
On Hard Adders and Carry Chains in FPGAs
Jason Luu∗, Conor McCullough†, Sen Wang†, Safeen Huda∗, Bo Yan†, Charles Chiasson∗,

Kenneth B. Kent†, Jason Anderson∗, Jonathan Rose∗, Vaughn Betz∗
∗ Dept. of Electrical and Computer Engineering, University of Toronto

† Dept. of Electrical and Computer Engineering, University of New Brunswick

Abstract—Hardened adder and carry logic is widely used
in commercial FPGAs to improve the efficiency of arithmetic
functions. There are many design choices and complexities
associated with such hardening, including circuit design, FPGA
architectural choices, and the CAD flow. There has been very
little study, however, on these choices and hence we explore a
number of possibilities for hard adder design. We also highlight
optimizations during front-end elaboration that help ameliorate
the restrictions placed on logic synthesis by hardened arithmetic.
We show that hard adders and carry chains, when used for simple
adders, increase performance by a factor of four or more, but
on larger benchmark designs that contain arithmetic, improve
overall performance by roughly 15%. We measure an average
area increase of 5% for architectures with carry chains but
believe that better logic synthesis should reduce this penalty.
Interestingly, we show that adding dedicated inter-logic-block
carry links or fast carry look-ahead hardened adders result in
only minor delay improvements for complete designs.

I. INTRODUCTION

One of the central questions in FPGA architecture is the
determination of which functions to harden and which to
leave for implementation in the soft logic [1]. A function
should be hardened if it appears often in the set of used
applications, and if there is a large advantage when it is
implemented in hard logic rather than soft. This argument
has held sway in the case of adder-type arithmetic functions
– they appear often and hardened adders are much faster
than soft adders. Consequently, commercial devices commonly
have hardened adder and/or carry logic and routing [2] [3]
[4] [5]. Indeed, hardened arithmetic structures have been a
longstanding feature of commercial FPGAs, yet there has been
no comprehensive published study of the performance benefits
they offer on complete designs or their cost in terms of area;
this paper aims to fill that gap.
There are many degrees of freedom in the electrical and

architectural design of hard adder logic, and in the software
used to map a complete application to such structures. There
has been little published work that sheds light on the set
of such choices, nor the impact they have on the resulting
implementations of complete designs in FPGAs. We study a
number of these choices and determine their impact on per-
formance, area and CAD complexity. Some examples include:
First, the determination of how an adder interacts with nearby
LUTs and flip-flops. Second, the trade-off of performance
and area between larger, faster, multi-bit adders and more
flexible, slower, smaller single-bit adders. Third, the design of
the connection between the carry bits of adjacent hard adder
units; for example, should there be dedicated links for the carry
signal across soft logic block boundaries so that wide additions
may be done at high speed but with a more constrained
placement problem? Or should those connections cross soft
logic boundaries using the general-purpose interconnect of the
FPGA? These are important implementation details that an

architect must decide on when embedding hard adders in with
soft logic. We present quantitative measurements of the impact
of these decisions.
Previous work in this area began in the early 90’s, when

Hsieh et al. [6] described the Xilinx 4000 FPGA that had
soft logic blocks that were capable of implementing two
independent adder bits per block. They employed dedicated
carry logic and routing from adjacent logic blocks for the carry
signals. Woo [7] proposed adding additional flexibility to the
fast carry links between logic blocks to enable flexible tree-
based mappings of addition/subtraction/comparison functions.
Both Hseih and Woo targeted older FPGAs that had relatively
fewer and smaller lookup tables in the logic block compared
to the latest FPGAs.
Xing proposed implementing carry lookahead adders (in an

FPGA architecture that contains just ripple adders) by using
soft logic to do the carry lookahead operation [8]. His case
study on the Xilinx 4000 series FPGAs show that this approach
is limiting because of the large area and delay penalty that
results when soft logic is involved in carry lookahead com-
putations. Hauck [9] evaluated different implementations for
FPGA adders including ripple carry, carry-skip, and tree-based
adders. He showed that a Brent-Kung adder achieves 3.8 times
speedup vs. the basic ripple carry adder for 32-bit addition at
the expense of between 5 to 9.5 times more area for the adder.
Parandeh-Afshar [10] proposed adding hardened compressors
to soft logic blocks to speed up multi-input addition with a
focus on DSP and video applications. The benchmarks used
in this study appear to be on the order of a few hundred 6-
LUTs [11].
FPGA vendors currently choose different hard arithmetic

architectures inside their soft logic blocks. The Xilinx Virtex-7
FPGA family [5] contains a basic ripple carry adder architec-
ture where addition can only start on every 4th adder bit. The
interaction between the soft logic and the adder is flexible;
the adder can either be driven by a 6-LUT and a logic block
input pin or be driven by two 5-LUTs with shared inputs. The
Altera Stratix V architecture uses a two-level carry-skip adder
architecture [2]. Each soft logic block contains ten 2-bit carry-
skip adders that can be cascaded with dedicated links. Between
two logic blocks, there is an additonal carry-skip stage that
can skip 20 bits of addition. Lewis claims that this adder
results in both a delay improvement and an area reduction
compared to the basic ripple carry adder, as the increase in
logic gates necessary for the carry-skip feature is more than
offset by the area reduction made possible via transistor size
optimization. Each fracturable LUT in Stratix V drives two bits
of arithmetic. Each adder input is driven by a 4-LUT with input
sharing constraints [12]. Outside of microbenchmarks, neither
vendor has published, in depth, the impact of the major design
decisions for their hard adder and carry chain architectures.
Prior published work on hardened arithmetic focused on the

implementation of arithmetic structures, and evaluated results

2014 IEEE 22nd International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/.23

52

2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/FCCM.2014.25

52

i

cin

cin

Soft�Logic�Block

BLE�0
6�LUT

With

BLE

Out

6

50%�

Populated

With

Adder

Mode

ff
BLE�1

40

General
8

OutIn

40

6

Crossbar

BLE�2

…

…

…

Inputs
8�

General�

Outputs6

BLE�7 cout

…

6

cout

Fig. 1. The base soft logic block.

on microbenchmarks like adders and adder trees or very small
designs. A full design, on the other hand, imposes many
other demands on the FPGA and its CAD flow. We seek to
measure the impact of different hard adder choices not only
on microbenchmarks, but also on complete designs with a full
CAD flow.
This paper is organized as follows: Section II describes the

FPGA architecture and circuit design that serve as the basis
for the exploration. Section III describes the variations of the
hard arithmetic structures and their interaction with the soft
logic. Section IV describes CAD flow issues that must be dealt
with to handle the regular arithmetic structure, and several
important optimizations. Section V presents measurements
of the various architectures on pure-adder microbenchmarks.
Section VI describes results for full application circuits, and
Section VII concludes and suggests future work.

II. BASE ARCHITECTURE MODEL

The base FPGA architecture used in this study is designed
in a 22nm CMOS process, and is a heterogeneous architecture
with soft logic blocks, simple I/Os, configurable memories and
fracturable multipliers. Fig. 1 illustrates the base soft logic
block used in this study, which contains eight Basic Logic
Elements (BLEs, to be described later), 40 general inputs,
eight general outputs, one cin pin and one cout pin. The BLE
consists of a 6-input LUT with an optionally registered output
pin. There are cin and cout pins into and out of the BLE,
respectively, to drive a hard adder. The specific details are
described in Section III below. There is also a fast path from
the flip-flop output to the LUT input. We also consider one
architecture that does not contain hardened arithmetic, and
hence has neither cin nor cout pins.
The internal connectivity of the blocks is provided by a

50% depopulated crossbar that connects block inputs and BLE
outputs to the BLE inputs. We have chosen a depopulated
crossbar as this is common in most commercial devices [2],
[5]. The depopulated crossbar is composed of four, smaller,
fully populated crossbars as designed by Chiasson in [13];
this depopulation results in the soft logic block inputs being
divided into four groups of ten logically equivalent pins. The
input pins are evenly distributed on the bottom and the right
sides of the logic block, as this simplifies the layout of the
FPGA.
For the logic block of Fig. 1 but without hard carry links,

which BLE performs which function can be changed by the
routing stage of the CAD flow to allow different functions to

TABLE I
ROUTING ARCHITECTURE PARAMETERS.

Parameter Value
Cluster input flexibility (Fcin) 0.2
Cluster output flexibility (Fcout) 0.1
Switch block flexibility (Fs) 3
Wire segment length (L) 4
Switch Block Type Wilton
Interconnect Style Single-driver

access different output pins – the outputs are logically equiv-
alent. When the carry links of the BLEs are used however,
the order of those BLEs are fixed and cannot be exchanged,
so the outputs of BLEs using their carry function are not
logically equivalent. The CAD tool that we are using, VPR
7.0, does not allow us to selectively switch off output pin
logical equivalence in cases when the carry links are used by
the BLEs. Hence, for correctness, we do not allow any BLE
swaps at all, thus removing all output logical equivalence. To
compensate for this restriction, each ouptut pin can directly
access two sides of the logic block, and hence both a vertical
and a horizontal channel. Turning off logical equivalence for
all outputs will lead to a slight pessimism on the routability
of the soft logic only architecture vs. that of the hard adder
architectures, but we believe the impact is small.
Table I gives the routing architecture parameters of the

base architecture, which are chosen to be in line with the
recommendations of prior research [14]. The hard memory
logic block can implement memories of different aspect ratios
ranging from 32Kx1 down to 1Kx32 for both dual-port and
single-port modes. The multiplier logic block can implement
a 36x36 multiplier that can optionally fracture to two 18x18
multipliers. Each 18x18 multiplier can further fracture down
to two 9x9 multipliers.
Area and Delay Models
The transistor-level design of the base soft logic blocks and

routing architecture are done using the COFFE tool [13] and
a 22nm CMOS technology. The architecture uses pass gates;
statically controlled pass gates are gate-boosted by 0.2V. The
architecture, area, and delay models for the memories and
multipliers are scaled to 22nm from the comprehensive 40nm
architecture in the VTR 7.0 release.

III. HARD ADDER AND CARRY CHAIN DESIGN

The goal of this paper is to explore various hard adder
and carry chain architectures, and to do so in the context of
careful electrical design of the key circuits. The two hard adder
primitives in this study are hand-optimized at the transistor
level. The first adder primitive is a basic 1-bit full adder. In a
soft logic block, eight of these full adders are linearly chained
together to form a ripple carry chain. Table II shows the
properties of the 1-bit hard full adder used in this study. Area
is measured as minimum width transistor areas (MWTAs),
using the transistor drive to area conversion equations of [13].
The adder circuitry, LUTs and routing are all designed with
a similar goal of minimizing the area*delay product of the
FPGA, and the cin to cout path of the adder is particularly
optimized for delay as it occurs n-1 times on an n-bit adder.
The second adder primitive is a 4-bit carry-lookahead adder

(CLA). Each logic block contains two of these 4-bit adders
chained in a ripple carry fashion. Table III shows the properties
of the 4-bit carry lookahead adder used in this study. The
carry lookahead optimization allows for a faster carry path

5353

���

���	
���
��

�
�
��
�

���
��

�
���

�
��
�

���	

���	

���
�

��
�

Fig. 2. A balanced 6-LUT and adder interaction where both adder inputs
are driven by 5-LUTs.

���

���	

�
��
����
��

�

�
��
����
��

�
���
�
��
�

��
�

Fig. 3. An unbalanced 6-LUT and adder interaction where the 6-LUT drives
only one adder input.

(20 ps) compared to a ripple of four 1-bit adders (44 ps)
when performing a 4-bit addition. The CLA design trades off
flexibility (as some bits are wasted if the desired adder length
is not divisible by 4) and area in exchange for speed.
Fig. 2 shows one of the ways that we explore interaction

between the adder and LUT. Here, we make use of the
observation that a 6-LUT is constructed with two 5-LUTs and
a mux. If that mux is dropped, then the adder can be driven
by two 5-LUTs, where the LUTs share inputs. If the adder
is not used, then another mux can be used to produce the 6-
LUT output. We call this the balanced LUT interaction, and
its underlying rationale is that a symmetric amount of prior
logic is the most appropriate architecture. Example circuits
that may benefit from this architecture would be applications
where multiplexers select the inputs to an adder.
Fig. 3 shows another LUT-adder interaction architecture that

TABLE II
PROPERTIES OF THE 1-BIT HARD ADDER USED IN THIS STUDY.

Property Value
Area 47.7 MWTAs
Delay cin to cout 11 ps
Delay sumin to cout 56 ps
Delay cin to sumout 30 ps
Delay sumin to sumout 83 ps

TABLE III
PROPERTIES OF THE 4-BIT CARRY LOOKAHEAD ADDER USED IN THIS

STUDY.

Property Value
Area 257 MWTAs
Delay cin to cout 20 ps
Delay sumin to cout 80 ps
Delay cin to sumout LSB 25 ps
Delay cin to sumout MSB 30 ps
Delay sumin to sumout LSB 65 ps
Delay sumin to sumout MSB 82 ps

V il Ci itVerilog Circuits

Elaboration Odin�II

FPGA

Synthesis�&�Tech�Map ABC

Back�end

FPGA

Architecture�

Description

File

Packing

PlacementPlacement

Routing

VPR

Timing�&�Area�Estimation

Quality�of�Results

Fig. 4. The VTR CAD flow

we will explore. Here, the 6-LUT output drives one of the
adder inputs and the other adder input is driven by one of
the 6-LUT inputs. As with the previous case, if the adder
is not used, then another mux can be used to select the 6-
LUT output. We call this the unbalanced LUT interaction.
We model each additional SRAM-controlled 2-to-1 mux (one
per BLE for the balanced LUT interaction, two per BLE for
the unbalanced LUT interaction) as having 22 ps of delay and
occupying 15 minimum width transistor areas (including the
SRAM configuration bit). The underlying rationale for this
architecture is that there might be an advantage to allowing
a faster input into one side of the adder, which would be
appropriate when speed was an issue.
A third type of architecture we are interested in are those

with hardened adders but no dedicated carry link between logic
blocks. Here, both the cin and cout pin are treated as though
they are regular input and output pins, respectively, in the inter-
block routing architecture. Within the logic block, the carry
signals maintain the same restricted connections. We create
two physically equivalent pins at the right and bottom sides
of the logic block for both carry-in and carry-out (i.e. 4 pins
in total). For architectures that have a dedicated carry link, the
carry link has a delay of 20 ps.
Finally, there are a few different ways to implement the

starting location of a multi-bit addition. One can place a mux
at every carry link that can select from logic-0, logic-1, or a
carry signal of a previous stage but this can incur a significant
delay penalty because every carry link must now go through a
mux. Alternatively, one can place these muxes only on selected
carry links, thus minimizing the overhead of excessive muxing
but at the cost of having fewer locations where an addition may
begin. This latter approach is typical in commercial devices.
Alternatively, the responsibility for starting an addition can
be implemented in a front-end CAD tool – the tool can pad
the addition with a dummy LSB that generates a 0 or a 1

cin for addition and subtraction, respectively. We employ this
approach in our research.

IV. CAD

In this section, we describe the CAD tools we use and
the significant enhancements they required to explore the
architectures described in the previous sections. We employ
and modify the open-source VTR 7.0 [15] CAD flow, which is
illustrated in Fig. 4. The two key inputs are a circuit described
in Verilog and a description of the FPGA architecture in a
human-readable text file. The circuit is elaborated by Odin

5454

II and ABC [16] performs logic synthesis to produce a
technology-mapped netlist of device atoms such as LUTs,
FFs and basic multipliers. VPR then packs these atoms into
logic, RAM and DSP blocks, places those blocks, and routes
connections between them. Finally, VPR computes the area
and delay of that final, physical mapping. Several of these
steps had to be changed or augmented to enable hardened
adders and carry chains, as described below.

A. Elaboration and Logic Optimization

In our initial experiments targeting hardened adders, we
discovered a surprising and unexpected downside: when front-
end elaboration inserts hardened adders into the circuit, it
creates a boundary in the elaborated circuit that cannot be
crossed by ABC’s logic synthesis. Furthermore, the hardened
logic is a “black box” and hence invisible to ABC and cannot
be optimized. This boundary reduces the effectiveness of basic
logic synthesis optimizations such as common sub-expression
elimination. We observed that ABC was able to reduce the
number of soft adders when these boundaries were not in
place, and that multiple copies of adders with the same inputs
were left intact when hardened adders were used. We also
attempted to use the “white box” feature of ABC [17]; while
this made the functionality of the hard logic visible, it also led
to ABC converting it into regular soft logic and hence was not
suitable.
To compensate for reduced down-stream optimization, we

implemented two new optimizations in Odin II: the removal
of duplicate hard adders and unused logic removal. Both these
optimizations are generalized to all hard blocks and are not
exclusive to hard adders. Duplicate hard block reduction is a
simplified version of common sub-expression elimination. If
all of the input pins of any two hard blocks anywhere in the
circuit are found to be the same, the duplicate hard block can
be removed and its fanout attached to the other hard block.
In a typical CAD flow, logic synthesis is responsible for

sweeping away unused logic because synthesis optimizations
can sometimes reveal unused logic. ABC is unable to do this
for hard blocks as it optimizes exclusively based on logic
expressions, and views hard blocks as black boxes. Hence we
augmented Odin II to sweep away unused hard and soft logic
based purely on circuit connectivity.
We quantified the impact of the new optimizations, using

the experimental methodology described subsequently in Sec-
tion VI but with adders always hardened. These experiments
covered four cases for the optimization settings in Odin II:
None, DHR (duplicate hard logic removal), ULR (unused logic
removal), and All (both DHR and ULR enabled).

Table IV shows the impact of these optimizations on the
benchmark circuits described in Section VI. Note that certain
circuits are more heavily impacted by duplicate hard block
reduction, and others by unused logic removal, so it is clear
that both are necessary for efficient optimization. Enabling
both duplicate hard block reduction and unused logic removal
reduces logic blocks used by 12% on average.

B. Threshold of When to Use Hard Adders

While hardened adder and carry logic is clearly good to use
for wide arithmetic structures, for small adders the flexibility
provided by soft logic might actually prove superior as hard
adders impose a boundary across which it is difficult for logic
synthesis to optimize. We define the hard adder threshold as
the size, in bits, of addition/subtraction above which the CAD

TABLE IV
EFFECT OF ODIN II OPTIMIZATIONS. ALL VALUES ARE NORMALIZED TO

THE BASE CASE WITH NO OPTIMIZATIONS.

Circuit DHR ULR All All
CLB CLB CLB Delay

arm core 0.97 0.95 0.94 0.92
bgm 1.00 0.80 0.80 0.87

blob merge 0.91 0.99 0.91 0.55
boundtop 0.92 0.99 0.90 1.00
LU8PEEng 0.84 0.99 0.83 1.01
LU32PEEng 0.83 0.99 0.82 0.98

mcml 1.00 0.91 0.91 0.94
mkSMAdapter4B 1.00 0.89 0.89 0.92

or1200 0.90 0.92 0.86 1.09
raygentop 0.93 0.94 0.87 0.92

sha 1.00 0.99 0.99 1.03
stereovision0 1.00 0.80 0.80 0.95
stereovision1 0.99 0.79 0.79 0.98
stereovision2 1.00 0.97 0.97 1.01
geomean 0.95 0.92 0.88 0.93
stdev 0.06 0.08 0.06 0.13

1.15

1.20

e
a
n
�

y
1 00

1.05

1.10

d
�G
e
o
m
e

a
th
�D
e
la
y

0.90

0.95

1.00
rm

a
li
ze
d

C
ri
ti
ca
l�
P
a

0.80

0.85N
o C

0 10 20 30 40 50 60 70

Hard�Adder�Threshold�(bits)

Fig. 5. Circuit speed vs. hard adder threshold. Results are the average across
14 benchmarks and normalized to the soft implementation.

flow will implement it with hard adders and below/equal to
which the function is implemented in soft logic.
Fig. 5 shows the impact on delay of different hard adder

thresholds when we target the ripple carry architecture. The
x-axis shows the hard adder threshold in bits. The y-axis
shows the geometric mean of the delay over the 14 circuits
of Table IV. There is a general trend towards achieving a
minimum mean delay at a threshold of around 12 bits.
Fig. 6 shows the area impact of different hard adder thresh-

olds. The x-axis is again the hard adder threshold, while the

1 20

1 10

1.15

1.20

n
�A
re
a

1 00

1.05

1.10

G
e
o
m
e
a
n

0.90

0.95

1.00

a
li
ze
d
�G

0.80

0.85

0.90

N
o
rm

0 10 20 30 40 50 60 70

Hard�Adder�Threshold�(bits)

Fig. 6. Average total area of different hard adder thresholds normalized to
the soft architecture.

5555

ffffffff

++

Fig. 7. Example of transitive connections.

y-axis shows shows geometric mean of the total area for all
benchmarks. The area consumed using an architecture with
hard adders is on average more than that of an equivalent
architecture without carry chains. We see a gradual drop in
area with an increasing hard adder threshold; area drops from
10% above the soft adder architecture with a hard adder thresh-
old of 0 to 3% above with a threshold of 12. Interestingly,
preliminary measurements we made on commercial FPGAs
showed using carry chains in the CAD flow reduced area;
we therefore suspect that with further improvements in logic
synthesis the remaining 3% area penalty could be eliminated.
Considering area and delay, the best hard adder threshold

is approximately 12 bits.

C. Packing

The packing stage of the CAD flow is responsible for
grouping technology-mapped atoms such as LUTs, hard adder
bits, flip-flops, and memory slices, into complex logic blocks.
When a logic block contains carry chains, adder atoms must
be placed inside the logic block in an order that respects the
restrictive carry links. The packer should also make use of
the architecture-specific features that allow the LUTs and flip-
flops to interact with the adder.
The packer inside VPR 7.0 is an interconnect-aware packing

algorithm [18] that recognizes and respects the various pin
constraints that arise with different LUT and adder interac-
tions. The carry chain itself is specified using the “molecule”
feature in AAPack that allows the architect to specify how
certain atoms must be packed together.
In our initial experiments with microbenchmarks (mostly

pure adders fed by, and feeding into registers), we discovered
that the packing algorithm in VPR 7.0 was imperfect in a
number of cases. Fig. 7 shows an example of the simple
input circuits that caused a problem. The adders in this figure
form a carry chain so they will be packed together into a
logic block. If the flip-flops cannot be packed into the same
logic block as the adders, then the packer will see these
flip-flops as completely unrelated to each other because they
do not share common nets. These flip-flops may then be
separated and packed with other logic, which is undesirable as
it makes it impossible to place all the logic clusters containing
these registers close to the adder. The packer was modified
to consider atoms that have transitive connectivity with the
current logic block being packed. In this particular example,
the flip-flops that drive the adder are transitively connected via
the carry chain so the packer scores them higher than other
unconnected logic. With this modification, circuits such as that
illustrated in Fig. 7 were packed correctly.

TABLE V
ARCHITECTURE ACRONYMS.

Acronym Architecture
Soft Soft logic only
Ripple 1-bit ripple carry, balanced LUT
U-Ripple 1-bit ripple carry, unbalanced LUT
CLA 4-bit CLA, balanced LUT
U-CLA 4-bit CLA, unbalanced LUT

D. Placement and Routing

VPR 7.0 has place-and-route functionality for carry chain
exploration. The architecture description file specifies the
dedicated carry chain links between soft logic blocks. VPR 7.0
automatically generates an FPGA architecture with those links
and places logic blocks that use those links in the right order.
However, in our initial experiments, we found that the routing
process was simply too slow, particularly in determining the
minimum channel width of the biggest VTR benchmarks. The
reason was that the router didn’t always detect impossible-to-
route situations, and spent too long trying to route them. We
modified the routing stage of VPR to perform the minimum
channel width search faster, by adding a heuristic that used
linear extrapolation of the overused routing resource node
count on a window of routing iterations to predict the iteration
at which routing may succeed. If the predicted final iteration
is above the maximum number of routing iterations plus a
threshold, then routing is likely impossible so VPR exits early.
This heuristic sped up the minimum channel width search by
70% without any loss in quality of result.

V. MICROBENCHMARK RESULTS

Table V lists the 5 different ways of supporting arithmetic
in an FPGA architecture that we investigate. Before exploring
the effect of each architecture on full designs, it is instructive
to measure their effect on various sizes of simple adders
– microbenchmarks. Here, each circuit is an adder of N
bits, where N ranges from one to 127. Both the inputs and
outputs of the adder are registered, so that critical path delay
measurement is a direct function of the adder combinational
logic delay. These registered adders are implemented using the
flow described in Section IV.
Fig. 8 shows the impact on critical path delay vs. width of

addition, for the Soft, Ripple and CLA architectures, where the
critical path delay is averaged over three placement seeds. In
addition, two variants of the Ripple and CLA architectures are
included, labelled no CLB carry, in which the general-purpose
interconnect is used to implement carry links across soft logic
blocks, rather than using dedicated carry links. The unbal-
anced architectures are not included here as their performance
difference vs. balanced is negligible on the microbenchmarks.
These results show trends that we generally expect, in

that delay grows linearly with adder size, and that the more
hardened architectures are faster. In the extreme case, for 127
bit addition, it is interesting to note that a pure soft adder is ten
times slower than the fastest (CLA) adder. The no CLB carry
circuits have delay values in between fully hard and fully soft
adder architectures. While the CLA architecture is the fastest
of all, ripple carry is only 19% slower for 32 bit adders, and
42% slower even for 127 bit addition. A ripple architecture
can sustain 400 MHz operation of even a 96-bit addition.
When adders are implemented in soft logic, CAD noise can

have a significant impact on delay. The effect of this noise is
evident in the figure when observing the delay of additions

5656

�

�

�

��

��

��

��

��

�
�
��
�
�	

��

������
������������������������

����

������� ��!�"�!#$$%

!�'� ��!�"�!#$$%

������

!�'

�

�

�

� �� �� �� �� ��� ��� ���

��������
������
�	�������

Fig. 8. Delay vs adder length for various architectures.

ranging from 17 bits to 25 bits for the soft logic architecture,
where delays for additions of similar size can vary significantly
as a result of CAD (in this case packer) noise. For hard adders,
the lack of CAD flexibility forces a predictable physical design
thus greatly reducing CAD noise for these microbenchmarks.
The combination of higher and more predictable performance
provided by hard adders, especially those with hard inter-CLB
links, is very desirable.
The data from this experiment also shows that a 3-bit

addition implemented in soft logic is actually slightly faster
than any of the hard-logic adders, further motivating the CAD
hard adder thresholds described in Section IV-B.

VI. APPLICATION CIRCUIT RESULTS

The goal of this work is to study the impact of hard
adder architectural decisions on the performance and area of
complete designs implemented in FPGAs. This includes the
study of adder granularity (one-bit ripple vs. four-bit CLA),
the symmetry of the LUT structure feeding the adder, and
the utility of high-speed inter-CLB carry links. The complete
design benchmarks we use are from the VTR 7.0 release,
specifically, all circuits larger than 1000 6-LUTs1. We will
refer to these as the VTR+ benchmarks. The geometric average
atom count across all 14 circuits is 11,700.
Table VI provides statistics on these benchmarks, and

includes the number of addition/subtraction functions found
in the benchmarks on the Ripple architecture. The table
columns list the number of 6-LUTs, the number of adder
bits after elaboration, the length of the longest adder chain
in bits, the average adder chain length, and the ratio of
adder bits to LUTs. The benchmarks exhibit a wide range
in the number and length of addition/subtraction functions.
On average, the ratio of adder bits divided by the number of
6-LUTs is 0.21, indicating arithmetic is plentiful and hence
it is reasonable to include hard adder circuitry in every CLB.
The widest addition/subtraction generated in these benchmarks
is 65 bits which corresponds to a 64-bit operation (as the
first bit must always be used to generate the carry-in signal).
For blob merge, the longest chain has just 13 bits. The
geometric mean of the longest addition/subtraction lengths is
31.2 bits. The most adder-intensive circuit is stereovision2
with 1.26 adders per LUT, while the least adder-heavy circuit
is arm core at 0.04. These measurements correspond well
with other modern benchmarks. For the TITAN benchmarks
(with the SPARC cores excluded because these cores have

1A large ARM processor core is also included, and the mkDelayWorker32B
benchmark is excluded as it caused ABC to crash.

TABLE VI
BENCHMARK STATISTICS WHEN MAPPED TO RIPPLE ARCHITECTURE.

Circuit Num Num Max Avg Add/LUT
6LUTs Add Add Add Ratio

Bits Len Len
arm core 13812 537 35 9.16 0.04
bgm 32337 5438 25 9.34 0.17

blob merge 7843 3754 13 11.96 0.48
boundtop 2846 309 19 7.22 0.11
LU8PEEng 21668 3251 47 11.04 0.15
LU32PEEng 73828 8249 47 11.9 0.11

mcml 94048 24302 65 47.52 0.26
mkSMAdapter4B 1819 431 33 6.87 0.24

or1200 2813 534 65 23.85 0.19
raygentop 1778 580 32 11.8 0.33

sha 1994 309 33 23.95 0.15
stereovision0 8282 2920 18 11.17 0.35
stereovision1 7845 2388 19 6.38 0.30
stereovision2 11006 13843 32 23.89 1.26
geomean 8606 1807 31.2 12.5 0.21

TABLE VII
DELAY FOR DIFFERENT HARD ADDER ARCHITECTURES, NORMALIZED TO

THE SOFT LOGIC ARCHITECTURE.

Arch 32-bit Add Application Circuits
Delay Delay

Ripple 0.239 0.866
U-Ripple 0.231 0.878
CLA 0.201 0.871

U-CLA 0.195 0.850

almost no adders at all) [19], the geometric average of the
fraction of LUTs in arithmetic mode and the maximum of
length of addition/subtraction is 0.22 and 35.8, respectively.
We use the standard VTR 7.0 CAD flow, augmented as

described in Section IV, to determine the minimum routable
channel width (Wmin) for each circuit. The router is then
invoked again with a channel width of 1.3 × Wmin to mea-
sure critical path delay and area. Area measurements are in
minimum-width-transistor-area units. Area is computed as the
total number of soft logic blocks (CLBs) multiplied by the
area of a soft logic tile, where this tile includes both the
logic cluster and inter-cluster interconnect area. The hard adder
threshold is set to 12, as this yielded the best area-delay results
in subsection IV-B.
Each of the circuits was mapped to one of the four archi-

tectures described in Table V, which correspond to the two
granularities and the balanced and unbalanced architectures
described in Section III. In addition, each of these architectures
was modified to remove the hard inter-CLB carry links,
creating four more architectures, for a total of eight.

A. Microbenchmarks vs. Application Circuits
An interesting first comparison is to assess the impact of

hard adders on application circuits vs. microbenchmarks. We
use a 32-bit adder as a representative microbenchmark, as
this is close to the average size of the longest adders in the
application circuits. Table VII shows the geometric average
critical path delay for each of the architectures normalized
to the soft logic architecture. An isolated 32-bit adder sees
a compelling delay reduction of 76% to 80% with hard
carry architectures, while application circuits see much smaller
(but still very significant) delay reductions of 13% to 15%,
depending on the hard carry architecture. This is a common
outcome in the hardening of any kind of circuit – the final

5757

TABLE VIII
QOR OF THE VTR+ BENCHMARKS ON DIFFERENT CARRY CHAIN
ARCHITECTURES. VALUES ARE THE GEOMETRIC MEAN OF VTR+
CIRCUITS NORMALIZED TO THE SOFT ADDER ARCHITECTURE.

Arch Area Area-Delay Min W Num
Product CLB

Ripple 1.042 0.902 0.960 1.029
U-Ripple 1.038 0.911 0.927 1.032
CLA 1.060 0.923 0.961 1.037

U-CLA 1.044 0.888 0.918 1.035

impact on critical path delay is limited because other paths in
the design quickly become more critical than the adder. On the
application circuits, the best delay improvement achieved by
hardening adders is 15%, for the U-CLA architecture. Observe,
however, that the other hardened adder architectures benefit
circuit speed almost as much.

B. Simple vs. High Performance Adder Logic
An FPGA architect must choose between smaller, more

flexible, slower adders vs. larger, less flexible, faster adders.
The second column of Table VII shows that, on average, the
two ripple architectures have 19% more delay than the two
carry-lookahead architectures for a 32-bit addition. For the
application circuits, however, the ripple architectures average
only 1.3% more delay than the CLA architectures. Clearly the
benefit of a very fast adder for long word-length additions is
greatly diluted by the presence of all the logic surrounding
adders in complete designs.
Table VIII shows the quality of results (QoR) for each

of the architectures normalized to the soft logic architecture.
All values are the geometric averages across all application
benchmarks, normalized to the soft adder architecture. The
columns from left to right are the architecture, the total soft
logic area including routing, area-delay product, minimum
channel width, and number of used soft logic blocks. The
CLA architecture increases area slightly (by between 1% and
2%) but cuts delay by roughly the same amount, leading to
an area-delay product that is very close to that of the ripple
architectures.
On these complete circuits, the results reaffirm the im-

portance of hard adders but show that different hard adder
granularities (1-bit ripple or 4-bit CLA) remain reasonable
architectural choices. This is an unexpected result, as Table II
and Table III show markedly different area and delay char-
acteristics between 1-bit and 4-bit hard adders, respectively.
One would normally expect that architectures with 1-bit adders
would result in smaller circuits that are also slower, yet the
area and delay results on complete circuits exhibit this trend
only very weakly.

C. Balanced vs. Unbalanced
We now turn to consider how best to integrate the LUT and

arithmetic circuitry. The balanced approach of splitting the 6-
LUT into two 5-LUTs, where each 5-LUT drives a different
adder input has good symmetry. The unbalanced approach of
using the 6-LUT to drive one adder input and a small mux to
select BLE input pins for the other adder input offers richer
LUT functionality feeding the adder input (six pins compared
to five for the balanced case) but worse symmetry. It is thus
unclear which of these two approaches is better. Note also that
commercial FPGAs differ in their approach: Altera’s Stratix V
FPGAs [12] support a balanced style, while Xilinx’s Virtex7
FPGAs [5] allow both unbalanced and balanced styles.

TABLE IX
QOR FOR ARCHITECTURES WITH SOFT INTER-CLB LINKS. VALUES ARE

THE GEOMETRIC MEAN OF VTR+ CIRCUITS NORMALIZED TO THE
EQUIVALENT ARCHITECTURE WITH DEDICATED INTER-CLB LINKS.

Arch 32-bit VTR+ VTR+ VTR+
Add Delay Area Area-Delay
Delay Product

Ripple 1.92 1.03 1.003 1.03
U-Ripple 1.77 1.01 1.003 1.02
CLA 1.60 0.99 1.003 0.99

U-CLA 1.85 1.02 1.000 1.02

The third column of Table VII shows the normalized delay
values for each of the different architectures. The delay of the
U-Ripple architecture is approximately the same as that of the
Ripple architecture. The delay of the U-CLA architecture is
2.5% faster than the CLA architecture. From these results, we
conclude that balanced and unbalanced architectures achieve
approximately the same overall delay.
Table VIII shows the QoR for each of the architectures

normalized to the soft logic architecture. The balanced and
unbalanced architectures require virtually the same CLB count,
indicating that the packer can fill both architectures with
roughly the same amount of logic per CLB, despite the
fact that the balanced architectures can use a LUT on each
input of an adder instead of only one input. Interestingly, the
unbalanced architectures require a channel width that is 4%
lower, on average. This is due to the fact that the unbalanced
architecture can use all 6 inputs of a BLE when in adder
mode, while the balanced architectures can use only 5 – the
packer has more freedom on what to pack with the adder in
the unbalanced architecture and reduces the number of signals
to route between clusters. The net impact is that while the
unbalanced architectures require slightly more logic area due
to their extra 2:1 mux per BLE, they reduce overall area by
1% by reducing the required amount of inter-cluster routing.

D. Utility of Inter-CLB Carry
Dedicated carry links between logic blocks improve the

speed of long adders significantly, as shown in Fig. 8,
but their use constrains the placement engine to keep long
adders in a fixed relative placement, which may lengthen the
wiring between other blocks. Table IX compares the QoR
of architectures with soft inter-CLB carry links (i.e. routed
using the general-purpose interconnect) normalized to their
corresponding architectures with hard inter-CLB carry links.
The first column is the architecture. The second column shows
normalized delays for the 32-bit addition micro benchmark.
The next three columns show the normalized geometric mean
of delay, area, and area-delay product over the VTR+ bench-
marks. Using soft inter-CLB links increases the delay of
a 32-bit adder by 78% on average across the hard adder
architectures, but increases the delay of the VTR+ designs by
only 1.3%. The area cost of hard inter-CLB carry is negligible,
as little hardware needs to be added to support them, and
as their use does not significantly increase the required inter-
CLB channel width, despite the constraint they create on the
placement engine.
We expect that the impact of hard inter-CLB carry links

is a strong function of the number of adder bits per logic
block. Fewer adder bits per block means more inter-CLB
links are required for an addition of a given size, which
in turn may have a bigger impact on delay. Therefore, we
believe that architectures with 4 adder bits per logic block (e.g.

5858

TABLE X
CIRCUIT-BY-CIRCUIT BREAKDOWN COMPARING THE U-CLA

ARCHITECTURE TO THE SOFT ARCHITECTURE.

Circuit Delay Area LUTs on CLA cout on
Crit Path Crit Path

arm core 0.959 1.083 0.720 2
LU8PEEng 0.837 1.047 0.646 2

mcml 0.520 1.101 0.238 20
or1200 0.698 1.052 0.154 5
sha 0.560 1.026 0.250 6

stereovision2 0.891 0.782 0.050 3
LU32PEEng 0.730 0.955 0.650 0

bgm 1.099 1.118 0.727 0
boundtop 0.998 1.032 0.778 0
blob merge 0.954 1.081 1.000 0

mkSMAdapter4B 0.997 1.106 0.857 0
raygentop 0.972 1.100 N/A 0

stereovision0 0.936 1.051 1.200 0
stereovision1 1.024 1.138 N/A 0
geomean 0.850 1.044 0.456 –
stdev 0.177 1.041 0.358 –

Virtex 7 [5]) will benefit more from hard inter-CLB links than
architectures with 20 bits per block (e.g. Stratix V [12]).

E. Circuit-by-Circuit Breakdown

Table X provides a circuit-by-circuit breakdown comparing
the U-CLA and Soft architectures. The columns from left to
right are the benchmark name followed by the ratio of the
U-CLA/Soft values for critical path delay, the total soft logic
area including routing, and the number of LUTs on the critical
path. The last column is the number of (4-bit) hard adders on
the critical path for the U-CLA architecture. On average, the
delay of the circuits is reduced by 15% and the critical path
LUT depth is cut by more than 50%, but there are 3 distinct
classes of circuits that show markedly different behaviour. For
the top 6 circuits hard adders are on the critical path, and
we obtain a large delay reduction of 27% (a 38% speed-up).
The next 3 circuits (bgm, boundtop and LU32PEEng) have
reductions in the critical path LUT depth of more than 20%
when targeting the U-CLA architecture, even though no hard
adders occur on their critical paths. This indicates that adder
logic was likely timing critical in the Soft architecture2, but
has sped up enough to move off the critical path in the U-
CLA architecture. Interestingly, while these 3 circuits have an
average LUT depth that is 28% lower when targeting U-CLA
vs. Soft, only LU32PEEng speeds up significantly, and the
average delay reduction across the 3 designs is only 7%. We
believe this illustrates a key trade-off when hard carry chains
are added to an FPGA: by limiting the flexibility of the packer
and placer, the carry chains have increased the average routing
delay per LUT level on non-adder paths, and this costs some
of the speed gain one would expect from reducing the logic on
the critical path with hard adders. Finally, there are five circuits
where the LUT depth is not significantly reduced and where
there is not a significant delay reduction, indicating adders
were not very timing-critical in even the Soft architecture.
Two of these circuits (raygentop and stereovision1) have hard
multipliers as their critical paths so they show very little
variation in speed vs. carry architecture, as one would expect.

2Ideally we would examine the Soft implementation of a design to directly
determine if its critical path included addition, but as ABC does not preserve
node names, we cannot trace LUTs back to specific HDL.

VII. CONCLUSIONS AND FUTURE WORK

This study covered a broad range of different implemen-
tations of hard adders and carry chains within a soft logic
block. We show that different hard adder and carry chain
architectures show very similar area and delay values on real
applications despite significant differences on microbench-
marks. We conclude that hardened adders provide a speed up
of approximately 15% for an area penalty of approximately
5% resulting in an overall area-delay product reduction of
approximately 10%.
There is much future work in both CAD and architecture

to explore. The interaction between fracturable LUTs and
hard adders is interesting as it adds another dimension to the
architecture space. In terms of CAD, the most pressing issue is
the lack of good logic synthesis when adders are used; ideally
ABC would be upgraded to understand the logic within hard
adders.

VIII. ACKNOWLEDGEMENTS

We gratefully acknowledge the funding support of NSERC,
Altera, the Semiconductor Research Corporation and Texas
Instruments. We also thank Kevin Murray for providing data
on carry usage in the Titan benchmarks.

REFERENCES

[1] J. Rose, “Hard vs. Soft: The Central Question of Pre-Fabricated Silicon,”
IEEE ISMVL, pp. 2–5, 2004.

[2] D. Lewis et al., “Architectural Enhancements in Stratix V,” in ACM
FPGA, 2013, pp. 147–156.

[3] J. Greene et al., “A 65nm Flash-Based FPGA Fabric Optimized for Low
Cost and Power,” in ACM FPGA, 2011, pp. 87–96.

[4] Lattice Semiconductor, “LatticeECP3 Family Handbook,” http://
d12lxohwf1zsq3.cloudfront.net/documents/HB1009.pdf, 2013.

[5] Xilinx Inc., “7 Series FPGAs Configurable Logic Block User Guide,”
http://www.xilinx.com/support/documentation/user guides/ug474
7Series CLB.pdf, 2013.

[6] H.-C. Hsieh et al., “Third-Generation Architecture Boosts Speed and
Density of Field-Programmable Gate Arrays,” in IEEE CICC, 1990, pp.
31–2.

[7] N.-S. Woo, “Revisiting the Cascade Circuit in Logic Cells of Lookup
Table Based FPGAs,” in ACM FPGA, 1995, pp. 90–96.

[8] S. Xing and W. W. Yu, “FPGA Adders: Performance Evaluation and
Optimal Design,” IEEE Design & Test of Computers, vol. 15, no. 1, pp.
24–29, 1998.

[9] S. Hauck, M. Hosler, and T. Fry, “High-Performance Carry Chains for
FPGA’s,” IEEE TVLSI, vol. 8, no. 2, pp. 138–147, 2000.

[10] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “A Novel FPGA Logic Block
for Improved Arithmetic Performance,” in ACM FPGA, 2008, pp. 171–
180.

[11] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Efficient Synthesis of
Compressor Trees on FPGAs,” in IEEE ASP-DAC, 2008, pp. 138–143.

[12] Altera Co., “Logic Array Blocks and Adaptive Logic Modules in
Stratix V Devices,” http://www.altera.com/literature/hb/stratix-v/stx5
51002.pdf, 2013.

[13] C. Chiasson and V. Betz, “COFFE: Fully-Automated Transistor Sizing
for FPGAs,” in IEEE FPT, 2013, pp. 34–41.

[14] I. Kuon and J. Rose, “Area and Delay Trade-Offs in the Circuit and
Architecture Design of FPGAs,” in ACM FPGA, 2008, pp. 149–158.

[15] J. Rose et al., “The VTR Project: Architecture and CAD for FPGAs
from Verilog to Routing,” in ACM FPGA, 2012, pp. 77–86.

[16] A. Mishchenko et al., “ABC: A System for Sequential Synthesis and
Verification,” http://www.eecs.berkeley.edu/alanmi/abc, 2009.

[17] S. Jang et al., “SmartOpt: An Industrial Strength Framework for Logic
Synthesis,” in ACM FPGA, 2009, pp. 237–240.

[18] J. Luu, J. Rose, and J. Anderson, “Towards Interconnect-Adaptive
Packing for FPGAs,” in ACM FPGA, 2014.

[19] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “TITAN: Enabling
Large and Complex Benchmarks in Academic CAD,” in IEEE FPL,
2013.

5959

