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Abstract

In this work we illustrate the design and implementation 
guidelines of a recently developed middleware defined to 
support the parallel and distributed simulation of large 
scale, complex and dynamically interacting system 
models. The distributed simulation of complex system 
models, may suffer the communication and 
synchronization required to maintain the causality 
constraints between distributed model components. We 
designed and implemented the ARTÌS middleware as a 
new framework by incorporating a set of features that 
allow adaptive optimization by exploiting many complex 
and dynamic model and distributed simulation 
characteristics. As an example, a dynamic migration 
mechanism for the run-time adaptive allocation of model 
entities has been designed and exploited for dynamic load 
and communication balancing. Optimizations have been 
introduced to obtain the maximum advantage from 
heterogeneous and asymmetric communication systems, 
from shared memory to LAN and Internet communication. 
Other optimizations have been introduced by the 
exploitation of concurrent replications of parallel and 
distributed simulations, in order to increase the resources 
utilization and to maximize the speedup of simulation 
processes. Solutions have been designed, implemented 
and tuned to obtain a significant reduction in the 
communication and synchronization overheads between 
the physical execution units, and an increased model 
scalability and simulation speedup, even in worst-case 
modeling assumptions and simulation scenarios. 

1. Introduction 

      The simulation attempts to represent certain features 
of the behavior of a physical or abstract system by the  
behavior of another system. In other words, a computer 
simulation is a program execution that manages and 
updates a set of model variables. The model is an 
abstraction of the real system, and it is composed by 
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model entities. Each model entity is defined by the data 
structures implementing the entity state, and by the 
executable code that represents the entity-state evolution. 
In discrete-event simulation, the evolution is event-based, 
that is, one event is the cause for state changes, occurring 
at discrete time instants. One event is processed by one 
execution unit by executing an event handler process. The 
execution of one event may schedule new events in the 
future, or cancel the future execution of scheduled events. 
A simulation process is a process that incarnates the 
ordered events’ execution, and the behaviors of at least 
one model entity. A synchronization mechanism is needed 
to order the events’ executions, by following their causal 
order. The causal order can be informally defined as the 
notion of “happens before” ordering of events. The real 
system evolution and the interactions between system 
entities is represented by the model state variables’ 
updates. The causal order of events can be obtained 
through i) a totally ordered event list in monolithic 
simulators, and ii) a distributed synchronization 
mechanism implemented through message passing 
communication of event notifications, in parallel and 
distributed simulators. It results a great importance of the 
communication efficiency in distributed simulation 
scenarios. 
      In recent years, the research for tools and 
methodologies for modeling and simulation of large-scale 
and complex systems has obtained a great interest. 
Examples of models challenging currently available 
simulation systems and tools range from large-scale 
wireless systems, like cellular, mobile ad hoc and sensor 
networks, up to biology-inspired models and molecular 
systems, elementary particles physics and cosmology 
systems [26, 24, 27, 28]. The simulation-based 
investigation of complex systems is widely adopted and it 
is often preferred, in practice, to the complexity of 
alternative numerical and analytical modeling and 
resolution methods [23, 28]. Simulation models currently 
considered interesting for the analysis may include a 
potentially huge number of simulated objects. Such 
simulations may require a relevant computation time to 
complete (e.g. due to the implementation of complex 
behaviors, with dense and computation intensive state 
updates). Detailed and complex simulated objects (model 
components) may require complex and large data 
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structures implementing the model state. For these 
reasons, large scale and complex simulation models may 
be unpractical to simulate on a single-processor execution 
unit, because of huge memory requirements and large 
amount of time required to complete the simulation runs 
[27, 28]. 
      Many practical experiences have demonstrated that 
the memory bottleneck reduction, the model scalability 
and the speed-up in the simulation of complex systems, 
can be achieved by using parallel and distributed models 
and execution architectures, i.e. a Parallel Discrete Event 
Simulation (PDES) approach [1, 9, 16, 17, 26, 28]. 
Parallel and Distributed Simulation (PADS) is the 
acronym used to refer to execution of concurrent 
simulation processes over tightly coupled, or loosely 
coupled computation architectures, respectively. The 
advantage of PADS is given by the exploitation of 
aggregate memory and computation resources of the 
Physical Execution Units (PEUs) architectures. More 
recently, the distributed simulation community contributed 
in the definition of IEEE 1516 High Level Architecture: a 
new standard for distributed modeling and simulation 
[20]. The new standard defines rules and interfaces 
allowing for heterogeneous components’ interoperability 
in parallel and distributed simulations. Model components 
(formally known as federates) are executed as Logical 
Processes (LPs) over a set of interconnected PEUs. 
Federates’ execution is supported by standard 
management APIs for the communication and 
synchronization tasks, implemented by a run-time 
middleware (RTI). The High Level Architecture (HLA) 
has currently become a synonymous for the standard rules 
and services to be considered as the basis for the 
implementation of distributed simulations, and the 
Runtime (RTI) simulation kernel [11, 15, 20].  
       In order to exploit the maximum level of computation 
parallelism, many research activities dealt with dynamic 
balancing of LP’s executions (both cpu-loads and virtual 
time-advancing speeds) by trading-off communication, 
synchronization and speedup, both in optimistic and 
conservative approaches [8, 12, 14, 29, 30, 31]. Under a 
conservative synchronization algorithm, a LP executes the 
next event with timestamp t only when it is sure that no 
event-messages will be notified whose timestamps are 
lower than t (safety condition). In the optimistic approach 
events can be executed without necessarily evaluate the 
safety predicate condition. If a violation of the event 
causality is detected, that is, an out-of-order message is 
received by an LP, a rollback process is executed to 
resume last correct state.
      The distributed federates interact and synchronize via 
event-message notifications (basically, message passing 
communication). Unfortunately, the need for distributed 
model-components communication and synchronization 
services may require massive interprocess communication. 

Complex systems with detailed and fine-grained 
simulation models can be considered communication-
intensive under the distributed simulation approach. As a 
result, interprocess communication may become the main 
bottleneck of the distributed simulation paradigm, and 
solutions to reduce the cost of communication must be 
addressed by the research in this field.  
      Many approaches have been investigated in order to 
reduce the overhead effects of distributed synchronization 
and communication in both optimistic and conservative 
distributed simulations. Solutions have been proposed, 
based on both model aggregation and on communication 
filtering, and also by trading off model accuracy and 
computation load balancing issues, respectively [19, 25]. 
Basically, the approaches defined in [2, 9, 14, 15, 22, 29, 
30] rely on the reduction of communication obtained 
when the update of an event- or state-information (e.g. 
event-messages) is not flooded to the whole system, but it 
is propagated only to the subset of causally dependent 
components. This is the basis of publishing/subscribing 
mechanisms for sharing state-information and event-
notifications between causally dependent components [11, 
15, 26]. In spite of the previously mentioned approaches 
for communication reduction, the efficient implementation 
of interprocess communication remains a primary 
background issue, to contrast the possible communication 
bottleneck of parallel and distributed simulations.  
      Recently implemented middleware solutions based on 
the High Level Architecture (HLA) [11, 20] have shown 
that the parallel and distributed simulation of massive and 
complex systems can result in relevant overheads. 
Overheads are due to the complex and full management of 
a wide set of run-time services and to the latency due to 
distributed communication bottlenecks. Specifically, most 
of the preliminary implementations of the interprocess 
communication services have been implemented in sub-
optimal way, without considering the heterogeneity of the 
simulation execution platforms [3, 13]. 

       We designed a new, parallel and distributed 
simulation middleware named Advanced RTI System 
(ARTÌS). The aim of the ARTÌS middleware is to support 
parallel and distributed simulations of complex and 
dynamic systems. ARTÌS design is oriented to support the 
model components’ heterogeneity, distribution and reuse, 
and to increase the simulation performances, scalability 
and speedup, in parallel and distributed simulation 
scenarios [4]. ARTÌS is designed to implement dynamic 
adaptation of the interprocess communication layer to the 
heterogeneous communication support offered by possibly 
different simulation-execution units. Specifically, ARTÌS 
performs adaptive evaluation of the communication 
bottlenecks. It supports multiple communication 
infrastructures and services, from shared memory to MPI, 
LAN and Internet-based communication [4]. 
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      ARTÌS has been integrated with the Generic Adaptive 
Interaction Architecture (GAIA), to support a simple 
model components’ migration mechanism that can be 
adapted on the top of HLA-based distributed simulations 
[3]. The adoption of GAIA enabled a dynamic partition 
and allocation of interacting model components, allocated 
over the LPs, and respectively executed over a set of 
multiple, distributed PEUs. In this way, we obtained an 
adaptive, tuneable mechanism able to adapt and react to 
dynamic systems’ behavior under the load balancing and 
communication-reduction viewpoints. In addition, many 
other solutions and optimizations have been introduced in 
the ARTÌS framework. As an example, the support for 
Concurrent Replication of Parallel and Distributed 
Simulations (CR-PADS) [6] is realized to maximize the 
speedup and utilization of system resources, when 
implementing a set of parallel and distributed simulations 
of complex dynamic system models. More recently, three 
classes of solutions have been proposed to improve the 
performance of simulations executed over commodity off-
the-shelf computation and communication architectures: 
multi-threaded software and Hyper-Threading support by 
the processor architectures, data marshalling solutions for 
shared-memory and network-based communications [7]. 
In this paper we sketch the illustration of all the main 
issues and results achieved in the ARTÌS design and 
implementation. 
      The paper structure is the following: in section 2 we 
outline the state of the art of PADS and existing runtime 
implementations; in Section 3 we illustrate the key design 
and implementation issues of ARTÌS; in section 4 we 
outline solutions for dynamic and complex systems’ 
simulation; in section 5 we illustrate a solution to improve 
resources’ utilization and simulation performances; in 
section 6 we sketch some optimizations; in section 7 we 
summarize our conclusions and future work. 

2. State of the art  

      One of the main issues for PADS was the lack of a 
modeling and simulation interoperability standard. This 
resulted in many duplicate model implementations, 
inability to share models and information between 
heterogeneous simulators and a very low code reuse. In 
2000, many years of research work involving both public 
and private units, led to the IEEE 1516 standard High 
Level Architecture (HLA) being approved [15, 20]. The 
HLA standard defines APIs for the communication and 
synchronization tasks among federates. The distributed 
simulation is supported by a runtime middleware (RTI), 
whose implementation techniques are not regulated by the 
standard. The RTI is mainly responsible for providing a 
general support for distributed objects' interaction, 
attributes' ownership and many other optimistic and 
conservative event-management policies. The IEEE 1516 

standard has gained a good popularity but it is still 
considered too complex for the implementation of 
distributed simulation middleware solutions and 
architectures. The existing ones are often too slow in 
supplying the expected results. Specifically, the IEEE 
1516 Standard has been criticized about its structure and 
its effective ability to manage really complex and dynamic 
models [13]. By analyzing the existing RTI 
implementations, to the best of our knowledge, few 
currently available middleware solutions have been 
designed with some emphasis on the adaptive exploitation 
of the communication infrastructure heterogeneity, which 
may be characterizing the distributed simulation-execution 
scenario. More specifically, the Georgia-tech RTI-kit [18] 
implementation has been realized by introducing some 
optimization in the exploitation of the shared memory 
execution-system architecture. Many other 
implementations still rely on UDP or TCP socket-based 
interprocess communication, even when executed on a 
single execution unit. It is worth noting that rare 
implementations provided the source code to users, 
allowing them to configure the middleware on the basis of 
the user needs and the execution-system architectures. The 
support for heterogeneous communication services and 
architectures should be considered as a design principle in 
the implementation of a distributed simulation 
middleware. Moreover, the adaptive optimization and 
management of the middleware communication layer 
realized over heterogeneous network architectures, 
technologies and services should be considered both in the 
initialization phase, and at runtime, in a distributed 
simulation process. More specifically, none of the 
proposed RTI implementation took under consideration 
the specific assumptions and characteristics of simulation 
execution of complex, dynamic and mobile system-
models. Our work on the ARTÌS implementation 
introduced these concepts, to provide a scalable, adaptive, 
easy to configure and efficient execution and 
communication support for PADS. 

3. The ARTÌS software architecture 

      The ARTÌS implementation follows a component-
based design, that results in an extendible middleware 
suitable for many applications. Currently, ARTÌS supports 
both the conservative and optimistic synchronization. The 
former is implemented with both the time-stepped 
approach, and the Chandy-Misra-Bryant (CMB) algorithm 
[10]. The latter relies on a Time Warp algorithm 
implementation [21]. In our experience in the simulation 
of complex and dynamic systems, the conservative 
approach resulted more efficient than the optimistic one. 
This is due to the highly unpredictable characteristics of 
dynamic and mobile models of interest. Under the 
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optimistic approach, the simulation has given frequent 
rollbacks, by increasing the simulation overhead. 
      In ARTÌS, preliminary design optimizations have been 
evaluated for synchronization and communication 
protocols in Local Area Network (LAN) or Shared 
Memory (SHM) multiprocessor architectures. The 
communication and synchronization modules should be 
adaptive and user-transparent about all adaptation and 
optimizations required to improve performances.   
      Figure 1 shows the current structure of the ARTÌS 
middleware. ARTÌS is composed by a set of logical 
modules organized in a stack-based architecture. The 
communication layer is located at the bottom of the 
middleware architecture, and it is composed by a set of 
different communication modules. The ARTÌS 
middleware is able to select the best interaction module 
with respect to the dynamic allocation of Logical 
Processes (LPs) in the execution environment. As an 
example, the presence of a shared memory for the 
communication among parallel or distributed Logical 
Processes (LPs) offers the advantage of low latency, and 
reliable communication mechanism. The shared memory 
communication module required accurate design, 
implementation and testing. The optimal module is highly 
scalable, easy to manage, and with low latency and 
overheads. We tested solutions based on semaphores and 
locks that showed high latency and scaling problems. The 
number of semaphores that could be instantiated in a 
system is often limited and statically controlled by the 
operating system kernel. Busy-waiting solutions 
drastically reduce the latency, but introduce high CPU 
computation overheads. In ARTÌS, the current shared 
memory synchronization module works with “wait on 
signals" and a limited set of temporized spin-locks. This 
solution has demonstrated very low latency and limited 
CPU overheads. Moreover, it resulted in good 
performance obtained in multi-CPU systems, good 
scalability and no need for any reconfiguration at the 
operating system kernel level.  
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C/C++ TCP/IP JAVA

Unibo API
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Figure 1. The ARTÌS software architecture 

      When shared memory is not available between two or 
more LPs located on different hosts, the other modules 
support LPs’ communication by using either a light 
Reliable-UDP/IP (R-UDP/IP), or the standard TCP/IP 
protocol stack. The ARTÌS choice is based on the network 
characteristics: in a reliable LAN, the R-UDP solution 
will be preferred for the low overhead. In general 
Internet–based simulations, the TCP/IP stack will be 
adopted. Recently, the module support for the Message 
Passing Interface (MPI) has been integrated in the 
middleware. The MPI is a communication protocol which 
represents a “de facto” standard for communication 
among nodes in the High Performance Computing (HPC) 
architectures. 
      On top of the communication modules’ layer, the 
ARTÌS runtime core layer (RTI Core) is composed by a 
set of management modules directly inspired by a typical 
HLA-based simulation middleware, and made compliant 
with the IEEE 1516 Standard.  
      Many different modules have been implemented:  
Data Distribution Management (DDM) in charge of 
managing the dynamic subscription/distribution of event- 
and data-update messages, the Time Management, the 
Federation Management, Declaration Management, 
Object Management and Ownership Management. Most 
of those modules are in preliminary stage of design and 
implementation and will be refined in future, by adding 
more features. Currently, our primary goal was to obtain a 
easy to use middleware, suitable to run complex and 
dynamic models, and working as test-bed for new features 
and experimentations reported in this paper. 
      The simulation middleware services are exported by 
ARTÌS to the upper user simulation layer, by 
implementing a set of modules implementing different 
APIs. The HLA IEEE 1516 API module is implemented 
to allow the integration of IEEE 1516 compliant models to 
the ARTÌS framework. The native set of APIs, called the 
University of Bologna APIs (Unibo APIs), offers a 
simpler access to distributed simulation services, with 
respect to IEEE 1516 Standard APIs. The bindings for the 
Unibo APIs are currently provided for C/C++/JAVA 
languages. Thanks to the recently introduced Java 
bindings, models and simulators can be written in Java. 
This allows seamless integration of new Java modules 
with native modules, and integration of Java simulation 
models. Currently, we are implementing a specific set of 
APIs designed for ARTÌS support to Internet Gaming 
applications. We are currently developing a set of simple 
test games to identify the optimal API design. 
      Additional orthogonal modules are dedicated to other 
specific features, like the adaptive runtime management of 
synchronization and communication overheads. As an 
example, a real-time introspection mechanism offers an 
internal representation of the middleware state at runtime. 
Logging and Performance modules support the user 
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simulation with online traces, statistics and runtime data 
analysis. The Migration (GAIA) module will be described 
in the next section, by illustrating how distributed model 
entities migrations made simulations of dynamic models 
more efficient. 
      The runtime has been recently upgraded with 
simulation cloning and concurrent replication modules. 
The cloning module allows the dynamic cloning of 
simulation executions, and it is useful to concurrently 
analyze “what-if” scenarios. The concurrent replication 
model can be exploited to increase the simulation 
performances (basically, to decrease the WCT) and its 
contribution will be discussed in section 5. 

4. Simulation of massive,  complex and 
dynamic systems 

      We define a dynamic system as a system where the 
interactions (i.e. the causal effects of events) are 
dynamically subject to fast changes driven by the system 
(and model) evolution over the simulated time. Given this 
general definition, a wireless network can be an example 
of a highly dynamic system. To realize a correct evolution 
under the event-causality viewpoint, every model 
components’ interaction should be notified, as an event-
message, to all the causally dependent model components. 
This task is done by the run-time event message 
distribution mechanism. The intensive communication 
inherent to complex systems under the distributed 
simulation approach makes inter-process communication a 
potential bottleneck for the distributed simulation 
paradigm. The way inter-process communication can be 
sustained in distributed systems depends on the PEUs and 
on the communication support, that is, on the simulation 
system resources, architectures and characteristics. As 
previously said, message passing communication can be 
performed efficiently over shared memory architectures, 
while it would require medium and high communication 
latencies over local and wide area network communication 
services.  
      It is self evident how the physical clustering of 
interacting model components on a shared memory 
architecture could result in the advantage to exploit the 
most efficient message passing implementation. 
Unfortunately, in highly dynamic systems any optimal 
static clustering and allocation, based on the current 
component-interaction scheme at a given point in the 
simulation, will become immediately suboptimal, due to 
the dynamics of the model interactions. In presence of a 
dynamic system, a dynamic approach for the event-
distribution and state-information-updates (e.g. dynamic 
lists and subscription groups) would lead to additional 
communication and management overheads. In some 
scenarios, the communication cost of list-updates or fine-

grained events’ communication between a dynamically 
variable set of components, could make attractive a 
complementary approach.  
      As an example, when the system communication 
infrastructure is characterized by significant performance 
asymmetry (e.g. shared memory vs. LAN 
communication), like in networked clusters of PCs, the 
migration cost needed to dynamically cluster the set of 
interacting components over a single Physical Execution 
Unit (PEU) could become attractive. This would be even 
more attractive if the following three assumptions could 
be satisfied: i) components’ migration could be 
implemented incrementally as a simple data-structure (i.e. 
state) transfer, ii) the component state would be 
comparable with the amount of data exchanged for 
interactions, and iii) the object interaction scheme would 
be maintained for a significant time (i.e. time-locality). In 
our approach the optimization is dynamically performed 
at run-time, by the GAIA module migrating the model 
entities between LPs [3]. In this way, the modeller is 
alleviated by the optimization task, and the system 
converges towards a balanced, tuneable and pseudo-
optimal model components’ distribution driven by the 
model interaction scheme. 

4.1. Case study: the wireless and mobile system model 

      In the following, as an example of a dynamically 
variable system, we focus on a wireless multi-hop Mobile 
Ad Hoc Network (MANET) [22]. Simulation models for 
wireless systems incarnate all the assumptions that 
motivated our design. The number of simulated hosts in 
our expectations can reach high values, requiring the 
simulation of massively populated scenarios. Topology 
changes due to simulated hosts’ mobility map on causality 
effects in the “areas of influence” of each mobile device, 
resulting in dynamically shaped causality-domains and 
component interaction schemes. Given two or more 
neighbor-hosts sharing the wireless medium, the causal 
effect of signal interference could result in a complex 
chain of local-state events up to the high protocols’ layer. 
In our approach, we define a model entity as the data 
structure defined to model a Simulated Mobile Host 
(SMH). A certain degree of time-locality of local 
communication can be considered an acceptable 
assumption in many wireless system models, depending 
on the communication load and the mobility model 
assumptions. 
      A high degree of causality in the simulation of the 
wireless hosts’ communication is driven by the local 
topology interaction (i.e. transmissions) between 
neighbour hosts. Under the modeling and simulation 
viewpoint, wireless systems can be considered highly 
dynamic systems: if a SMH changes its position, it will 
eventually interact with a new community of neighbour 
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hosts. The system dynamics can be influenced by motion 
model and speed, and also by the SMHs density. 
      Our testbed consists of a distributed discrete event 
simulation of model components (i.e. logical processes) 
executed over a set of physical execution units (PEUs), 
connected by a physical LAN network. Our design 
approach is mainly focused on the adaptive 
communication reduction between the PEUs where 
Logical Processes (LP) are executed. Every LP is 
statically allocated and executed on a single PEU. 
Specifically, one single LP cannot be split over two or 
more PEUs, more LPs can be executed over a single PEU, 
and LPs cannot be migrated between PEUs. 
      Every LP is managed by a run-time simulation core 
(RTI) as a single simulation component. On the other 
hand, a single LP is implicitly formed by a set of threads. 
The main thread of each LP manages and updates the state 
(i.e. local data structures) of a set of Simulated Mobile 
Hosts (SMHs). A communication between wireless hosts 
can be modelled as a set of interactions (i.e. message-
events) between any couple of adjacent SMHs. Since a 
wireless communication must be always modelled as a 
broadcast within a limited local transmission range, this 
requires that each SMH within a variable range would be 
notified with the transmission-related event-messages. 
Each event would result in a multiple set of one-to-one 
interactions (i.e. event messages) among local SMHs. If 
the sender SMH and its neighbors belong to the same LP 
(i.e. they are executed on the same PEU), or if they belong 
to different LPs implemented over the same PEU, then 
their interactions can be considered local (e.g. shared 
memory communication) and do not involve any physical 
network communication. On the other hand, every 
interaction involving participants implemented over 
foreign LPs (e.g. LPs implemented over different PEUs) 
may require time expensive physical network 
communication. By reducing the physical network 
communication we can reduce the synchronization delays. 
By clustering neighbor SMHs within the same LP, or 
within the LPs executed over the same PEU, we obtain the 
advantage of closing the causality effect of modelled 
communication within the PEU where the interacting LPs 
(and respective SMHs) are executed. In addition, 
clustered interacting SMHs would limit interactions with 
the management layers of the RTI, by further reducing the 
computation and communication overheads.  
      To sum up, by limiting the network communication in 
favour of the local (shared memory) communication, the 
wall clock time required by the simulation run-time to 
achieve full synchronization would be reduced. This 
would make it possible to obtain a fast simulation.  
      A static approach could be adopted to optimally 
distribute the SMHs within the LPs in the simulation 
initialization phase. The optimal solution for allocation is 
hard to find and could be defined in many ways, 

depending on the targeted overheads’ reduction. 
Typically, the optimality is defined with respect to latency 
(to reduce the physical network communication cost) or 
computation (to obtain an optimally balanced execution 
parallelism). Anyway, this should be explicitly performed 
offline by the modeller, on the basis of the modeling 
assumptions. In addition, as it is demonstrated in figure 2, 
the model dynamics (e.g. the SMH mobility) would make 
useless the optimal initial distribution after few simulation 
steps. This result may translate in a performance 
degradation for the simulation speedup, mainly due to the 
increasing cost of communication and synchronization 
required between distributed model components (logical 
processes).  
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Figure 2. Effect of GAIA over ARTÌS simulation

       The curves “GAIA Migration ON” and “GAIA 
Migration OFF” show the runtime speedup obtained by 
distributed implementations with respect to a monolithic 
simulation of the wireless system model. It is worth noting 
that the optimal runtime allocation and balancing obtained 
with GAIA gives better results (N=3 LPs are simulated 
over M=3 PEUs). The curve “GAIA Migration ON/OFF” 
shows the effect of the initial static optimization: under 
the effect of the model dynamics (without the GAIA 
runtime optimization) the performance converges to the 
suboptimal performance in few timesteps. In GAIA the 
optimization is dynamically performed at run-time, by the 
proposed simulation middleware migrating the SMHs 
between LPs. In this way, the modeller is alleviated by the 
optimization task, and the system converges towards a 
balanced, tuneable and pseudo-optimal model 
components’ distribution driven by the model interaction 
scheme. 

5. Concurrent replication of parallel and 
distributed simulation (CR-PADS) 

      A new direction for trying to maximize the speedup of 
the simulation processes and the utilization of 
computation (and communication) resources in the system 
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architecture supporting the parallel or distributed 
simulation is based on the Concurrent Replication of 
Parallel and Distributed Simulations (CR-PADS) [6]. Our 
assumption, based on a common implementation rule, is 
that a simulation-based analysis is not limited to the 
execution of a single run of a parallel or distributed 
simulation, but requires many independent set of 
observations for a correct and significant statistical 
analysis of results. To satisfy this requirements we choose 
to modify our ARTÌS simulation framework, by adding a 
module which is able to implement CR-PADS, rather than 
executing a sequence of multiple parallel or distributed 
simulation runs.
      The replication concept is intended here as a 
mechanism that duplicates the logical processes (LPs) of 
parallel and distributed simulation runs starting from the 
initialization phase of every single run. Every replica is 
based on the same model definition, and realizes an 
independent execution based on local initial parameters, 
variable factors for the analysis, and different random 
number generation seeds. In other words, many 
independent simulation runs are executed concurrently by 
replicating them only at the beginning of the simulation 
process (differently from cloning schemes, creating 
replicas at runtime). Each replica is an independent run, 
with its own seeds, and model initialization. The CR-
PADS approach is different from the Multiple Replication 
In Parallel approach (MRIP) where a number of 
sequential runs are executed in parallel over the available 
set of PEUs (see figure 3.a). In the following we are going 
to explain the motivations for our proposal of a 
Concurrent Replication mechanism for Parallel and 
Distributed Simulation (CR-PADS) by sketching the 
differences among the MRIP, the PADS and the CR-
PADS approaches, under both the computation and 
communication viewpoints. In figure 3, by assuming that 
N CPUs are made available for computation (no matter if 
they belong to parallel or distributed architectures) we 
want a set of many independent runs to be executed (only 
two in the figure for clarity). Obviously, the aim is to have 
the completion of the overall simulation process in the 
lowest time and with the maximum utilization of 
computation and communication resources. 
By focusing on the MRIP approach (figure 3.a) the 
independent runs can be executed by launching in parallel 
the sequential simulations over the available CPUs. It 
results that the possible concurrency of the model 
execution cannot be exploited to obtain simulation 
speedup, because every computation is linearly executed 
as a sequence of tasks. In this scenario, the model data 
structures and computation must fit on the CPU system 
and may suffer memory and computation limitations. 
Moreover, as the figure 3.a illustrates, if the available 
resources are more than the number of runs required, the 

potential associated to some resources may remain 
unexploited. 
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Figure 3. A comparison of MRIP, PADS and CR-PADS 

      The parallel or distributed simulation (PADS) 
approach (see figure 3.b) may introduce advantages, 
because every independent run could exploit the whole 
computation architecture, by mapping and exploiting the 
degree of parallelism inherent to the model over the 
concurrent CPUs. This implies that a single run may 
complete in less time than a sequential run. On the other 
hand, the linear execution of two (or many) runs in the 
scenario of figure 3.b may result in a speedup depending 
on the number of resources and the number of runs 
required under MRIP and PADS, respectively. With 
PADS, the advantages of the aggregate memory 
architecture may assist the model data structures 
management, and the whole set of computation resources 
(CPUs) can be exploited in parallel. The problem arising 
under the PADS scenario is represented in the figure 3.b: 
frequent synchronizations are required among the model 
components (by assuming a conservative event-based or 
time-stepped implementation). Every synchronization 
barrier initially unblocks the concurrent computation of 
CPUs. As soon as the computation phase is terminated, 
every process starts a message passing phase to 
synchronize again its execution with other processes. This 
implies that i) the whole set of processes advances with 
the speed of the slowest (or more computation intensive) 
one, and ii) the final phase before the synchronization 
barrier is communication-intensive and may suffer 
additional delays due to the congestion and delays of the 
inter-process communication infrastructure. The 
communication delay problem may result in a high 
percentage of synchronization delay, under loosely 
coupled distributed architectures (e.g. over CPUs 
interconnected by LAN or Internet technology). In other 
words, between any couple of synchronizations, every 
CPU in figure 3.b swings between computation and idle 

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05) 
0-7695-2447-8/05 $20.00 © 2005 IEEE 



periods, while the underlying communication 
infrastructures swings between idle and communication 
periods, respectively. 
      In [6] we showed it is possible to obtain a more fluent 
computation and communication by merging the 
execution tasks of more than one parallel or distributed 
simulation replica over the computation and 
communication architecture. In other words, by launching 
multiple, independent and concurrent parallel or 
distributed simulation runs over the system we may obtain 
that CPUs do not spend so much idle time waiting for 
synchronizations because they can switch to the execution 
of computation requests by the other replicas which 
already completed their synchronization phase (figure 
3.c). The same happens under the communication system 
viewpoint, because the message passing from all the 
replicas may increase the uniform utilization of the 
communication system. As a result, idle CPU times and 
idle or congested communication channels are smoothed, 
and this may result in additional speedup with respect to 
the whole time required for completing the whole set of 
simulation runs. The risk in this approach is to spend too 
much time in switching processes’ executions, and in the 
creation of communication bottlenecks and live-locks, 
resulting in trashing effects. Our design is based on a set 
of guidelines that we followed in order to obtain the 
maximum advantage from the replication mechanism, by 
opportunely managing the processes executions and 
communications, and by keeping under control the 
overheads introduced.
      We defined the structure of the ARTÌS framework 
such that a separation of the simulation and replication 
management is specifically oriented to a clean design and 
to the exploitation of management techniques that reduce 
the communication overheads. Our choice is to create 
replicas by replicating virtual LPs that realize a simulation 
run. A set of replicas of virtual LPs is managed as a single 
LP by the runtime management. This simplifies the 
management under the ARTÌS viewpoint and allows an 
optimization and balancing of the utilization of 
communication resources, based on queue management, 
priority and fairness protocols. 
      The management of Random Numbers Generators 
(RNGs) in CR-PADS is simpler than in cloning approach, 
because seeds can be chosen at the beginning of the runs. 
Figures 4 and 5 show the time required to complete the x  
concurrent simulation runs (indicated by X values) for the 
wireless ad hoc network model composed by 1000 SMHs, 
and N LPs executed over M PEUs.  Shared memory, and 
LAN-based PEU architectures, are considered in figures 4 
and 5, respectively. In figure 4, the CR-PADS parallel 
executions over tightly coupled (shared memory) PEUs 
gives advantages (with respect to PADS) with more than 
one concurrent replication, and introduces overheads 
when the number of replicas saturates the computation 

power and/or communication bandwidth of the PEU 
execution architecture. In distributed scenarios (LAN-
based communication, see figure 5), the CR-PADS gives 
even better results, because the communication latency is 
the bottleneck parameter in the execution architecture, and 
more concurrent replicas can exploit more residual 
computation power [6]. 
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6. Communication and computation 
optimization for PADS 

      To the best of our knowledge, the influence of Hyper-
Threading (HT) technology on PADS architectures and 
frameworks has not been investigated in detail. Intel’s HT 
technology is a new architectural solution for support of 
virtual concurrency in the processes’ execution [7]. 
Thanks to simple heuristics, HT-enabled OSes should be 
able to adapt the process scheduling to the HT 
architecture, with the aim of optimizing the overall 
execution of processes. 
      On the application side, it is quite common for parallel 
and distributed simulation frameworks to allocate a single 
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LP for each available processor. This is based on the 
assumption that one single LP will be the only running 
process and would not cause context switches and other 
relevant overheads. On the other hand, each time the LP is 
blocked due to communication and synchronization 
delays, the CPU time would be wasted [6]. The effects of 
HT technology could significantly change the assumptions 
related to current implementation choices.  
       Under the software architecture viewpoint, most of 
the modern PADS middlewares are based on multi-
threaded implementation, and basically should take 
advantage of the HT support. It would be interesting to 
evaluate if the increasing in the number of logical 
processes could be exploited as a new dimension for 
PADS optimization: to concurrently run more LPs than 
the number of physical processors, over HT processor 
architectures. 
      To give answers to the above questions about HT 
technology and PADS assumptions, we evaluated the 
performances of the real ARTÌS simulation framework on 
a real experimental testbed, instead of relying on synthetic 
CPU benchmarks.  
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      The wireless mobile ad hoc network model of a 
complex and dynamic system with 6000 SMHs, was 
assumed for the analysis. The experiments have been 
executed over a PEU equipped by Dual Xeon Pentium IV 
2800 MHz, 3 GB RAM. The first group of tests is based 
on Hyper-Threading support enabled for the PEU (HT-
ON), and the second one is based on Hyper-Threading 
support disabled directly by BIOS settings (HT-OFF). 
      In Figure 6, results show that the number of HT-
enabled PEU (HT-ON) indicated on the X axis performs 
always better than the HT-disabled (HT-OFF) version. In 
addition, the HT-ON scenario shows an increasing 
simulation scalability, with respect to HT-OFF. 

In ARTÌS, a reduction of the overheads and channel 
accesses could result in increased channel utilization and 
reduction of the communication bottlenecks. For this 
reason we investigated if and how a message marshalling 
approach could reduce the simulation WCT.  
      The data marshalling approach consists in the 
concatenation of more than one logical message in the 
same communication messages. In order to control the 
degradation in the average communication latency, the 
data marshalling process is controlled by a timer: once 
every a maximum time limit the messages buffered on the 
LP are sent in a data marshalling packet (or frame). The 
proposed optimization has been applied both to shared 
memory and TCP/IP communications. Figure 7 shows the 
results for the ARTÌS optimization applied to a distributed 
simulation architecture when executing a PADS 
simulation of 3000, 6000 and 9000 model entities in the 
wireless ad hoc network model. 
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7. Conclusions 

      In this work we illustrated the design and 
implementation guidelines of the ARTÌS middleware 
defined to support the parallel and distributed simulation 
of large scale, complex and dynamically interacting 
system models. We designed and implemented the ARTÌS 
middleware by incorporating a set of features that allow 
adaptive optimization by exploiting many complex and 
dynamic model and distributed simulation characteristics. 
As an example, a dynamic migration mechanism (GAIA) 
for the run-time adaptive allocation of model entities has 
been designed and exploited for dynamic load and 
communication balancing. Optimizations have been 
introduced to obtain the maximum advantage from 
heterogeneous and asymmetric communication systems, 
from shared memory to LAN and Internet-based 
communication. Other optimizations have been introduced 
by the exploitation of concurrent replications of parallel 
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and distributed simulations, in order to increase the 
resources utilization and to maximize the speedup of 
simulation processes. Solutions have been designed, 
implemented and tuned to obtain a significant reduction in 
the communication and synchronization overheads 
between the physical execution units, and an increased 
model scalability and simulation speedup, even in worst-
case modeling assumptions and simulation scenarios. 
Other solutions have been proposed to improve the 
performance of simulations executed over commodity off-
the-shelf computation and communication architectures: 
multi-threaded software and Hyper-Threading support by 
the processor architectures, data marshalling solutions for 
shared-memory and network-based communications. All 
the proposed solutions have been evaluated on real testbed 
evaluation scenarios, and under variable configurations. 
Results obtained demonstrate that a performance 
improvement can be obtained by adopting and tuning the 
proposed solutions in opportune way. The experimental 
analysis performed in [3, 4, 5, 6, 7] has provided some 
interesting guidelines about the way to adopt and to 
compose the proposed solutions in ARTÌS. 
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