
Evaluating Rapid Application Development with
Python for Heterogeneous Processor-based FPGAs

Andrew G. Schmidt, Gabriel Weisz, and Matthew French
Information Sciences Institute, University of Southern California

Email: {aschmidt, gweisz, mfrench}@isi.edu

Abstract—As modern FPGAs evolve to include more het-
erogeneous processing elements, such as ARM cores, it makes
sense to consider these devices as processors first and FPGA
accelerators second. As such, the conventional FPGA develop-
ment environment must also adapt to support more software-
like programming functionality. While high-level synthesis tools
can help reduce FPGA development time, there still remains
a large expertise gap in order to realize highly performing
implementations. At a system-level the skill set necessary to
integrate multiple custom IP hardware cores, interconnects,
memory interfaces, and now heterogeneous processing elements
is complex. Rather than drive FPGA development from the
hardware up, we consider the impact of leveraging Python to ac-
celerate application development. Python offers highly optimized
libraries from an incredibly large developer community, yet is
limited to the performance of the hardware system. In this work
we evaluate the impact of using PYNQ, a Python development
environment for application development on the Xilinx Zynq
devices, the performance implications, and bottlenecks associated
with it. We compare our results against existing C-based and
hand-coded implementations to better understand if Python can
be the glue that binds together software and hardware developers.

I. INTRODUCTION

As FPGA devices continue to increase in heterogeneity,
e.g. incorporating multi-core ARM processors, the software
community has been taking notice. Moreover, industry has
been shifting its focus to FPGAs over the past few years, as
evidenced by Microsoft’s Catapult project [1], Intel’s acqui-
sition of Altera [2], and most recently Amazon’s inclusion
of FPGAs as part of their Amazon Web Services [3]. While
the FPGA community is keenly aware of the performance
and power efficiencies FPGAs offer developers, there remains
a significant challenge to broaden FPGA usage. High-level
synthesis (HLS) and other productivity tools are a start, but
still require FPGA expertise to direct the tools to achieve
good results. While HLS has an important role in FPGA
development, incorporating hardware accelerators into an end-
user’s application can be a daunting task. The software com-
munity is use to leveraging efficient libraries, highly tuned for
the hardware in order to obtain the best performance. What
the FPGA community needs to embrace is a more software-
down development flow rather than hardware-up. Furthermore,
for wider FPGA adoption by the software community, the
tools and languages supported need to go beyond conventional
embedded systems languages.

Over the last several years Python has grown in popularity
both in academia and industry [4]. With a wide variety of

libraries and tools available to developers, Python is being used
in everything from scientific computing to image processing
and machine learning, and growing more each day. Making
FPGAs more user friendly certainly has been an on-going
effort for decades and this work does not claim to solve
this problem. Instead, it looks at how entire communities
have sprung up seemingly overnight around other embedded
platforms, such as Raspberry Pi and Arduino. The success of
these platforms stems from an inexpensive compute platform,
ease of use programming environment, modularity, and a
plethora of interesting and fun projects readily available to
be tried, modified, and refined.

Towards this trend, Xilinx recently released PYNQ (PYthon
on zyNQ) [5] as a productivity environment and platform
for developers, combining the use of Python, its tools and
libraries with the capabilities of programmable logic and ARM
processors. High-level languages are desired in an embedded
space where today C/C++ dominates, so long as the perfor-
mance is not impacted. This paper aims to leverage Python for
rapid application development on FPGAs and to understand
the performance and development implications of doing so.
With Python we can quickly develop an application, in this
case Edge Detection, and compare the performance across
several different C/C++, Python, and hardware accelerated
implementations. Our results are highly encouraging in that not
only can using Python reduce application development time by
exploiting a tremendously rich and diverse set of packages,
libraries, and tools, but we are also able to obtain highly
performing implementations when compared to conventional
C/C++ embedded implementations.

II. BACKGROUND AND RELATED WORK

With the goal of this paper being to explore how an applica-
tion developer might utilize custom hardware kernels with the
Xilinx PYNQ application framework [5], it is important to de-
scribe what PYNQ is and how this work is using Python. The
PYNQ application development framework is an open source
effort designed to allow application developers to achieve a
“fast start” in FPGA application development through use of
the Python language and standard “overlay” bitstreams that
are used to interact with the chip’s I/O devices. The PYNQ
environment comes with a standard overlay that supports
HDMI and Audio inputs and outputs, as well as two 12-
pin PMOD connectors and an Arduino-compatible connector
that can interact with Arduino shields. The default overlay

ar
X

iv
:1

70
5.

05
20

9v
1 

 [
cs

.S
E

] 
 1

1 
M

ay
 2

01
7



instantiates several MicroBlaze processor cores to drive the
various I/O interfaces. Existing overlays also provide image
filtering functionality and a soft-logic GPU for experimenting
with SIMT-style programming [6]. PYNQ also offers an API
and extends common Python libraries and packages to include
support for Bitstream programming, directly access the pro-
grammable fabric through Memory-Mapped I/O (MMIO) and
Direct Memory Access (DMA) transactions without requiring
the creation of device drivers and kernel modules. Our work
builds upon these APIs and Overlay concepts to develop
application kernels that can be dynamically connected together
to create processing pipelines.

Several existing projects [7]–[10] allow application devel-
opers to describe hardware kernels (and even entire systems)
using low-level python code. This approach is complementary
to our approach, in that these projects could be used to create
hardware kernels that can be incorporated into PYNQ overlays.
These systems utilize a Python syntax to describe hardware in
a way that is functionally equivalent to behavioral HDL, and
are not as sophisticated in terms of the code that they accept
as modern C-based high-level synthesis tools such as Vivado
HLS, which could also be used to generate hardware kernels
that are connected together using our approach.

III. DESIGN

There exist a number of approaches and conventions for em-
bedded system development. The common approach includes
implementing a design in C/C++, profiling the application to
determine the computationally intensive portions, and migrat-
ing those kernels to hardware through either custom HDL or
a high-level synthesis tool. While C/C++ remain near the top
of the list of programming languages for embedded systems,
Python has consistently been ranked at or near the top of Lists
of Programming languages taught in academia and used in
industry. As a result, we consider what design and performance
implications are involved when using Python in an FPGA
development environment. This process in motivated by the
release of PYNQ from Xilinx which aids in the interfacing
with custom hardware in the FPGA fabric and providing a
number of useful utilities, such as downloading bitstreams
from within the application.

First we must consider what PYNQ is and is not. PYNQ
does not currently provide or perform any high-level synthesis
or porting of Python applications directly into the FPGA
fabric. As a result, a developer still must use create a design
using the FPGA fabric. While PYNQ does provide an Overlay
framework to support interfacing with the board’s IO, any
custom logic must be created and integrated by the developer.
A developer can still use high-level synthesis tools or the
aforementioned Python-to-HDL projects to accomplish this
task, but ultimately the developer must create a bitstream based
on the design they wish to integrate with the Python, seen in
Figure 1.

What PYNQ does provide is a simplified way of integrating
and interfacing with the hardware once it is designed and
the bitstream is created, for example bitstream programming

Fig. 1. Redsharc system for edge detection running on PYNQ

as shown in Figure 2. Plus, PYNQ exposes the wealth of
additional Python libraries and tools to allow for a much richer
software development environment than conventional C/C++
embedded systems design. This includes interactive debuggers,
pdb, profiling and measurement tools, cProfile/timeit, and
libraries and packages like NumPy, SciPy, and matplotlib.

In this work typical FPGA development is still necessary
in that a Vivado project is created, hardware accelerators
are added and the design is synthesized, implemented, and
a bitstream is generated. PYNQ does not change this process.
For traditional FPGA developers this is actually a comforting
fact, which means existing designs and tools do not necessarily
need to be modified to work with PYNQ. Existing overlays or
hardware/software co-design tools that assemble a bitstream
through Vivado will still work. While a number of different
hardware/software development environments exist [11]–[14]
this work uses the Redsharc project [15] due to its focus on
streaming-based kernel development and tight integration with
the Xilinx tool-flow.

Within Redsharc the hardware kernel development is sim-
plified by abstracting away the complexities of a full system-
on-chip design. This is accomplished by handling the system
assembly, run-time management, and data transfers, for the
designer. In effect, the developer is now tasked with creating
high performance compute kernels much like how highly
efficient libraries are developed and leveraged in Python.
Redsharc can then be integrated within the PYNQ application
through simple MMIO functions to configure the connectivity
of the different hardware kernels and DMA cores. PYNQ uses

Fig. 2. PYNQ Programming Bitstream Example



the C Foreign Function Interface for Python (CFFI) [16], a
standard Python library, to bind with any existing C shared
object libraries, like the DMA controller. An example of this
setup and configure is shown in Figure 1 and in Figure 3.

Fig. 3. Configuring Redsharc with PYNQ

In addition to MMIO, PYNQ provides a convenient and
efficient way to perform DMAs between memory and the
programmable fabric. The DMA engine is first initialized, then
a buffer is created and can be interfaced in any way the user
needs. Once ready for the transfer, the user can call a simple
transfer for the DMA, all shown in Figure 4.

Fig. 4. DMA example with PYNQ

IV. EVALUATION

To understand and evaluate the performance implications
of using Python and PYNQ for application development we
use and compare C, Python, OpenCV libraries, and custom
hardware accelerators. This section first describes the different
testing configurations of the experimental setup followed by
the analysis and discussion of the results.

A. Experimental Setup

For this work we conducted several experiments on
the Xilinx PYNQ platform [5], which includes the Xilinx
xc7z020clg400-1 part and 512 MB of DDR3 memory. The
processor clock is configured for 667 MHz and the fabric
and hardware accelerators are configured to run at 200 MHz.
Each experiment performed Edge Detection on 1024x768
grayscale images, a common step in many image processing
pipelines [17]. Our motivation for using Edge Detection is the
widely available code and libraries, as well as, being a highly
useful feature of image processing flows.

In total six different software and hardware configurations
are used in this experiment. The purpose is to evaluate the

performance implications of using C vs. Python in an em-
bedded development environment with FPGAs for application
development. The hardware for these experiments include a
custom 2D direct convolution kernel for Gaussian filtering, and
a publicly available Canny edge detector core that performs
the gradient calculation and non-max suppression steps [18],
modified to improved buffering. The hardware kernels each
use streaming interfaces that can consume and produce 1 pixel
per cycle, using 32-bit integer accumulation during convo-
lution, and 32-bit integer gradient calculation. The FPGA is
configured the same for both C and Python-based experiments.

The C versions were written using OpenMP and run on one
and two threads to utilize the two ARM A9 cores on the Zynq
7020 device. The OpenCV version utilizes the OpenCV library
to perform image convolution using the GaussianBlur function
followed by the Canny function. The hardware accelerated
version utilizes a hand-coded convolution and canny edge
detector kernel running at 200 MHz in the FPGA fabric. The C
versions is our baseline and shows what a number of research
papers have already shown, edge detection on FPGAs can offer
performance improvements over software implementations.

B. Results and Analysis

The results of running Edge Detection on six different
hardware and software configurations is shown in Table I.
First, we show the performance gains from traditional C
implementations on one and two cores. Using OpenMP we
are able to nearly achieve linear speedup from one to two
cores. With OpenCV we are able to leverage highly opti-
mized software implementations for the kernels and achieve
an impressive 22.91× speedup over the C reference imple-
mentation. The hardware accelerated version does slightly
outperform the OpenCV version by streaming the output
of the convolution kernel directly into the canny kernel,
without requiring a memory transaction. The work involved
to achieve these performance gains did require development
effort. Integrating OpenMP to provide better scalability across
the ARM A9 cores took approximately one day. The OpenCV
implementation was based on reference designs online, but did
require cross-compiling and installing the necessary libraries
on the target platform. The entire process was performed in
approximately two hours. Finally, the hardware accelerated
version leveraged an Open Source implementation, but in
order to obtain better throughput a buffering mechanism was
added. The hardware implementation took approximately one
week. These efforts could have been improved by using high-
level synthesis tools, and as such, is not meant to be a main
takeaway from this work.

Instead, we focus on the ability to rapidly develop an
application and obtain results on the target platform. In the C
development environment this includes compiling and testing
on the host, cross-compiling, testing, and debugging on the
target platform, then integrating with the hardware kernel
through device drivers and possibly other kernel modifications.
The system complexity of managing kernel, device drivers,
root file systems, data in kernel space vs. user space, in



TABLE I
EXPERIMENTAL RESULTS COMPARISON FOR EDGE DETECTION

Configuration Time (s) Speedup
C Version - 1 Thread 2.0516 1.00×
C Version - 2 Threads 1.0660 1.93×
OpenCV Version - 2 Threads 0.0896 22.91×
HW Accelerated Version 0.0765 26.80×
Python OpenCV Version 0.1795 11.43×
PYNQ HW Accelerated Version 0.0679 30.21×

addition to the FPGA development quickly necessitates a
broad skill set or a development team.

Utilizing a platform such as PYNQ, where Python is the
main programmers interface to the hardware, the portability
complexity and need for cross-compiler and device drivers
is eliminated. PYNQ provides APIs for programming the
bitstream, reading and writing data through MMIO and DMA,
significantly reduce the system complexity. The profiling and
debugging tools built into Python or available through libraries
and package installations enables a developer to quickly build,
test, and refine their application.

While obtaining performance gains in C and hardware
are common place, we were mostly interested in what the
performance and overhead of using Python and PYNQ. As
software developers embrace Python for ease of programming,
we show that naive ports or implementations can yield terrible
performance. A straight port of the C version of the Edge
Detector was implemented in Python and resulted in running
334.8× slower than the C version. Even though the port took
less than one hour, it is meant to highlight the importance
of using Python’s extremely large community of libraries,
analysis tools, and debuggers. With very little effort, less than
10 minutes, a Python OpenCV implementation running on
the ARM A9 cores, obtaining an 11.43× speedup over the
C version and comical 3,826.94× speedup over the Python C
ported version.

Finally, we wanted to see how a hardware accelerated core
combined with Python would perform. The speedup is 30.2×
when comparing with the single threaded C version. The con-
figuration was even 2.64× faster when compared against the
Python OpenCV version. Furthermore, when comparing the
two hardware versions, C and Python, it is the Python version
that was able to edge out C with a slight 1.12× improvement.
The differences are largely attributed to the DMA bandwidth
we were achieving, with a slight improvement in the Python
version. These results are highly encouraging and indicate that
Python in combination with hardware accelerator kernels can
match or even outperform C implementations.

V. CONCLUSION AND FUTURE WORK

With FPGAs becoming more heterogeneous, capable, and
processor-centric it is evident a more software-down develop-
ment environment is needed. Xilinx recently released PYNQ
with the aim to support software developers using Python to
access the FPGA. The combining of both Python software and
FPGA’s performance potential is a significant step in reaching
a broader community of developers, akin to Raspberry Pi and

Ardiuno. This work studied the performance of common image
processing pipelines in C/C++, Python, and custom hardware
accelerators to better understand the performance and capa-
bilities of a Python + FPGA development environment. The
results are highly promising, with the ability to match and
exceed performances from C implementations, up to 30×
speedup. Moreover, the results show that while Python has
highly efficient libraries available, such as OpenCV, FPGAs
can still offer performance gains to software developers.

This initial study provides insight into how PYNQ works
and how to interact with the programmable fabric and hard-
ware accelerators through Python. The performance results
are encouraging and we are currently evaluating additional
application benchmarks in a variety of scientific computing
and machine learning domains. We are also evaluating porting
the system to the newly released Xilinx Zynq UltraScale+
FPGA which include four ARM A53 application processors
and two ARM R5 real-time processors.

REFERENCES

[1] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture (ISCA). IEEE Press, June 2014.

[2] “Intel completes acquisition of altera,” https://newsroom.intel.com/news-
releases/intel-completes-acquisition-of-altera.

[3] “Amazon EC2 F1 instances,” https://aws.amazon.com/ec2/instance-
types.

[4] S. Class, “The 2016 top programming languages,” IEEE Spectrum, 2016.
[Online]. Available: http://spectrum.ieee.org/computing/software/the-
2016-top-programming-languages

[5] Xilinx, “PYNQ: Python productivity for zynq,” 2016. [Online].
Available: http://www.pynq.io

[6] “FGPU demo using PYNQ on the xilinx zc706.” [Online]. Available:
https://github.com/malkadi/FGPU IPython

[7] D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A unified framework
for vertically integrated computer architecture research,” in International
Symposium on Microarchitecture, 2014.

[8] P. Haglund, O. Mencer, W. Luk, and B. Tai, “PyHDL: Hardware script-
ing with python,” in International Conference on Field Programmable
Logic, 2003.

[9] E. Logaras and E. S. Manolakos, “SysPy: Using python for processor-
centric soc design,” in International Conference on Electronics, Circuits
and Systems, 2010.

[10] J. Decaluwe, “Myhdl: A python-based hardware description language,”
Linux Journal, 2004.

[11] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie,
J. Ortiz, E. Komp, and P. Ashenden, “Programming Models for Hybrid
FPGA-CPU Computational Components: A Missing Link,” IEEE Micro,
vol. 24, no. 4, July 2004.

[12] E. Lübbers and M. Platzner, “Reconos: Multithreaded programming for
reconfigurable computers,” ACM Trans. Embed. Comput. Syst., 2009.

[13] M. Adler, K. E. Fleming, A. Parashar, M. Pellauer, and J. Emer,
“Leap Scratchpads: Automatic Memory and Cache Management for
Reconfigurable Logic,” ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Feb. 2011.

[14] G. Weisz and J. C. Hoe, “Coram++: Supporting data-structure-specific
memory interfaces for fpga computing,” in International Conference on
Field Programmable Logic and Applications, 2015.

[15] W. Kritikos, A. Schmidt, R. Sass, E. Anderson, and M. French,
“Redsharc: A Programming Model and On-Chip Network for Multi-
Core Systems on a Programmable Chip,” International Journal of
Reconfigurable Computing, 2012.

[16] “CFFI: C foreign function interface for python.” [Online]. Available:
http://cffi.readthedocs.io

[17] “Rock segmentation through edge regrouping.” [Online]. Available:
http://www.techbriefs.com/component/content/article/3210

[18] “OpenCores Canny edge detector core,” http://opencores.org/project,
canny edge detector.

https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera
https://aws.amazon.com/ec2/instance-types
https://aws.amazon.com/ec2/instance-types
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
http://www.pynq.io
https://github.com/malkadi/FGPU_IPython
http://cffi.readthedocs.io
http://www.techbriefs.com/component/content/article/3210
http://opencores.org/project,canny_edge_detector
http://opencores.org/project,canny_edge_detector

	I Introduction
	II Background and Related Work
	III Design
	IV Evaluation
	IV-A Experimental Setup
	IV-B Results and Analysis

	V Conclusion and Future Work
	References

