winter Simulation Conference, 1999

[14] E. Deelman, and B.K. Szymanski, “Dynamic load balancing in
parallel discrete event simulation for spatially explicit problems”, Proc.
of the 12-th workshop on Parallel and distributed simulation PADS’98,
July 1998

[15] DMSO: Defence Modeling and Simulation Office (1998), High
Level Architecture RTI Interface Specification, Vers. 1.3

[16] A. Ferscha, “Parallel and Distributed Simulation of Discrete Event
Systems”, In Handbook of Parallel and Distributed Computing,
McGraw-Hill, 1995

[17] Fujimoto, R.M., Parallel and Distributed Simulation Systems, John
Wiley & Sons, 2000

[18] Georgia Tech RTI-kit,
http://www.cc.gatech.edu/computing/pads/index.html, 2005

[19] P. Huang, D. Estrin, and J. Heidemann, “Enabling large-scale
simulations: Selective abstraction approach to the study of multicast
protocols”, proc. Mascots'98, Oct. 1998

[20] IEEE Std 1516-2000: IEEE standard for modeling and simulation
(M&S) high level architecture (HLA) - framework and rules, - federate
interface specification, - object model template (OMT) specification, -
IEEE Recommended Practice for High Level Architecture (HLA)
Federation Development and Execution Process (FEDEP), 2000

[21] D.R. Jefferson, “Virtual Time”, ACM Trans. Prog. Lang. and Syst.
7(3): 404-425, 1985

[22] B. Logan, and G. Theodoropoulos, “The Distributed Simulation of
Multi-Agent Systems”, Proc. of the IEEE, 2001

[23] D.M. Rao, and P.A. Wilsey, “An Ultra-large Scale Simulation
Framework”, Proc. of MASCOTS '99, Oct. 1999

[24] D.M. Rao, and P.A. Wilsey, “An object oriented framework for
parallel simulation of ultra-large communication networks”, proc. 3-rd
Inter.l symposium on computing and object oriented parallel
environments, Nov. 1999

[25] D.M. Rao, and P.A. Wilsey, “Parallel Co-simulation of
Conventional and Active Networks”, Proc. of MASCOTS’00, August
2000

[26] G.F. Riley, R.M. Fujimoto, M.H. Ammar, “A generic framework
for parallelization of network simulations”, Proc. of MASCOTS'99,
College Park, MD, October 1999

[27] G.F. Riley, and M.H. Ammar, “Simulating Large Networks How
Big is Big Enough?”, Proc. of First Intern.l Conference on Grand
Challenges for Modeling and Simulation, Jan. 2002

[28] J. Short, R. Bagrodia, and L. Kleinrock, “Mobile wireless network
system simulation”, Wireless Networks 1, August 1995

[29] T.K. Som, and R.G. Sargent, “Model structure and load balancing
in optimistic parallel discrete event simulation”, Proc. of the 14-th
workshop on Parallel and distributed simulation, May 2000, Bologna

[30] B.K. Szymanski, and Y. Liu, “Loosely-coordinated, distributed,
packet-level simulation of large-scale networks”, Proc. of the Winter
Simulation Conference, December 2003

[31] V-Y Vee, and W-J Hsu, “Locality-preserving load-balancing
mechanisms for synchronous simulations on shared-memory
multiprocessors”, Proc. of 14-th PADS 2000, Bologna, Italy, page 131-
138

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

